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Purpose: The purpose of the present study was to identify predictors of severe 
white matter hyperintensity (WMH) with obesity (SWO), and to build a prediction 
model for screening obese people with severe WMH without Nuclear Magnetic 
Resonance Imaging (MRI) examination.

Patients subjects and methods: From September 2020 to October 2021, 650 
patients with WMH were recruited consecutively. The subjects were divided 
into two groups, SWO group and non-SWO group. Univariate and Logistic 
regression analysis were was applied to explore the potential predictors of SWO. 
The Youden index method was adopted to determine the best cut-off value in 
the establishment of the prediction model of SWO. Each parameter had two 
options, low and high. The score table of the prediction model and nomogram 
based on the logistic regression were constructed. Of the 650 subjects, 487 
subjects (75%) were randomly assigned to the training group and 163 subjects 
(25%) to the validation group. By resampling the area under the curve (AUC) 
of the subject’s operating characteristics and calibration curves 1,000 times, 
nomogram performance was verified. A decision curve analysis (DCA) was used 
to evaluate the nomogram’s clinical usefulness. By resampling the area under 
the curve (AUC) of the subject’s operating characteristics and calibration curves 
1,000 times, nomogram performance was verified. A decision curve analysis 
(DCA) was used to evaluate the nomogram’s clinical usefulness.

Results: Logistic regression demonstrated that hypertension, uric acid (UA), 
complement 3 (C3) and Interleukin 8 (IL-8) were independent risk factors for 
SWO. Hypertension, UA, C3, IL-8, folic acid (FA), fasting C-peptide (FCP) and 
eosinophil could be used to predict the occurrence of SWO in the prediction 
models, with a good diagnostic performance, Areas Under Curves (AUC) of 
Total score was 0.823 (95% CI: 0.760–0.885, p  <  0.001), sensitivity of 60.0%, 
specificity of 91.4%. In the development group, the nomogram’s AUC (C 
statistic) was 0.829 (95% CI: 0.760–0.899), while in the validation group, it was 
0.835 (95% CI: 0.696, 0.975). In both the development and validation groups, the 
calibration curves following 1,000 bootstraps showed a satisfactory fit between 
the observed and predicted probabilities. DCA showed that the nomogram had 
great clinical utility.

Conclusion: Hypertension, UA, C3, IL-8, FA, FCP and eosinophil models had 
the potential to predict the incidence of SWO. When the total score of the 
model exceeded 9 points, the risk of SWO would increase significantly, and 
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the nomogram enabled visualization of the patient’s WMH risk. The application 
prospect of our models mainly lied in the convenient screening of SWO without 
MRI examination in order to detect SWO and control the WMH hazards early.

KEYWORDS

white matter hyperintensity, obesity, prediction models, uric acid, complement C3, 
interleukin 8

1 Introduction

White matter hyperintensity (WMH), also known as leukoaraiosis 
or white matter lesions, is structural alteration to the brain that affects 
the white matter tracts specializing in higher brain activities. It is 
characterized by destruction to the myelin sheaths of central nerve 
cells. On imaging, the lesion presents as speckled or patchy changes in 
the periventricular or subcortical white matter, with high signal 
changed on MRI-T2-weighted images and fluid-attenuated inversion 
recovery (FLAIR) sequences (Fazekas et al., 1993). The lesion affects 
the white matter bundle, which is dedicated to higher brain functions. 
Cognitive decline, dementia, balance disorder, urinary dysfunction, 
and mood disorders are some of the principal clinical manifestations 
of WMH (Jing et  al., 2017). It also raises the risk of stroke and 
mortality (Debette and Markus, 2010). WMH seriously influences the 
quality of life and self-care ability of patients, causing great harm to 
the health of the population. Therefore, it is very important and 
meaningful to explore the pathogenesis of WMH and take 
interventions based on the pathogenesis to control the WMH hazard.

Of individuals aged 1–45 years, 25.94% develop WMH (Wang 
et  al., 2019). Whereas more than 50% of adults began to develop 
WMH in their 40 s (Wen et al., 2009), and the incidence rose sharply 
with advancing age (Moroni et al., 2018). In the Helsinki Aging Brain 
Study, 65% of people aged 70–75 years suffered from WMH (Ylikoski 
et al., 1995), while in more large cohort studies, a staggering 90% or 
more of people aged 80–90 years suffered from WMH (Longstreth 
et  al., 1996; Garde et  al., 2000; Deleeuw et  al., 2001). The high 
prevalence of WMH seriously affected patients’ capacity for self-care 
and social functioning, putting their health at risk and placing a heavy 
burden on society. In order to manage WMH and enhance public 
health, it was crucial to investigate and define the mechanisms that 
cause these lesions as well as to pinpoint targets for intervention based 
on these mechanisms.

The pathogenesis of WMH is not fully understood. Numerous 
studies have been published to investigate the potential risk factors and 
pathogenesis of WMH, including oxidative stress, hypoperfusion, 
endothelial dysfunction, and blood–brain barrier impairment (Teoh 
et al., 2009). It is now widely acknowledged that hypertension, especially 
systolic blood pressure, is a independent risk factor for WMH (Dufouil 
et al., 2001). In addition, higher WMH volume has been linked to 
diabetes (van Harten et al., 2007) and smoking (Gons et al., 2011; Power 
et al., 2015). Studies have reported inconsistent findings regarding the 
role of inflammatory and metabolic factors in the pathogenesis of 
WMH. According to Giwa et  al. (2012) and Zhang et  al. (2015) a 
number of inflammatory proteins and cytokines, like complement C3 
and C-reactive protein, could lead to cerebral microangiopathy and 
WMH through a series of reactions. Altendahl et al. (2020) and Boots 

et al. (2020) discovered that, however, a variety of variables, such as 
C-reactive protein and interleukins, were not substantially linked to 
WMH. WMH could be caused by various factors. Not all types of 
WMH were associated with inflammatory factors, which might be the 
reason for inconsistent conclusions. In addition, there might be different 
from WMH assessment methods, the type of institution where the 
patient was kept (general hospital, specialized hospital, rehab hospital, 
community hospital, research center, etc.), the main age groups of 
patients, and other varying factors in different research projects. These 
aspects could all produce erratic outcomes.

