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Integrating clinical and 
biochemical markers: a novel 
nomogram for predicting lacunes 
in cerebral small vessel disease
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Background: Lacunes, a characteristic feature of cerebral small vessel disease 
(CSVD), are critical public health concerns, especially in the aging population. 
Traditional neuroimaging techniques often fall short in early lacune detection, 
prompting the need for more precise predictive models.

Methods: In this retrospective study, 587 patients from the Neurology 
Department of the Affiliated Hospital of Hebei University who underwent 
cranial MRI were assessed. A nomogram for predicting lacune incidence was 
developed using LASSO regression and binary logistic regression analysis for 
variable selection. The nomogram’s performance was quantitatively assessed 
using AUC-ROC, calibration plots, and decision curve analysis (DCA) in both 
training (n  =  412) and testing (n  =  175) cohorts.

Results: Independent predictors identified included age, gender, history of 
stroke, carotid atherosclerosis, hypertension, creatinine, and homocysteine 
levels. The nomogram showed an AUC-ROC of 0.814 (95% CI: 0.791–0.870) for 
the training set and 0.805 (95% CI: 0.782–0.843) for the testing set. Calibration 
and DCA corroborated the model’s clinical value.

Conclusion: This study introduces a clinically useful nomogram, derived from 
binary logistic regression, that significantly enhances the prediction of lacunes 
in patients undergoing brain MRI for various indications, potentially advancing 
early diagnosis and intervention. While promising, its retrospective design and 
single-center context are limitations that warrant further research, including 
multi-center validation.
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Introduction

Cerebral small vessel disease (CSVD) represents a significant neurological condition that 
poses a substantial public health challenge globally, particularly prevalent among the elderly 
population (Wardlaw et al., 2019). It is closely associated with a spectrum of severe disease 
outcomes, including stroke and cognitive decline (Vermeer et al., 2003; Debette et al., 2019). 
Among various radiological manifestations of CSVD, lacunes hold particular clinical 
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significance, typically resulting from occlusive ischemic injuries to 
small vessels (Wardlaw et al., 2013; Duering et al., 2023). These lacunes 
are not only markers of underlying vascular pathology but also 
predictors of future cerebrovascular events and cognitive impairments.

In the realm of neuroimaging, Magnetic Resonance Imaging 
(MRI) plays a pivotal role in identifying lacunes (Wardlaw et al., 2013; 
Duering et al., 2023). However, the detection capability of MRI is 
limited to the presence of established structural brain damage, 
implying that lacunes might not be accurately identified in the early 
stages of the lesion or when significant structural damage has not yet 
formed. Consequently, reliance solely on radiological findings could 
lead to missed or delayed detection, especially since lacunes are often 
asymptomatic in their early stages and can be easily overlooked (Mok 
and Kim, 2015). This underscores the need for a more comprehensive 
approach that integrates clinical history and laboratory findings to 
predict the presence of lacunes.

Our study addresses this challenge by developing a predictive 
model based on the analysis of a wide range of clinical and laboratory 
parameters from 587 individuals. The model aims to predict the 
presence of lacunes in cranial MRI, thereby facilitating early 
identification and intervention. Incorporating variables such as age, 
gender, history of hypertension, diabetes, stroke, along with blood test 
indicators, the model provides clinicians with a nuanced tool for 
risk assessment.

This predictive model represents a significant advancement in the 
early diagnosis of lacunes and offers a platform for understanding the 
complex interplay of various risk factors leading to the development 
of lacunes. The integration of clinical and laboratory data in predicting 
radiological outcomes signifies a major stride in personalized 
medicine and targeted interventions in the field of neurology.

Furthermore, the model’s ability to stratify patients based on their 
risk of developing lacunes has profound implications for preventive 
strategies against lacune. It enables healthcare providers to identify 
individuals at high risk and accordingly tailor management plans, 
potentially reducing the incidence of stroke and cognitive disorders 
associated with lacune.

Method

Study population and design

This retrospective study was conducted at the Neurology 
Department of the Affiliated Hospital of Hebei University, spanning 
from January 2020 to June 2022. We  systematically collected and 
analyzed data from existing patient records, focusing on the period 
mentioned. The study’s retrospective nature allowed for the utilization 
of a large dataset, enabling a comprehensive analysis of pre-established 
data. Inclusion criteria were defined to ensure a representative sample 
from the patient population. These criteria included patients aged over 
55 years and those with complete cranial magnetic resonance imaging 
(MRI) sequences, comprising T1-weighted axial, T2-weighted axial, 
FLAIR, and axial susceptibility-weighted images. Our study 
population was not limited to patients with specific diseases; any 
patient who had undergone a brain MRI for any reason, including 
those with normal MRI findings, was considered a potential 
participant. Conversely, exclusion criteria aimed to eliminate cases 
that could potentially confound the study outcomes, such as patients 

with poor-quality MRI images, significant stroke history, or severe 
comorbid conditions including but not limited to advanced cardiac, 
respiratory, renal, or hepatic diseases, and tumors. Cases suggestive of 
non-vascular origins of CSVD, like multiple sclerosis or central 
nervous system demyelinating diseases, were also excluded, alongside 
those with insufficient clinical or laboratory data. To ensure the 
confidentiality and privacy of patient data, all records were 
anonymized before analysis, with all personal identifiers removed. The 
data handling process was conducted in strict compliance with data 
protection regulations. The study protocol was rigorously reviewed 
and approved by the Institutional Review Board (IRB) of the Affiliated 
Hospital of Hebei University under Approval Number 
HDFYLL-KY-2023-060. This study was conducted in strict accordance 
with the ethical standards set forth in the 1964 Declaration of Helsinki 
and its later amendments. Ethical approval for this research involving 
human participants was obtained from the appropriate ethics 
committee. We hereby confirm that all national laws and regulations 
concerning ethical standards in research were observed, ensuring that 
the conduct of the research complied with both international and 
national ethical standards.

MRI acquisition and assessment

Participants underwent brain MRI using a 1.5 T MRI scanner 
(Siemens, Munich, Germany). Standardized MRI sequences included 
axial T1-weighted, sagittal T2-weighted fluid-attenuated inversion 
recovery (FLAIR), and axial susceptibility-weighted images. The 
imaging parameters were as follows: slice thickness set at 5 mm with 
a 1-mm interslice gap; for T1-weighted spin echo, repetition time 
(TR)/echo time (TE) were 700/11 ms; for T2-weighted fast spin echo, 
TR/TE were 5200/120 ms; and for FLAIR, TR/TE and inversion time 
were 8500/127 ms and 2,300 ms, respectively. This protocol aimed to 
identify the radiological manifestations of lacunes. The evaluation was 
carried out according to the guidelines for reporting vascular changes 
in neuroimaging (STRIVE) (Wardlaw et al., 2013; Duering et al., 2023) 
Lacunes were identified as round or ovoid subcortical cavities, ranging 
from 3 to 15 mm in diameter, resembling cerebrospinal fluid (CSF) in 
signal characteristics. On fluid-attenuated inversion recovery (FLAIR) 
imaging, these vascular-origin lacunes typically exhibit a central 
CSF-like hypointense core surrounded by a hyperintense rim. The 
presence and location of lacunes were assessed by two experienced 
neurologists, Y. Jiang and L. Ling, who were blinded to the clinical 
data of the participants. This approach aimed to minimize assessment 
bias. To ensure reliability of the assessments, the interrater agreement 
was quantified using the intraclass correlation coefficient (ICC), with 
a substantial agreement indicated by an ICC of 0.85.

Clinical blood biochemistry assessment

In the retrospective analysis of our patient cohort, we meticulously 
compiled a comprehensive dataset encompassing a broad spectrum of 
clinical parameters. This dataset included an extensive range of blood 
biochemistry markers, such as complete blood count, renal function 
indicators, electrolyte levels, coagulation profiles, both random and 
fasting blood glucose measurements, liver function tests, lipid profiles, 
cardiac enzyme panels, thyroid function assessments, and 
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homocysteine levels. Altogether, the study incorporated 81 distinct 
laboratory parameters, covering vital aspects of patient health and 
providing a thorough clinical picture for each enrolled individual.