An estimated 1.9 billion individuals worldwide are either fat or 
overweight (Saltiel and Olefsky, 2017). Obesity raises disease mortality 
and increases the risk of a number of major illnesses, including 
cardiovascular diseases, type 2 diabetes, and tumors (Heron, 2018). 
Nowadays, it is widely acknowledged that obese patients suffer from 
chronic low inflammation. Such inflammation is also known as steatitis. 
Numerous inflammatory blood markers, including C-reactive protein, 
IL-6 and TNF are higher in these individuals (Rodríguez-Hernández 
et al., 2013; Dhananjayan et al., 2016). The anatomical and functional 
alterations in the brain as well as cognitive problems have been linked to 
this low-grade systemic inflammation (Haroon et al., 2012; Han et al., 
2021). Obese patients have defective fibrinolytic systems, which might 
harm the endothelium of blood vessels. Additionally, obesity is linked to 
abnormal islet function, insulin resistance, and overexpression of 
monocyte chemotactic protein 1 (MCP-1) (Kahn and Flier, 2000; 
Parimisetty et al., 2016), which may affect energy homeostasis and cause 
excessive fat to accumulate in the liver, kidneys, heart, and other vital 
organs of the body, resulting in metabolic syndrome and increased organ 
load (Krzysztoszek et al., 2015).

Although there are no clear data on the rate of overlap between 
WMH and obesity, some studies had shown that people with high 
BMI were more likely to develop WMH (Lv et al., 2024). WMH and 
obesity were both associated with endothelial impairment and 
increased vascular load. Inflammatory and metabolic factors might 
have a more significant role in SWO. Therefore, a high rate of overlap 
between the two can be  predicted. There was currently a lack of 
international research on SWO, so there was no research data to 
support the idea that there was a large number of patients with SWO, 
but as more relevant research is carried out in the future, more and 
more patients with SWO will be identified. The exploration of the 
pathogenesis of SWO, the screening, prediction, and intervention of 
SWO were also important for the health protection of the population.

The risk of illness beginning could be calculated using several 
indicators in prediction models, which could give a clearer, more 
understandable picture of the risk (Collins et al., 2015; Grant et al., 
2018). In order to create a prediction model based on logistic 
regression coefficients that might more accurately predict the 
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occurrence of SWO, we looked at various data on SWO, obesity, and 
WMH independently.

The aim of the present study is to identify predictors of SWO and 
to develop a prediction model to lay the foundation for further early 
diagnosis of the disease and early intervention, thereby reducing the 
hazard of WMH and improving the health of the WMH population.

2 Subjects and methods

2.1 Study subjects

From September 2020 to October 2021, 707 patients were screened 
consecutively in the Department of Neurology, Shanghai Jiaotong 
University School of Medicine affiliated Ruijin Hospital Luwan Branch. 
Inclusion criteria: patients over 18 years old who voluntarily participated 
in the study and signed informed consent. Exclusion criteria: (a) patients 
with acute disease conditions, such as acute infection, acute stroke, acute 
trauma and acute organ failure; (b) Patients who could not complete 
MRI. The study was approved by the Ethics Committee of Luwan Branch 
of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. 
All participants signed a written consent form. Among them, 57 patients 
did not meet the inclusion criteria, 11 patients had acute strokes, 26 
patients were unable to complete MRI, 6 patients had no routine blood 
data, 1 patient suffered from severe other organ dysfunction and 13 
patients had large motion artefacts on MRI. Eventually 650 people were 
recruited as study subjects (Figure 1).

2.2 Assessment of WMH

The head MRI (1.5 Tesla) plain scan was completed after admission. 
WMH was rated in accordance with the Fazekas visual rating scale 
(Fazekas et al., 1993). According to the method of Fazekas, the WMH 
was divided into periventricular white matter hyperintensity (PVWMH) 
and deep white matter hyperintensity (DWMH). The scoring criteria of 

PVWMH was as follows: grade 0: no WMH; grade 1: caps or pencil-thin 
lining; grade 2: smooth halo; grade 3: irregular PVWMH extending into 
the deep white matter. The DWMH scoring standard: grade 0: no 
WMHs; grade 1: punctate foci; grade 2: beginning confluence of foci; 
grade 3: large confluent areas. Total score: added the regional scores of 
the two to get the total score. All MRI evaluations were independently 
conducted by one experienced neurologist who was unaware of the other 
clinical conditions. Fazekas scores of 0 to 3 are considered mild WMH 
or no WMH, whereas scores of 4 to 6 are considered severe WMH.

2.3 Assessment of obesity

The most frequently utilized indicator of obesity in today is BMI 
due to its simplicity and viability. In this study, we measured obesity 
using BMI. For the measurements, participants wore light clothing, 
were barefoot or in stocking feet. BMI is determined by dividing 
weight (in kilograms) by square height (in meters). In China, adults 
with a BMI between 24 kg/m2 and 27.9 kg/m2 are defined as overweight 
and those with a BMI ≥ 28 kg/m2 are defined as obese (Zhou and 
Cooperative Meta-Analysis Group of the Working Group on Obesity 
in China, 2002; Zeng et al., 2021).

2.4 Clinical data collection

The clinical data of the study subjects was registered, including 
age, sex, height, weight, smoking and basic diseases such as 
hypertension, diabetes, hyperlipidemia, cardiac disease and previous 
strokes. The second day after admission, the fasting elbow vein blood 
was collected to complete the blood laboratory tests, including white 
blood cell (WBC), neutrophil, lymphocyte, monocyte, basophil, 
eosinophil, alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), albumin, urea nitrogen (BUN), creatinine 
(Cr), uric acid (UA), complement, total cholesterol (TC), triglyceride 
(TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), 

FIGURE 1

The recruitment of the subjects in this study.
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free Interleukin 2 (Free IL-2), Interleukin β (IL-β), Interleukin 6 
(IL-6), Interleukin 8 (IL-8), Interleukin 10 (IL-10), tumor necrosis 
factor-α (TNF-α), folic acid (FA), Vitamin B12 (VitB12), glycated 
hemoglobin (HbA1c), Immunoglobulin A (IgA), Immunoglobulin G 
(IgG), Immunoglobulin M (IgM), complement 3 (C3), complement 4 
(C4), C-reactive protein (CRP), 25OH-Vitamin D (25OH-VitD), 
fasting blood glucose (FBG), 2-h postprandial blood glucose (2hPBG), 
fasting C-peptide (FCP), 2-h postprandial C-peptide (2hPCP).