Clinical evaluation

In our study, a thorough clinical evaluation was performed for 
each participant, which included the collection of demographic 
information such as age and sex, along with a comprehensive medical 
history. In the medical history assessment, particular emphasis was 
placed on key health conditions including hypertension, diabetes, and 
hypercholesterolemia, as well as on the history of carotid artery 
atherosclerosis and stroke. The diagnostic criteria for these conditions 
were rigorously adhered to as follows: Hypertension was defined as 
having a systolic blood pressure of 140 mmHg or higher, a diastolic 
blood pressure of 90 mmHg or higher, or being under current 
treatment with antihypertensive medications. Diabetes was established 
based on fasting blood glucose levels of 7.0 mmol/L or above, 2-h post-
oral glucose tolerance test (OGTT2h) readings exceeding 
11.1 mmol/L, or ongoing treatment with hypoglycemic agents. 
Hypercholesterolemia was identified if total cholesterol levels 
exceeded 5.2 mmol/L (200 mg/dL) or low-density lipoprotein (LDL) 
cholesterol levels surpassed 3.4 mmol/L (130 mg/dL). Carotid 
atherosclerosis is defined as a history of carotid atherosclerosis or 
evidence of increased intima-media thickness or the presence of 
plaques in the carotid arteries, as indicated by carotid ultrasound 
examination performed during hospitalization.

Statistical analysis

A cohort comprising 587 patients underwent random allocation 
into two distinct sets: the training dataset, consisting of 412 
individuals, and the validation dataset, consisting of 175 individuals. 
This allocation adhered to a predetermined ratio of 7:3. In the 
development of the model, the conversion of continuous variables 
into categorical ones was adopted, a strategy commonly employed in 
the literature for risk prediction models to facilitate ease of 
interpretation and to bolster generalizability. This approach is widely 
recognized for its clinical applicability and broad acceptance 
(Bennette and Vickers, 2012; Barrio et al., 2017). The determination 
of cutoff values for these continuous variables was guided by using R 
software, In cases where explicit cutoffs were not readily available, 
parameters were systematically categorized into binary or tertiary 
groups. Categorical variables were presented as frequencies with 
corresponding percentages (%). To compare the baseline 
characteristics between lacune group and non-lacune group, 
we  employed statistical tests appropriate for the data types. 
Specifically, we used the χ2 test or Fisher’s exact test for categorical 
variables. For variable selection in the training dataset, we employed 
the Least Absolute Shrinkage and Selection Operator (LASSO) 
regression, guided by cross-validation. To strike a balance between 
model complexity and predictive accuracy, the regularization 
parameter (lambda) was chosen based on the lambda.1se criterion, 
which corresponds to the value within one standard error of the 
minimum mean cross-validated error. This conservative approach 
favors a simpler model with fewer predictors, thereby reducing the 

risk of overfitting while maintaining sufficient predictive power. In 
our analysis, variables that showed significant associations in the 
LASSO regression (with non-zero coefficients) were selected for 
further exploration. These variables were then integrated into a 
binary logistic regression to pinpoint independent predictors of 
lacunes. Based on the identified predictors, we  developed a 
nomogram to facilitate the visual interpretation of risk factors. The 
performance of the nomogram was evaluated through the Receiver 
Operating Characteristic Curve (ROC) analysis, specifically 
examining the Area Under the Curve (AUC) to gauge its predictive 
strength. Additionally, calibration plots were generated to juxtapose 
the predicted outcomes against actual probabilities, offering insights 
into the model’s accuracy. The clinical usefulness of the predictive 
model was further assessed using Decision Curve Analysis (DCA), 
which helped in evaluating the net benefits. All statistical procedures 
were executed using R software (version 4.3.0). For inferential 
statistics, a threshold of p < 0.05 (two-tailed) was set to determine 
statistical significance.

Results

Baseline characteristics

From January 2020 to June 2022, our study initially enrolled 683 
patients who satisfied the inclusion criteria. However, upon further 
evaluation, 96 patients were identified as meeting the exclusion 
criteria and were thus removed from the study. This led to a final 
cohort of 587 patients who were deemed eligible for data analysis, as 
depicted in Figure 1. The study was structured with a training set 
comprising 412 individuals, while the remaining 175 formed the 
validation set. Table  1 presents the baseline characteristics of the 
patients, distinguishing between those with lacunar and 
non-lacunar conditions.

In our study, we compared two groups: the lacune group (n = 184)
and the non-lacune group (n = 403). We found significant differences 
(p < 0.05) in 27 out of the 88 analyzed variable between these two 
groups, while the remaining 61 biomarkers showed no significant 
differences. The 27 biomarkers with significant differences included: 
Gender, Age, History of Stroke, Carotid atherosclerosis, Hypertension, 
Diabetes, Homocysteine, White Blood Cell Count, Monocyte count, 
Basophil Count, Urea, Uric Acid, Creatinine, Carbon Dioxide Content 
in Plasma, Fibrinogen, Globulin, Albumin to Globulin Ratio, Free 
Thyroxine, Total Cholesterol, High-Density Lipoprotein, Low-Density 
Lipoprotein, Lipoprotein (a), Apolipoprotein A1, Apolipoprotein E, 
Monocyte-to-HDL Ratio, Neutrophil-to-HDL Ratio, Lymphocyte-to-
Monocyte Ratio (Table  1). The other 61 biomarkers showed no 
significant differences between the two groups including: 
Hyperlipidemia, Red Blood Cell Count, Hemoglobin, Hematocrit, 
Mean Corpuscular Volume, Mean Corpuscular Hemoglobin, Mean 
Corpuscular Hemoglobin Concentration, Platelet Count, Platelet 
Distribution Width, Mean Platelet Volume, Plateletcrit, Neutrophil 
Percentage, Lymphocyte Percentage, Monocyte Percentage, 
Eosinophil Percentage, Basophil Percentage, Neutrophil Count, 
Lymphocyte Count, Eosinophil Count, Platelet Large Cell Ratio, 
Random Glucose, Potassium, Sodium, Chloride, Calcium, 
Magnesium, Serum Phosphate, Prothrombin Time, Prothrombin 
Time Ratio, International Normalized Ratio, Activated Partial 
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Thromboplastin Time, Thrombin Time, Fasting Glucose, Hemoglobin 
A1c, Triglycerides, Very Low-Density Lipoprotein, Apolipoprotein 
B100, ApoA1 vs. ApoB100 Ratio, Creatine Kinase, Creatine 
Kinase-MB, Alpha-Hydroxybutyrate Dehydrogenase, Alanine 
Aminotransferase, Aspartate Aminotransferase, Lactate 
Dehydrogenase, Alkaline Phosphatase, Gamma-Glutamyl Transferase, 
Total Protein, Albumin, Total Bilirubin, Direct Bilirubin, 
Unconjugated Bilirubin, Bile Acid, Triiodothyronine, Thyroxine, Free 
Triiodothyronine, Thyroid-Stimulating Hormone, Systemic Immune-
Inflammatory Index, Systemic Inflammation Response Index, 
Neutrophil-to-Lymphocyte Ratio, Neutrophil-to-Monocyte Ratio, 
Lymphocyte-to-HDL Ratio.

Variable selection

We collected data covering a total of 88 variables, including age, 
gender, medical history, and laboratory tests. In our study, the LASSO 
regression was implemented using the “glmnet package” in R with a 
10-fold cross-validation approach to optimize the regularization 
parameter λ. We  selected the value of λ based on the 1SE (one 
standard error) criterion, which aims at choosing a simpler model 
with a performance within one standard error of the minimum cross-
validation error. This approach helped in striking a balance between 
model complexity and prediction accuracy, enabling us to identify the 
most relevant predictors for our model while controlling for 
overfitting (Figures 2A,B). Through LASSO regression, we selected 9 
indicators: Gender, Age, History of Stroke, Carotid Atherosclerosis, 
Hypertension, Creatinine, High-Density Lipoprotein, Homocysteine, 
Monocyte-to-HDL Ratio (Table  2). The variables with non-zero 

coefficients in the LASSO regression model were considered to 
be related to lacune.

Multivariable analyses

In the binary logistic regression analysis, we  included the 9 
variables identified from the LASSO regression. The analysis revealed 
that seven of these variables—Gender, Age, History of Stroke, Carotid 
Atherosclerosis, Hypertension, Creatinine, and Homocysteine—were 
significantly associated with the risk of lacune (p < 0.05), as detailed 
in Table  3. These results indicate that these seven variables are 
independent clinical predictors of lacune. The remaining two 
variables, High-Density Lipoprotein (HDL) and Monocyte-to-HDL 
Ratio, were included in the model but did not show a statistically 
significant association in this analysis.