2.5 Statistical analysis

SPSS 22.0 statistical software (IBM Corporation, Armonk, NY, 
United  States) was adopted to process and analyze the data. The 
Kolmogorov Smirnov test was used to test the normality of the data. For 
the measurement data of normal distribution, the mean ± standard 
deviation (x ± s) was used to express, and the t-test of two independent 
samples was used to analyze. For the measurement data with non-normal 
distribution, it was expressed as the median (quartile) [M (P25, p75)], 
and Mann Whitney U rank sum test was used to analyze. Count data was 
expressed as relative number composition ratio (%) or rate (%), and chi 
square test was used to analyze. The correlation between the test group 
and the control group was analyzed by multivariate logistic regression. 
Receiver operating characteristic curve (ROC) was drawn to analyze the 
diagnostic efficacy of the prediction models. The level of statistical 
significance was set at 0.05. Youden index was used to determine the best 
cutoff value. The nomogram’s predictive performance was assessed using 
calibration curves, a decision curve analysis (DCA), and a concordance 
index (C-index). By computing the net benefits at various threshold 
probabilities, a decision curve analysis (DCA) was used to assess the 
nomogram’s clinical value (Vickers et al., 2008). Internal validation was 
also carried out using the 1,000 bootstrap resample validation method in 
order to increase the model’s accuracy and stability. Using the previously 
described techniques, we  conducted DCA, ROC, C-index, and 
calibration curve studies for testing validation. The nomogram was 
constructed using the Brms^ Package of R4.3.0 statistical software (R 
Foundation for Statistical Computing, Vienna, Austria).

3 Results

3.1 A study on severe WMH with obesity

3.1.1 Data characteristics
We excluded 57 non-compliant patients and finally a total of 650 

patients met the inclusion criteria, including 399 males and 251 
females, with an age range of 18–100 years and an average age of 
67 ± 12 years. The population of the present study was Han nationality 
from mainland China. Between the SWO group (Fazekas = 4, 5, 6 and 
BMI ≥ 28 kg/m2, n = 55) and the non-SWO group (Fazekas = 0, 1, 2, 3 
or BMI<28 kg/m2, n = 595), there were no obvious differences in sex, 
age, diabetes, hyperlipidemia, cardiac disease, previous strokes, 
smoking, neutrophil, lymphocyte, monocyte, basophil, ALT, AST, 
Albumin, BUN, Cr, complement, TC, TG, HDL, LDL, Free IL-2, IL-β, 
TNF-α, IL-10, IL-8, IL-6, FA, VitB12, HbA1c, IgA, IgG, IgM, CRP, 
25OH-VitD, FBG, 2hPBG, FINS, 2hPINS, 2hPCP (p > 0.05), while, 
there were significant differences in hypertension, WBC, eosinophil, 
UA, C3, C4 and FCP (p < 0.05, Table 1).

3.1.2 Logistic regression analysis
In the logistic regression analysis, we included the factors with 

p < 0.1  in the multivariate analysis, and the results revealed that 
hypertension, IL-8, UA and C3 were independent risk factors for SWO 
(OR = 4.785, 95% CI: 1.850–12.377, p = 0.001, OR = 2.360, 95% CI: 
1.232–4.521, p = 0.010, OR = 2.474, 95% CI: 1.376–4.448, p = 0.002, and 
OR = 4.031, 95% CI: 2.010–8.081, p = 0.000, respectively, Table 2).

3.2 A study on obesity

3.2.1 Data characteristics
In order to examine the effect of obesity and severe WMH on 

SWO, we  analyzed the obesity and WMH groups, respectively. 
We  divided obesity factors into two groups, obesity group 
(BMI < 28 kg/m2, n = 544) and non-obesity group (BMI ≥ 28 kg/m2, 
n = 106). There were significant differences in hypertension, albumin, 
UA, C3, FA, 2hPBG, FCP between the two groups (p < 0.05), and the 
other factors were not statistically significant (p > 0.05, Table 3).

3.2.2 Logistic regression analysis
The risk factors of obesity were further analyzed by logistic 

regression. The results showed that hypertension (OR = 7.272, 95% CI: 
1.650–32.044, p = 0.009), albumin (OR = 1.147, 95% CI: 1.018–1.293, 
p = 0.024), fasting C-peptide (OR = 1.443, 95% CI: 1.066–1.955, p = 0.018) 
were three independent risk factors for obesity group (Table 4).

3.3 A study on WMH

3.3.1 Data characteristics
Similarly, we divided the recruited subjects into two groups. One 

group of patients with Fazekas score greater than or equal to 4 was 
defined as severe WMH group (n = 289), and the other group of 
patients with Fazekas score less than or equal to 3 was defined as non- 
severe WMH group (n = 361). Between the two groups，there were 
statistically significant differences in age, hypertension, previous 
strokes, WBC, neutrophil, monocyte, eosinophil, albumin, BUN, Cr, 
free IL-2, IgA, IgG, CRP, C4 (p < 0.05), and the other factors were not 
significantly different (p > 0.05, Table 5).

3.3.2 Logistic regression analysis
These factors were incorporated in logistic regression analysis, 

and the results demonstrated that age (OR = 1.058, 95% CI: 1.026–
1.091, p = 0.000) and hypertension (OR = 2.738, 95% CI: 1.405–5.335, 
p = 0.003) were two independent risk factors for severe WMH group 
(Table 6). Hypertension was a specific risk factor for SWO.

4 Prediction model and nomogram of 
factors associated with SWO

4.1 Prediction model for SWO

Of the 650 subjects, 487 subjects (75%) were randomly assigned 
to the training group and 163 subjects (25%) to the validation group. 
There was no statistical significance between the training and 
validation groups (Supplementary Table S1). We constructed ROC 
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TABLE 1 General characteristic analysis of patients in the SWO Group and the Non-SWO Group.

Variables Total SWO Group (n =  55) Non-SWO Group (n =  595) p value

Age (year) 67.1 ± 11.5 64.1 ± 12.6 67.5 ± 11.4 0.668

Sex (n, %) 0.349

  Male 399 (61.4%) 37 (63.7%) 362 (60.8%)

  Female 251 (38.6%) 18 (32.7%) 233 (39.2%)