Predictive model development

In this study, binary logistic regression analysis was employed to 
identify key variables associated with the risk of lacunes. Seven 
variables were selected based on their statistical significance: Gender, 
Age, History of Stroke, Carotid Atherosclerosis, Hypertension, 
Creatinine, and Homocysteine. These variables were then used to 
construct a nomogram, as depicted in Figure  3. The nomogram 
operates by assigning point values to each variable based on their 
calculated beta coefficients, reflecting their proportional prognostic 
impact. The total points accrued from each variable are then used to 
estimate the patient’s probability of developing lacunes. This 

FIGURE 1

Flow diagram of the selection of eligible patients.
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TABLE 1 Baseline characteristics: comparing lacune patients with non-lacune patients.

Variables Total (n =  587) Non-Lacune (n =  403) Lacune (n =  184) p

Gender, n (%) < 0.001

  Female 307 (52) 242 (60) 65 (35)

  Male 280 (48) 161 (40) 119 (65)

Age (years), n (%) < 0.001

  <=59 204 (35) 148 (37) 56 (30)

  60–67 202 (34) 156 (39) 46 (25)

  > = 68 181 (31) 99 (25) 82 (45)

History of stroke, n (%) < 0.001

  No 443 (75) 334 (83) 109 (59)

  Yes 144 (25) 69 (17) 75 (41)

Carotid atherosclerosis, n (%) < 0.001

  No 245 (42) 192 (48) 53 (29)

  Yes 342 (58) 211 (52) 131 (71)

Hypertension, n (%) < 0.001

  Normal 189 (32) 159 (39) 30 (16)

  Level1 109 (19) 83 (21) 26 (14)

  Level2 251 (43) 141 (35) 110 (60)

  Level3 38 (6) 20 (5) 18 (10)

Diabetes, n (%) 0.033

  No 437 (74) 311 (77) 126 (68)

  Yes 150 (26) 92 (23) 58 (32)

Homocysteine (μmol/l), n (%) < 0.001

  <=26 513 (87) 371 (92) 142 (77)

  >26 74 (13) 32 (8) 42 (23)

White blood cell count (×109), n (%) 0.015

  <=6.73 294 (50) 216 (54) 78 (42)

  >6.73 293 (50) 187 (46) 106 (58)

Monocyte count (×109), n (%) 0.008

  <=0.44 295 (50) 218 (54) 77 (42)

  >0.44 292 (50) 185 (46) 107 (58)

Basophil Count (×109), n (%) 0.014

  <=0.03 394 (67) 284 (70) 110 (60)

  >0.03 193 (33) 119 (30) 74 (40)

Urea (mmol/L), n (%) < 0.001

  <=4.8 203 (35) 163 (40) 40 (22)

  >4.8 384 (65) 240 (60) 144 (78)

Uric Acid (μmol/L), n (%) 0.022

  <=298 298 (51) 218 (54) 80 (43)

  >298 289 (49) 185 (46) 104 (57)

Creatinine (μmol/l), n (%) < 0.001

  <=78 479 (82) 356 (88) 123 (67)

  >78 108 (18) 47 (12) 61 (33)

Carbon dioxide content in plasma (mmol/L), n (%) 0.008

  <=27 384 (65) 249 (62) 135 (73)

  >27 203 (35) 154 (38) 49 (27)

(Continued)
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probability is derived from the total point’s projection on the 
probability scale provided at the bottom of the nomogram. The 
inclusion of diverse variables, ranging from biochemical markers like 
Creatinine and Homocysteine to clinical features such as the 

presence of Carotid Atherosclerosis, allows for a comprehensive 
assessment of lacunes risk. This approach enables healthcare 
providers to make more informed decisions regarding patient care 
and risk management.