Hypertension 426 (65.5%) 50 (90.9%) 376 (63.2%) < 0.001*

Diabetes 203 (31.2%) 20 (36.4%) 183 (30.8%) 0.391

Hyperlipidemia 227 (34.9%) 24 (43.6%) 203 (34.1%) 0.157

Cardiac disease 89 (13.7%) 10 (18.2%) 79 (13.3%) 0.311

Previous strokes 209 (32.2%) 19 (34.5%) 190 (31.9%) 0.691

Smoking 123 (18.9%) 8 (14.5%) 115 (19.3%) 0.386

WBC (10^9/L) 6.5 ± 1.9 6.5 ± 1.7 6.5 ± 2.0 0.016*

Neutrophil (10^9/L) 4.0 ± 1.5 4.0 ± 1.3 4.0 ± 1.6 0.656

Lymphocyte (10^9/L) 1.8 ± 0.7 1.8 ± 0.7 1.8 ± 0.7 0.295

Monocyte (10^9/L) 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.297

Basophil (10^9/L) 0.2 (0.1, 0.3) 0.2 (0.1, 0.4) 0.2 (0.1, 0.3) 0.068

Eosinophil (10^9/L) 0.1 (0.1, 0.2) 0.2 (0.1, 0.3) 0.2 (0.1, 0.2) 0.021*

ALT (IU/L) 17.0 (12.0, 24.0) 18.0 (13.0, 29.8) 17.0 (12.0, 24.0) 0.206

AST (IU/L) 20.0 (16.0, 24.0) 19.0 (16.0, 23.0) 20.0 (16.0, 24.0) 0.579

Albumin (g/L) 37.8 ± 3.4 39.3 ± 3.3 37.6 ± 3.4 0.216

BUN (mmol/L) 5.8 ± 1.6 5.6 ± 1.5 5.9 ± 1.6 0.580

Cr (umol/L) 80.0 ± 21.9 79.3 ± 16.8 80.2 ± 22.4 0.080

UA (umol/L) 360.1 ± 96.7 393.1 ± 114.9 357.5 ± 94.1 0.005*

Complement (U/mL) 49.8 ± 11.1 49.3 ± 12.4 49.8 ± 11.1 0.194

TC (mmol/L) 4.3 ± 1.0 4.1 ± 1.1 4.3 ± 1.0 0.745

TG (mmol/L) 1.4 ± 0.9 1.7 ± 0.9 1.4 ± 0.9 0.334

HDL (mmol/L) 1.1(0.9, 1.3) 1.1(0.9, 1.2) 1.1(0.9, 1.3) 0.648

LDL (mmol/L) 2.7 ± 0.8 2.6 ± 0.8 2.8 ± 0.8 0.410

Free IL-2 (pg/mL) 563.8 ± 222.4 559.9 ± 269.1 561.9 ± 216.7 0.285

IL-β (pg/mL) 3.9 (2.2, 4.7) 3.8 (2.8, 4.9) 3.7 (2.2, 4.7) 0.919

TNF-α (pg/mL) 21.9 ± 12.8 25.7 ± 13.5 21.4 ± 12.7 0.500

IL-10 (pg/mL) 2.6 (2.0, 3.4) 2.8 (2.0, 3.4) 2.6 (2.0, 3.4) 0.525

IL-8 (pg/mL) 73.4 (40.4, 155.5) 112.0 (47.8, 237.5) 71.8 (39.4, 148.3) 0.051

IL-6 (pg/mL) 3.7 (1.7, 5.8) 3.2 (1.1, 5.5) 3.4 (1.7, 5.8) 0.854

FA (ng/mL) 8.7 ± 5.0 8.0 ± 3.7 8.8 ± 5.1 0.056

VitB12 (pg/mL) 307.0 (219.0, 465.5) 300.5 (203.8, 484.0) 299.5 (219.0, 464.0) 0.341

HbA1c (%) 5.9 (5.6, 6.7) 6.2 (5.8, 7.1) 5.9 (5.6, 6.7) 0.136

IgA (mg/dL) 362.6 ± 117.1 262.8 ± 96.1 262.8 ± 119.7 0.805

IgG (mg/dL) 1171.9 ± 291.6 1161.6 ± 307.2 1171.6 ± 291.5 0.215

IgM (mg/dL) 80.5 (58.0, 108.8) 78.5 (62.8, 158.5) 79.0 (57.3, 108.0) 0.259

CRP (mg/dL) 0.2 (0.2, 0.5) 0.3 (0.2, 0.6) 0.2 (0.1, 0.5) 0.127

C3 (mg/dL) 88.0 ± 17.3 96.6 ± 14.7 87.1 ± 17.4 <0.001*

C4 (mg/dL) 21.7 ± 6.6 23.3 ± 5.8 21.6 ± 6.7 0.007*

25OH-VitD(nmol/L) 51.9 ± 23.1 48.2 ± 19.5 50.6 ± 21.7 0.519

FBG (mg/dL) 5.8 ± 2.1 5.4 ± 1.1 5.9 ± 2.1 0.792

2hPBG (mg/dL) 9.8 ± 3.2 10.2 ± 3.2 9.7 ± 3.5 0.214

FCP (mg/mL) 2.8 ± 1.3 3.4 ± 1.0 2.6 ± 1.3 <0.001*

2hPCP (ng/mL) 8.3 (5.6, 12.2) 10.1 (7.0, 12.9) 8.1 (5.4, 12.0) 0.270

There were significant differences in hypertension, WBC, eosinophil, UA, C3, C4 and FCP (p < 0.05). The data was expressed as means and standard deviation or median and interquartile range for continuous 
variables, and counts and percentages for categorical variables. p values were obtained from t-test, rank sum test and χ 2 test. WBC, white blood cell; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; BUN, urea nitrogen; Cr, creatinine; UA, uric acid; TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; Free IL-2, free Interleukin 2; IL-β, 
Interleukin β; IL-10, Interleukin 10; IL-8, Interleukin 8; IL-6, Interleukin 6; FA,folic acid; VitB12, Vitamin B12; TNF-α, tumor necrosis factor-α; HbA1c,glycated hemoglobin; CRP,C-reactive protein; 25OH-
VitD, 25OH-Vitamin D; C3,Complement 3; C4, Complement 4; FBG, fasting blood glucose; 2hPBG, 2-h postprandial blood glucose; FCP, fasting C-peptide; 2hPCP, 2-h postprandial C-peptide.
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curves of SWO and found that the area under the curve (AUC) values 
of IL-8, UA and C3 were all >0.5, p < 0.05. The Youden index was used 
to determine the best cutoff value. Each parameter had two options, 
low and high, and each option of the parameter was corrected by a 
defined point. Based on the coefficients calculated by the logistic 
regression model, the HUCI score was created, including four 
variables: hypertension, UA, C3 and IL-8. In order to improve the 
efficiency of the prediction model, we tried to include the classification 
data of the factors with p values less than 0.1 into the model. The 
detailed cut-off values, sensitivity, specificity and diagnostic rate of 
each parameter were shown in Table 7.

Through logistic regression analysis, we created the HUCIFFE 
score, which includes seven variables: hypertension, UA, C3, IL-8, FA, 
FCP and eosinophil (Table 8).

The AUCs of HUCI score and HUCIFFE score were 0.785 (95% 
CI: 0.720–0.850, p < 0.001) and 0.829 (95% CI: 0.768–0.890, p < 0.001), 
respectively. The efficacy test of HUCIFFE score was better than that 
of HUCI score, and had good predictive performance. The sensitivity 
and specificity were 70.9 and 81.0%, respectively (Figure 2).

The receiver operating characteristic (ROC) curves for the HUCI 
score (hypertension, UA, C3 and IL-8), the HUCIFFE score 
(hypertension, UA, C3, IL-8, FA, FCP and eosinophil) and the Total 
score for 650 patients. The arrow represents the cut-off value.

We added the total scores of the seven classification factors, and 
used Youden index to determine the best cutoff value of the total 
score, then, we could judge the disease risk. Based on the coefficients 
calculated by the logistic regression model, we developed a scoring 
table for predicting SWO using the classification variables of 
hypertension, UA, C3, IL-8, FA, FCP and eosinophil. The AUCs of 
Total score was 0.823 (95% CI: 0.760–0.885, p < 0.001), respectively. 
The sensitivity and specificity were 60.0 and 91.4%, respectively 
(Figure 2; Table 9).

4.2 Development and validation of 
predictive nomogram

4.2.1 Model development
We created a prediction model that took UA, C3, IL-8, FA, FCP, 

eosinophil, and hypertension into account. The total scores for all the 
predictor variables were added up, and a vertical line representing the 
likelihood of SWO was projected down at the total score. Each 
predictor variable was calculated as a particular score on a grading 
scale. A higher probability of SWO is indicated by higher scores 
(Figure 3). For this nomogram, the area under the ROC curve (AUC) 

TABLE 2 Logistic regression analysis of the clinical predictors of SWO.

B S.E. Wald Sig. Exp 
(B)

95% C.I.

Hypertension 1.566 0.485 10.425 0.001 4.785 1.850–12.377

IL-8 0.859 0.332 6.698 0.010 2.360 1.232–4.521

UA 0.906 0.299 9.156 0.002 2.474 1.376–4.448

C3 1.394 0.355 15.426 0.000 4.031 2.010–8.081

Constant −6.817 0.816 69.739 0.000 0.001

Hypertension, IL-8, UA and C3 were risk factors for SWO. IL-8, Interleukin 8; C3, 
Complement 3 UA, uric acid.

TABLE 3 Baseline feature comparisons between the obesity group and 
the non-obesity group.

Variables Obesity group 
(BMI  ≥  28  kg/m2)

Non-obesity 
group 

(BMI  <  28  kg/m2)

p 
value

Age 64.1 ± 11.2 67.8 ± 11.4 0.161

Hypertension 93 (87.7%) 333 (61.2%) <0.001*

Diabetes 41 (38.7%) 162 (29.8%) 0.070

Hyperlipidemia 45 (42.5%) 182 (33.5%) 0.075

Cardiac disease 15 (14.2%) 74 (13.6%) 0.881

Previous strokes 34 (32.1%) 175 (32.2%) 0.985

Smoking 18 (17.0%) 105 (19.3%) 0.577

WBC (10^9/L) 6.1 ± 1.7 6.6 ± 2.0 0.141

Neutrophil (10^9/L) 3.7 ± 1.2 4.1 ± 1.6 0.975

Lymphocyte(10^9/L) 1.8 ± 0.7 1.9 ± 0.7 0.278

Monocyte (10^9/L) 0.4 ± 0.1 0.5 ± 0.1 0.419

Basophil (10^9/L) 0.2 (0.1, 0.3) 0.2 (0.1, 0.2) 0.221

Eosinophil (10^9/L) 0.1 (0.1, 0.3) 0.1 (0.1, 0.2) 0.518

ALT (IU/L) 19.0 (13.0, 31.0) 17.0 (12.0, 23.0) 0.063

AST (IU/L) 19.0 (16.0, 25.0) 20 (16.0, 23.0) 0.780

Albumin (g/L) 39.6 ± 3.1 37.5 ± 3.4 0.007*

BUN (mmol/L) 5.7 ± 1.5 5.9 ± 1.6 0.782

Cr (umol/L) 78.0 ± 14.2 80.4 ± 23.1 0.303

UA (umol/L) 385.0 ± 101.3 355.3 ± 95.4 0.002*

Complement (U/mL) 50.2 ± 10.7 49.7 ± 11.3 0.191

TC (mmol/L) 4.0 ± 1.1 4.3 ± 1.0 0.490

TG (mmol/L) 1.6 ± 0.7 1.4 ± 0.9 0.187

HDL (mmol/L) 1.0 (0.9, 1.1) 1.1 (0.9, 1.3) 0.525

LDL (mmol/L) 2.6 ± 0.8 2.8 ± 0.8 0.980

Free IL-2 (pg/mL) 559.9 ± 251.7 564.6 ± 217.3 0.497

IL-β (pg/mL) 3.8 (3.0, 4.7) 3.7 (2.2, 4.7) 0.857

TNF-α (pg/mL) 23.6 ± 14.3 21.6 ± 12.5 0.542

IL-10 (pg/mL) 2.7 (2.1, 3.3) 2.6 (2.0, 3.5) 0.996

IL-8 (pg/mL) 101.0 (47.1, 233.0) 71.6 (39.0, 146.0) 0.218

IL-6 (pg/mL) 3.3 (1.3, 5.6) 3.4 (1.7, 5.8) 0.755

FA (ng/mL) 8.1 ± 4.4 8.9 ± 5.1 0.024*

VitB12 (pg/mL) 299.0 (230.0, 445.0) 300.0 (215.5, 467.5) 0.825

HbA1c (%) 6.2 (5.8, 6.9) 5.9 (5.6, 6.7) 0.133

IgA (mg/dL) 268.7 ± 117.4 261.4 ± 117.4 0.329

IgG (mg/dL) 1153.2 ± 285.4 1175.4 ± 293.6 0.336

IgM (mg/dL) 72.0 (53.0, 110.0) 80.0 (59.5, 108.5) 0.955

CRP (mg/dL) 0.3 (0.2, 0.4) 0.2 (0.1, 0.5) 0.533

C3 (mg/dL) 95.0 ± 12.8 86.7 ± 17.8 <0.001*

C4 (mg/dL) 23.1 ± 5.9 21.5 ± 6.7 0.082

25OH-VitD(nmol/L) 49.7 ± 21.2 52.3 ± 23.5 0.349

FBG (mg/dL) 5.5 ± 1.2 5.9 ± 2.2 0.703

2hPBG (mg/dL) 10.8 ± 3.3 9.7 ± 3.1 0.039*

FCP (mg/mL) 3.4 ± 1.0 2.6 ± 1.3 <0.001*

2hPCP (ng/mL) 9.9 (5.8, 12.9) 8.1 (5.5, 11.9) 0.708

There were significant differences in hypertension, albumin, UA, C3, FA, 2hPBG, FCP 
between the two groups (p < 0.05).
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was 0.829 (95% CI, 0.760–0.899; Figure 4A). The calibration curves 
plotted based on 1,000 resamplings of the bootstrap method show a 
good fit between the actual probabilities in the nomogram and the 
predicted probabilities, which demonstrates the accuracy and stability 
of the predictive model (Figure 5A). The curves demonstrated that 
when the risk threshold was between 0 and 0.75, the model had a net 
benefit (Figure 6A).