TABLE 1 (Continued)

Variables Total (n =  587) Non-Lacune (n =  403) Lacune (n =  184) p

Fibrinogen (g/L), n (%) 0.029

  <=2.88 296 (50) 216 (54) 80 (43)

  >2.88 291 (50) 187 (46) 104 (57)

Globulin (g/L), n (%) 0.001

  <=26 340 (58) 252 (63) 88 (48)

  >26 247 (42) 151 (37) 96 (52)

Albumin to globulin ratio, n (%) < 0.001

  <=1.53 336 (57) 206 (51) 130 (71)

  >1.53 251 (43) 197 (49) 54 (29)

Free thyroxine (ng/ml), n (%) 0.023

  <=1.22 304 (52) 222 (55) 82 (45)

  >1.22 283 (48) 181 (45) 102 (55)

Total cholesterol (mmol/L), n (%) 0.013

  <=4.5 295 (50) 188 (47) 107 (58)

  >4.5 292 (50) 215 (53) 77 (42)

High-density lipoprotein, n (%) < 0.001

  <=1 180 (31) 100 (25) 80 (43)

  >1 407 (69) 303 (75) 104 (57)

Low-density lipoprotein (mmol/L), n (%) 0.007

  <=2.89 295 (50) 187 (46) 108 (59)

  >2.89 292 (50) 216 (54) 76 (41)

Lipoprotein (a) (mg/L), n (%) 0.004

  <=185 295 (50) 219 (54) 76 (41)

  >185 292 (50) 184 (46) 108 (59)

Apolipoprotein A1(g/L), n (%) < 0.001

  <=1.03 296 (50) 183 (45) 113 (61)

  >1.03 291 (50) 220 (55) 71 (39)

Apolipoprotein E (mg/L), n (%) 0.002

  <=37 296 (50) 185 (46) 111 (60)

  >37 291 (50) 218 (54) 73 (40)

Monocyte-to-HDL ratio, n (%) < 0.001

  <=0.27 127 (22) 108 (27) 19 (10)

  >0.27 460 (78) 295 (73) 165 (90)

Neutrophil-to-HDL ratio, n (%) 0.002

  <=3.97 293 (50) 219 (54) 74 (40)

  >3.97 294 (50) 184 (46) 110 (60)

Lymphocyte-to-monocyte ratio, n (%) 0.002

  <=3.47 294 (50) 184 (46) 110 (60)

  >3.47 293 (50) 219 (54) 74 (40)
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Nomogram validation

The lacunar infarction risk prediction nomogram underwent 
thorough validation using Receiver Operating Characteristic (ROC) 

curves, calibration plots, and Decision Curve Analysis (DCA) across 
both the training and validation cohorts. In the ROC curve analysis, the 
training set demonstrated an AUC of 0.779 (95% CI: 0.731–0.826), and 
the validation set an AUC of 0.764 (95% CI: 0.691–0.838), indicating the 

FIGURE 3

Nomogram for Predicting the Risk of lacune. For all patients, points are calculated based on seven indicators by aligning them with corresponding 
point scales. The cumulative sum of points is then located on the “Total Points” axis. Subsequently, the risk of lacune, as determined by the nomogram, 
corresponds to the probability indicated on the “lacune” scale corresponding to the “Total Points”.

FIGURE 2

(A) LASSO Coefficient Profiles for lacune Clinical Predictors. This figure presents the coefficient profiles of 88 features considered in the LASSO model 
for predicting the risk of lacune. The graph displays how each feature’s coefficient varies with the log of lambda (log(lambda)), demonstrating the 
shrinkage effect of the LASSO technique. (B) LASSO Regression Cross-Validation Results. This figure illustrates the evaluation of model performance 
under various regularization parameters λ through cross-validation in LASSO regression. A vertical dashed line on the left side represents λmin, which 
corresponds to the model with the best performance. On the right side, another vertical dashed line denotes λ1SE, representing a slightly sparser 
model. The numbers of selected variables are annotated above each line.
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nomogram’s consistent ability to differentiate risk levels of developing 
lacunar infarctions. Specifically, in the training set, the sensitivity was 
67.0%, and the specificity was 76.6%. In the validation set, the sensitivity 
further improved to87.8%, while the specificity was53.3% (Figures 4A,B). 
Calibration analysis revealed an alignment between the predicted and 
observed outcomes in both cohorts, with intercepts and slopes at 0.000 
and 1.000, respectively (Figures 5A,B). The Brier scores were 0.167 for 
the training set and 0.178 for the validation set, reflecting the model’s 
accuracy in each dataset. The Decision Curve Analysis (Figures 6A,B) 
showed the model’s curve notably deviating from the extremes, 
suggesting its clinical benefit compared to baseline strategies. These 
results collectively demonstrate the nomogram’s accuracy and reliability 

in predicting lacunar infarction risk, affirming its potential utility in 
clinical settings.