4.2.2 Model validation
The nomogram demonstrated good stability and predictive 

performance in a 25% randomised internal validation. In the 
validation cohort, the model’s AUC was 0.835 (95% CI: 0.696, 0.975; 
Figure  4B). The validation cohort’s nomogram calibration curves 
further demonstrated the model’s good calibration (Figure 5B). When 
the risk threshold is between 0 and 0.55, the decision curve 
demonstrates that the model has a net benefit (Figure 6B).

5 Discussion

Logistic regression analyses showed significant associations 
between SWO and hypertension, IL-8, UA, and C3. We also looked 
at the groups of subjects who were obese or had severe WHM, and 
we found that hypertension was a shared risk factor for all three, 
while the other characteristics were exclusively linked to 
SWO. We evaluated WMH using the Fazekas scale, a visual rating 
scale that was frequently employed in clinical settings to score 
WMH. The study by Zeng et al. (2020) revealed that participants 
would begin to exhibit significant deterioration in cognitive 
performance and white matter architecture at a Fazekas score 
greater than 3, thus we selected a cut-off value of 3 to reflect this. 
We identified unique risk factors for SWO through the present 
study and developed two predictive models, including the 
nomogram plots and the HUCIFE scoring system, to predict the 
prevalence of SWO. Factors including hypertension, IL-8, UA, C3, 
and the synergistic variables such as FA, FCP, and eosinophil were 
adopted in the nomogram plots and the HUCIFFE scoring tables 
for predicting SWO. The two models had excellent performance 
with ROC and C indices of 0.829 and 0.828, respectively. These two 
models only required blood sample testing to operate and did not 
rely on magnetic resonance imaging. They could be used to screen 
the prevalence of SWO more conveniently, more economically and 
earlier, and laid the foundation for timely and further 
intervention of SWO.

The most significant risk factor for WMH was hypertension 
(Dufouil et al., 2001; de Leeuw et al., 2002), which was defined as 
having a systolic blood pressure (SBP) of less than 130 mmHg or a 

diastolic blood pressure (DBP) of less than 80 mmHg (Whelton 
et  al., 2018). From the early 20th century, there has been 
recognition of the link between obesity and hypertension (Page, 
1969). The general consensus is that the prevalence of obesity is 
positive correlated with hypertension. Insulin, leptin, the renin-
angiotensin-aldosterone system (RAAS), sodium excretion, and 
stress natriuresis were some of the mechanisms by which obesity 
raised blood pressure (Landsberg et  al., 2013). Mechanisms 
contributing to white matter lesions in the brain include gliosis, 
endothelial dysfunction, hypoperfusion and oxidative stress, all of 
them might be exacerbated by hypertension. It was suggested that 
BBB damage played a role in the etiology of WMH (Teoh et al., 
2009; Wardlaw et al., 2015). This mechanism also encouraged BBB 
damage when hypertension was present, which worsened 
neuroinflammation in the brain (Toth et  al., 2013). When 
compared to normotensive people, hypertension patients had a 
significantly higher relative risk of both subcortical WMH and 
periventricular WMH (de Leeuw et al., 2002). Hypertension thus 
played an important role in the pathogenesis of SWO by promoting 
and exacerbating the process.

Uric acid was a naturally occurring water-soluble antioxidant that 
efficiently scavenged the majority of reactive nitrogen and oxygen 
radicals in the peripheral nervous system (Gao et  al., 2008) and 
provided the peripheral nervous system with good defense against 
oxidative stress (Bowman et al., 2010). Adipose tissue had the ability 
to make and secrete uric acid (Tsushima et  al., 2013), and 
hyperuricaemia was twice as common in obese people as it was in 
healthy individuals (Liu et al., 2015). This was further supported by a 
study on fat mice, who had increased blood uric acid levels (Tsushima 
et al., 2013). Nitric oxide, according to Vannorsdall et al. (2008), might 
be mainly responsible for the effects of uric acid on the brain. High 
uric acid levels might decrease the nitric oxide availability, which 
would impair vascular tone and endothelial function, resulting in the 
development of WMH. High levels of uric acid in the CSF could 
subsequently impair the BBB (Bowman et al., 2010), which aided in 
the formation of WMH. Even so, some researches indicated that uric 
acid was not related to WMH (Kim et al., 2020). The opposite results 
might be explained by the various study subjects. Not all types of 
WMH were associated with uric acid. There were many aspects in the 
pathogenesis of WMH, different subtypes might have different 
pathogenesis. This might be  the reason why uric acid was closely 
associated with some WMH subtypes, such as SWO, but not with the 
others. Uric acid might play a significant role in the etiology of SWO 
by reducing nitric oxide availability, harming the blood–brain barrier, 
and impairing endothelial function and vascular tone.

The most prevalent complement, C3, is a crucial part of innate 
immunity and is involved in immunological control and infection 
protection (Frank and Volanakis, 1998). Additionally, C3 levels are 
greater in obese individuals than in non-obese individuals and are 
most strongly correlated with abdominal obesity in particular, with 
this manifestation being more pronounced in extremely obese 
individuals (Hernández-Mijares et al., 2007). An animal experiment 
demonstrated that visceral adipocytes from obese mice upregulated 
the expression of PU.1, a member of the Ets family of DNA-binding 
proteins which controled the expression of inflammatory factors and 
enzymes that increase levels of chronic inflammation, such as tumour 
necrosis factor and interleukins in vivo (Lin et  al., 2012). These 
inflammatory factors also stimulated adipocytes to express C3 mRNA, 

TABLE 4 Logistic regression analysis of the risk factors of obesity.

B S.E. Wald Sig. Exp 
(B)

95% C.I.

Hypertension 1.984 0.757 6.875 0.009 7.272 1.650–32.044

Albumin 0.137 0.061 5.066 0.024 1.147 1.018–1.293

FCP 0.367 0.155 5.629 0.018 1.443 1.066–1.955

Constant −9.684 2.574 14.159 0.000 0.000

Hypertension, albumin and FCP were risk factors for obesity group. FCP, fasting C-peptide.
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TABLE 5 Baseline feature comparisons between the severe WMH Group and the non-severe WMH Group.

Variables Severe WMH group 
(Fazekas  =  4,5,6)

Non-severe WMH group 
(Fazekas  =  0,1,2,3)

p value

Age 70.7 ± 10.3 63.8 ± 11.6 <0.001*

Hypertension 222 (76.8%) 204 (56.5%) <0.001*

Diabetes 99 (34.3%) 104 (28.8%) 0.136

Hyperlipidemia 96 (33.2%) 131 (36.3%) 0.415

Cardiac disease 42 (14.5%) 47 (13.0%) 0.577

Previous strokes 110 (38.1%) 99 (27.4%) 0.004*

Smoking 58 (20.1%) 65 (18.0%) 0.504

WBC (10^9/L) 6.5 ± 1.9 6.5 ± 2.0 0.007*

Neutrophil (10^9/L) 4.0 ± 1.4 4.0 ± 1.6 0.026*

Lymphocyte(10^9/L) 1.8 ± 0.7 1.9 ± 0.6 0.188

Monocyte (10^9/L) 0.5 ± 0.1 0.4 ± 0.2 <0.001*

Basophil (10^9/L) 0.2 ± 0.1 0.2 ± 0.1 0.541

Eosinophil (10^9/L) 0.2 ± 0.1 0.2 ± 0.1 0.048*

ALT (IU/L) 16.0 (12.0, 23.0) 18.0 (13.0, 25.0) 0.792

AST (IU/L) 19.0 (16.0, 23.0) 20.0 (16.0, 24.0) 0.207

Albumin (g/L) 37.4 ± 3.5 38.3 ± 3.4 0.001*

BUN (mmol/L) 6.0 ± 1.6 5.6 ± 1.6 0.001*

Cr (umol/L) 83.3 ± 23.3 76.9 ± 20.1 0.001*

UA (umol/L) 368.9 ± 94.5 351.6 ± 98.6 0.122

Complement (U/mL) 49.0 ± 12.1 50.4 ± 10.1 0.390

TC (mmol/L) 4.2 ± 1.0 4.4 ± 1.1 0.953

TG (mmol/L) 1.4 ± 0.7 1.5 ± 1.0 0.226

HDL (mmol/L) 1.1 (0.9, 1.3) 1.0 (0.9, 1.3) 0.253

LDL (mmol/L) 2.7 ± 0.8 2.8 ± 0.8 0.890

Free IL-2 (pg/mL) 580.6 ± 244.7 547.6 ± 198.6 0.001*

IL-β (pg/mL) 3.6 (2.1, 4.8) 3.7 (2.6, 4.5) 0.476

TNF-α (pg/mL) 23.7 ± 12.7 20.2 ± 12.7 0.070

IL-10 (pg/mL) 2.5 (2.0, 3.4) 2.6 (2.0, 3.5) 0.629

IL-8 (pg/mL) 85.9 (52.178) 62.4 (27.4, 141.3) 0.648

IL-6 (pg/mL) 3.7 (1.6, 6.7) 3.2 (1.7, 5.3) 0.612

FA (ng/mL) 8.7 ± 4.7 8.7 ± 5.3 0.067

VitB12 (pg/mL) 295.0 (196.8, 484.0) 304.0 (231.0, 464.5) 0.315

HbA1c (%) 5.9 (5.7, 6.6) 5.9 (5.6, 6.8) 0.346

IgA (mg/dL) 272.2 ± 123.3 253.3 ± 110.7 0.004*

IgG (mg/dL) 1171.1 ± 282.1 1172.6 ± 302.1 0.007*

IgM (mg/dL) 79.0 (56.5, 111.3) 80.0 (58.0, 108.0) 0.430

CRP (mg/dL) 0.3 (0.2, 0.5) 0.2 (0.1, 0.4) 0.015*

C3 (mg/dL) 86.9 ± 17.3 89.2 ± 17.4 0.934

C4 (mg/dL) 22.0 ± 7.1 21.4 ± 6.2 0.005*

25OH-VitD (nmol/L) 51.1 ± 23.0 52.7 ± 23.3 0.511

FBG (mg/dL) 5.6 ± 1.6 6.1 ± 2.4 0.284

2hPBG (mg/dL) 9.7 ± 2.9 10.0 ± 3.4 0.522

FCP (mg/mL) 2.8 ± 1.1 2.7 ± 1.4 0.857

2hPCP (ng/mL) 8.5 (6.1, 12.2) 8.1 (5.0, 12.3) 0.210

There were statistically significant differences in age, hypertension, previous strokes, WBC, neutrophil, monocyte, eosinophil, albumin, BUN, Cr, free IL-2, IgA, IgG, CRP, C4 (p < 0.05).
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thus raised serum C3 levels. The protease histonectin L (CTSL) cleft 
C3 into two pieces, C3a and C3b (Asavapanumas et al., 2021), and 
once cleft, C3a bound to its receptor C3aR, promoting vascular 
inflammation and BBB damage (Propson et al., 2021). Insufficient 
perfusion of C3a receptors caused white matter injury in microglia, 
which was exacerbated by elevated C3 levels (Zhang et al., 2020). This 
could likewise play a role in the etiology of SWO.

IL8 functioned as a chemokine, inducing chemotaxis in 
macrophages, neutrophils, basophils, and T cells (Hammond et al., 
1995; Bonecchi et al., 2000; Straczkowski et al., 2002; Janeway, 2012; 
Turner et  al., 2014). IL-8 was generated and secreted by human 
adipocytes and Bruun et al. (2000, 2001) demonstrated that blood IL-8 
levels were higher in obese individuals, which could led to increased 
local and systemic inflammation as well as insulin resistance (Gregor 
and Hotamisligil, 2011; Lin et al., 2020). This localized and widespread 
inflammation brought about microvascular alterations and created a 
chronic underperfusion, which in turn caused persistent 
oligodendrocyte mortality and ongoing degeneration of myelin fibres, 

resulting in progressive white matter injury (Sandu et  al., 2015). 
Moreover, IL-8, which increased pro-inflammatory and pro-oxidant 
nitric oxide and affected the cerebral microvascular endothelium, 
might be linked to cytokine overexpression associated with microglia 
activation, resulting in WMH (Sloane et al., 1999; Frodl and Amico, 
2014). The pathogenesis of SWO was significantly influenced by the 
chronic perfusion deficit condition and increased nitric oxide 
processes brought on by IL-8, which promoted oligodendrocyte 
death in SWO.