Discussion

This study successfully established a clinical and laboratory 
parameter-based model for predicting lacune, demonstrating robust 

FIGURE 4

Receiver operating characteristic (ROC) curves for lacune Predictive Model in Training Set (A) and Validation Set (B). The ROC curves plot the sensitivity 
against the specificity for various threshold levels.

TABLE 2 Coefficients and lambda.1SE value of the LASSO regression.

Variable Coefficients Lambda.1SE

Gender 0.0225 0.0776

History of stroke 0.0647

Carotid atherosclerosis 0.022

Hypertension 0.0245

Creatinine 0.0892

High-density 

lipoprotein

−0.023

Homocysteine 0.0433

Monocyte-to-HDL 

ratio

0.0223

Age 0.0349

This table concisely encapsulates the LASSO regression analysis outcomes, spotlighting 
pivotal variables like Gender, Stroke, Carotid Atherosclerosis, Hypertension, Creatinine, 
High-Density Lipoprotein, Homocysteine, Monocyte-to-HDL Ratio, and Age. It includes the 
critical lambda.1SE value for model selection, indicative of the model’s reliability and 
predictive precision. This analysis is integral to our predictive model’s development, 
underscoring the significance of these variables in evaluating the risk of lacunes.

TABLE 3 Binary logistic regression analysis.

B SE OR CI Z P

Gender 0.624 0.251 1.87

1.14–

3.05 2.489 0.013

History of 

stroke 0.638 0.263 1.89

1.13–

3.17 2.426 0.015

Carotid 

atherosclerosis 0.576 0.256 1.78

1.08–

2.94 2.248 0.025

Hypertension 0.562 0.139 1.75

1.34–

2.30 4.039 0.000

Creatinine 0.746 0.302 2.11

1.17–

3.81 2.473 0.013

Homocysteine 0.637 0.359 1.89

1.14–

3.82 1.777 0.036

Age 0.476 0.15 1.61

1.20–

2.16 3.181 0.001

The results of the binary logistic regression analysis, which was conducted on 9 variables 
initially identified through LASSO regression as potential predictors for lacune. Out of these, 
7 variables were retained in the final lacune diagnostic model, namely (Gender, History of 
Stroke, carotid atherosclerosis, Hypertension, Creatinine, Homocysteine, Age). The 
remaining 2 variables that were not included in the final model due to p > 0.05 are (High-
Density Lipoprotein, Monocyte-to-HDL Ratio). The table details the regression coefficient 
(B), standard error (SE), odds ratio (OR), 95% confidence interval (95% CI), Z-value, and 
p-value for each of the 7 included factors.
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predictive capabilities across two independent cohorts. By integrating 
variables such as gender, age, history of stroke, carotid atherosclerosis, 
hypertension, creatinine, and homocysteine, our model provides a 
comprehensive risk assessment for the occurrence of lacune. 
We  emphasize the importance of a comprehensive assessment in 
predicting CSVD, extending beyond the traditionally focused 

radiological features to include clinical and biochemical markers. Our 
model underscores the correlation between these parameters and 
lacune development, offering new insights into the pathophysiology 
of CSVD. The identification of age and hypertension as predictors 
corroborates findings by scholars like Cannistraro et al. (2019) and 
Joutel (2020), who noted hypertension’s significant role in CSVD 

FIGURE 5

Calibration plots for the lacune predictive model in the training set (A) and validation set (B). The x-axis represents the predicted probability of lacune 
occurrence, while the y-axis represents the observed frequency of lacunes. The diagonal 45-degree line indicates perfect calibration, where predicted 
probabilities exactly match the observed outcomes. The dashed line represents the performance of our nomogram, with deviations from the diagonal 
line illustrating the degree of miscalibration. These plots demonstrate the accuracy and reliability of our predictive model in both the training and 
validation cohorts, with the calibration curve closer to the diagonal indicating better predictive accuracy.

FIGURE 6

(A,B) show the Decision Curve Analysis (DCA) for our lacune predictive model on both the training (A) and validation sets (B). The graphs illustrate the 
net benefit across various threshold probabilities of using our model versus either treating all or no patients. The model’s curves demonstrate its clinical 
value by offering a balanced approach to making treatment decisions, deviating from the extremes represented by the horizontal (no treatment) and 
oblique (universal treatment) lines.
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pathogenesis. Similarly, Pantoni (2010) and Wardlaw et al. (2013) 
have highlighted the influence of age in CSVD, reinforcing the 
relevance of these factors in lacune prediction and 
clinical management.

Elevated creatinine levels were identified as predictors of lacune, 
aligning with studies by Akoudad et al. (2015) and Xiao et al. (2015), 
which observed associations between renal impairment and CSVD or 
lacunar stroke. This suggests the indirect influence of renal function 
on lacune risk via cerebral vasculature, highlighting the importance 
of monitoring creatinine levels in lacune risk assessment. Our model 
also recognizes male gender as a significant predictor, resonating with 
Jiménez-Sánchez et  al. (2021)'s findings on sex differences in 
CSVD. This suggests a possibly higher risk or distinct 
pathophysiological responses in males leading to lacune development, 
indicating the need for gender-specific approaches in lacune 
management and further investigation into underlying mechanisms. 
Furthermore, the role of homocysteine as a predictive factor for lacune 
aligns with the research by Nam et al. (2019), Rutten-Jacobs et al. 
(2016), and Kloppenborg et al. (2014), reinforcing its potential as a 
biomarker and its interaction with genetic factors in CSVD and lacune 
formation. Lastly, our study highlights prior stroke history and carotid 
atherosclerosis as key predictors for lacunar infarctions, suggesting a 
link between previous cerebrovascular events and the development of 
small vessel disease. This highlights the need for comprehensive 
management of carotid artery disease and vigilant monitoring in 
patients with a history of stroke, providing novel strategies for 
lacune prevention.

Our model represents a significant advance in the field, 
particularly due to the scarcity of similar studies. It enhances 
predictive accuracy and raises the likelihood of early detection of 
lacune through integrated analysis, crucial for early intervention and 
prevention of cerebral small vessel disease progression. However, our 
model has limitations. The retrospective nature of the study may 
introduce selection bias. Additionally, being a single-center study 
might affect the model’s generalizability. Furthermore, the impact of 
certain variables, such as lifestyle factors and genetic background, may 
not have been fully captured. Additionally, our nomogram has not yet 
been validated using other comparable external data sources. This 
limitation should be addressed in future research by validating the 
model with multicenter data to ensure its broader applicability. Future 
research should consider expanding the sample size and incorporating 
multi-center data to validate the model’s wider applicability. Exploring 
additional potential predictors, including lifestyle and genetic factors, 
and the model’s applicability across different ethnic and age groups, is 
also imperative. Our model can serve as a powerful tool for clinicians 
in assessing patients’ risk of lacune, especially for those whose 
radiological findings are inconclusive but clinical and biochemical 
markers indicate high risk. It could aid in more precise risk assessment 
and early intervention.

Conclusion

In summary, our predictive model for lacunes, integrating 
multiple clinical and laboratory parameters, demonstrates notable 
predictive capabilities. However, it is important to note that the 
model’s applicability is specific to predicting lacunes in patients 

undergoing brain MRI for various indications, and not broader 
manifestations of CSVD. Despite its limitations, such as the 
retrospective nature and single-center data source, and the lack of 
validation using external data sources, the model offers a novel 
perspective in predicting lacunes, contributing valuable insights for 
future research and clinical practice. Future endeavors should focus 
on expanding sample sizes, incorporating multi-center studies, and 
exploring additional influencing factors, to further validate and 
enhance the model’s utility. This work lays the groundwork for 
advancing personalized treatment strategies in neurology, particularly 
for patients at high risk of lacunes whose radiological findings may 
be  inconclusive but clinical and biochemical markers indicate 
elevated risk.
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