Earlier studies focused more on the predictive value of individual 
parameters. However, when determining a patient’s diagnosis and 
prognosis for a disease, doctors naturally combine a number of 
patient characteristics and symptoms, such as predictors and test 
results, and probability estimates are rarely based on individual 
predictors. Prediction is therefore by its very nature multivariate 
(Collins et al., 2015). Combinations of two or more parameters or 
raising the parameter of related can be  utilized to enhance the 
diagnostic performance since several risk variables included in a 
model might produce synergistic effects. Based on the present study, 
we  finally constructed a prediction model that included 
hypertension, UA, C3, IL-8, FA, FCP and eosinophil. The results of 
the ROC analysis in this study demonstrate the excellent 
performance of the model. The model makes it easy for clinicians to 
predict the probability of obese brain white matter lesions. For each 
individual patient, we  can substitute the patient’s data into a 
nomogram (Figure 3) and add up the scores obtained for each item, 
and the probability corresponding to the total score is the patient’s 
risk of developing the disease. The model is straightforward and 

TABLE 7 The determination of the AUC and the cutoff values of SWO risk factors by means of logistic regression, ROC curves, and the Youden index.

AUC p Upper Lower Cutoff 
value

Sensitivity Specificity

UA(umol/L) 0.622 0.003 0.538 0.707 402 0.509 0.741

IL8(pg/mL) 0.623 0.003 0.548 0.698 79.4 0.731 0.511

C3(mg/dL) 0.682 <0.001 0.613 0.751 91 0.800 0.520

C4(mg/dL) 0.603 0.011 0.520 0.686 26 0.491 0.741

FA(ng/mL) 0.562 0.130 0.479 0.645 13.8 0.327 0.836

Eosinophil(10^9/L) 0.638 0.001 0.564 0.713 0.24 0.400 0.807

FCP(mg/mL) 0.691 <0.001 0.623 0.760 2.5 0.836 0.530

WBC(10^9/L) 0.585 0.037 0.506 0.664 6.51 0.564 0.618

IL-8, Interleukin 8; C3, Complement 3; C4, Complement C4; UA, uric acid; FA, folic acid; FCP, fasting C-peptide; WBC, white blood cell.

TABLE 8 Logistic regression analysis of risk factors for the HUCIFFE model.

B S.E. Z Sig. Exp (B) 95% C.I.

Hypertension 1.65 0.54 3.09 0.002 5.23 1.83 ~ 14.93

IL-8 0.86 0.36 2.43 0.015 2.37 1.18 ~ 4.77

C3 1.37 0.39 3.51 <0.001 3.92 1.83 ~ 8.41

UA 0.92 0.33 2.78 0.005 2.52 1.31 ~ 4.82

FCP 1.89 0.45 4.18 <0.001 6.61 2.73 ~ 16.04

FA 0.83 0.36 2.32 0.020 2.30 1.14 ~ 4.64

Eosinophil 1.00 0.34 2.92 0.003 2.72 1.39 ~ 5.31

IL-8, Interleukin 8; C3, Complement 3; UA, uric acid; FA, folic acid; FCP, fasting C-peptide.

TABLE 6 Logistic regression analysis of the risk factors for severe WMH.

B S.E. Wald Sig. Exp 
(B)

95% C.I.

Age 0.056 0.016 12.831 0.000 1.058 1.026–1.091

Hypertension 1.007 0.340 8.756 0.003 2.738 1.405–5.335

Constant −4.618 1.110 17.324 0.000 0.010

Age and hypertension were risk factors for severe WMH group.
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understandable, making it simple to use in routine clinical practice. 
Moreover, we can estimate risk using the HUCIFFE scale (Table 9), 
where a total score of 9 or higher indicates a high risk for SWO. The 
two measures can be used to validate one another and mainly used 
for SWO screening. This technology enables for fast risk assessment, 

as well as screening at community hospitals, nursing homes, and 
other locations without access to MRI, allowing for early detection 
and intervention and preserving vital medical resources. So that 
we can better control the hazards of WMH.

The present study also has some limitations. The subjects in this 
study were provided by a single centre and the Chinese obesity 
criteria (BMI ≥28 kg/m2) were used, and the model might limit its 
generalizability. Even though bootstraps with 1,000 resamples were 
used to confirm our nomogram, additional prospective multicenter 
studies were still required to verify our findings externally. The 
average age of the subjects in this study is older, while older subjects 
exhibit higher WMH volumes. BMI was adopted as the only marker 
of obesity and there were no available data on other anthropometric 
markers of obesity (e.g., waist-hip circumference or waist 
circumference), which might be  biased. In addition, WMH can 
be divided into PVWMHs and DWMHs, and obesity can be divided 
into subcutaneous fatty and visceral fatty. This subdivision into 
specific subtypes could better improve the predictability of 
SWO. Last but not least, our study’s sample size was somewhat 
modest and has to be  expanded in order to further validate 
the results.

6 Conclusion

According to our study, we used the synergistic variables FA, FCP, 
and eosinophil for SWO along with hypertension, IL-8, UA, and C3 
to create a nomogram (Figure 3) and a HUCIFFE scale (Table 9). The 
nomogram enables visualization of the patient’s WMH risk. When the 

FIGURE 2

The receiver operating characteristic (ROC) curves for the HUCI score (hypertension, UA, C3 and IL-8), the HUCIFFE score (hypertension, UA, C3, IL-8, 
FA, FCP and eosinophil) and the Total score for 650 patients. The arrow represents the cut-off value.

TABLE 9 SWO score system.

Item Classification Cutoff Points

Hypertension Yes

No

3

0

IL-8 (pg/mL) High

Low

≥79.4

<79.4

1

0

C3 (mg/dL) High

Low

≥91

<91

2

0

UA (umol/L) High

Low

≥402

<402

1

0

FA (ng/mL) High

Low

≥13.8

<13.8

2

0

FCP (mg/mL) High

Low

≥2.5

<2.5

2

0

Eosinophil 

(10^9/L)

High

Low

≥0.24

<0.24

1

0

Total score High

Low

≥9

<9

IL-8, Interleukin 8; C3, Complement 3; UA, uric acid; FA, folic acid; FCP, fasting C-peptide. 
The risk factor scores for SWO were summed to create a total score, and when the total score 
was greater than 9, the risk of developing SWO was significantly higher.
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HUCIFFE scale is scored higher than 9, the patient has a significantly 
increased risk of developing the disease. The two forms can 
be  compared and validated against one another, and they can 
be widely used in clinical practice. These two models only require 
blood sample testing to operate and do not rely on magnetic resonance 

imaging. The screening can be conducted in community hospitals, 
nursing homes, and other locations without access to MRI, allowing 
for the earliest possible detection and intervention as well as providing 
assessment criteria for the early identification and control of 
WMH hazards.

FIGURE 3

Nomogram for predicting SWO probabilities.

FIGURE 4

The (ROC) curve of the nomogram. (A) Training set; (B) validation set.
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