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Introduction: Perturbation walking (PW) has been shown to improve gait,

however its effect on the cortical control of gait might provide insights on neural

mechanisms underlying falls in adults with osteoarthritis. The objective of this

study is to investigate the effect of PW on prefrontal cortical (PFC) activation in

older women with (OA) and without osteoarthritis (HOA). We hypothesized that

there would be an increase in PFC activation during PW relative to comfortable

walking (CW) and higher increase in PFC activation during PW in HOA compared

to OA.

Methods: Twenty community-dwelling older women (66.7 ± 5.41 years old)

walked on an instrumented treadmill that provided perturbations at pseudo-

random intervals between 5–25 s using a counterbalanced design. Functional

Near Infrared Spectroscopy was used to quantify PFC oxygenated hemoglobin

(HbO2) and deoxyhemoglobin (Hb) levels, while standing prior to the task as a

baseline. A linear mixed effects model was conducted to investigate the effects

of cohort (HOA vs OA), task (PW vs CW), and their interaction on HbO2 (µM) and

Hb (µM) levels.

Results: HbO2 and Hb levels differed significantly between CW and PW tasks for

both cohorts (P < 0.001) and demonstrated significant task by cohort interaction

(P < 0.05). In addition, we found changes in walking performance (stride time,

stride length, stride width and stance time) during and after PW. Spearman

correlation demonstrated a strong association between increased stance time,

increased body mass index and decreased PFC activation during PW. No other

significant results were found.

Discussion: This study found increase in PFC activation during PW and gait

adaptation after a short bout of PW in HOA and OA. This increase in PFC

activation was higher in HOA compared to OA, particularly during PW tasks,
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and was consistent with theory of limitations in mobility affecting neural

activation in older adults. Further work remains to examine how pain,

obesity, and mobility impacts cortical control in older adults with and

without osteoarthritis.
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prefrontal cortex, gait, functional near infrared spectroscopy, walking, osteoarthiritis

1 Introduction

Osteoarthritis is a common joint disease in the United States
(CDC, 2020), with an increasing prevalence in older adults,
particularly women over 50 years of age (Shane Anderson and
Loeser, 2010). In addition to age and gender, other major risk
factors for osteoarthritis include joint injury or overuse, obesity,
and genetic factors that contribute to decreased ability for joint
tissues to compensate for abnormal mechanical stresses (Shane
Anderson and Loeser, 2010). Due to joint pain, stiffness, and
inflammation, older adults with osteoarthritis have decreased range
of motion leading to increase in mobility impairment, decline in
physical activity and increase in hospitalization (Shane Anderson
and Loeser, 2010; Ng and Tan, 2013; Wollesen and Voelcker-
Rehage, 2019). In addition to these symptoms, osteoarthritis
is associated with depression, muscle weakness and instability
(Ng and Tan, 2013), leading to mobility impairment in older
adults (Guilak, 2011). This mobility impairment alters the walking
pattern of the individual, putting additional stress and strain
on joints (Messier, 1994; Guilak, 2011). Decrease in mobility
impairment can be achieved by increasing physical activity in
older adults with osteoarthritis through intervention strategies
(Bhatt et al., 2012, 2018).

Intervention strategies such as perturbation walking (PW)
have been used traditionally to recover balance in adults with
osteoarthritis (Fitzgerald et al., 2011; Krasilshchikov et al., 2018;
Rutherford et al., 2022). PW exposes the participant to quick
starts and stops, or changes in direction while walking (Bhatt
et al., 2012; Pai et al., 2014). Previous studies have examined the
effects of PW in adults with osteoarthritis to challenge balance
(Fitzgerald et al., 2011), which can improve physical function
and decrease risk of falls (Fitzgerald et al., 2011; Pai et al., 2014;
Krasilshchikov et al., 2018; Rutherford et al., 2022). Benefits of
PW include reduction in self-reported pain, improvement in self-
reported function (Fitzgerald et al., 2011), decreased falls (Pai et al.,
2014; Krasilshchikov et al., 2018), and improvement in muscle
activation (Rutherford et al., 2022). PW has also been used in
older adults to improve balance and decrease fall risk by improving
stepping execution and dynamic stability (Bhatt et al., 2012; Kurz
et al., 2016). PW has repeatedly shown to be an effective tool in
improving dynamic gait and balance (Bhatt et al., 2005, 2012; Pai
et al., 2014; Kurz et al., 2016; Krasilshchikov et al., 2018; Rutherford
et al., 2022), however, its effect on cortical activation and walking
function in adults with osteoarthritis hasn’t been explored yet.

Decline in dynamic gait and balance has been shown to
be associated with decline in executive functioning due to the
loss of gray matter and changes in white matter connectivity in

healthy older adults (Demnitz et al., 2017). However, given the
decline in physical functioning and neurological changes in older
adults with osteoarthritis due to pain and inflammation, an open
question remains if older adult with osteoarthritis would be able to
modulate cortical activation similar to healthy older adults during
PW. Given observations of a significant deactivation of prefrontal
cortical (PFC) activity with increased pain in older adults with
osteoarthritis (Oztürk et al., 2021) and decreases in dorsolateral
PFC activity with increased pain sensitivity (Lev et al., 2013),
increased chronic pain expected in older women with osteoarthritis
would be expected to decrease the availability of cortical resources
in PFC for recruitment during PW.

The use of functional near infrared spectroscopy (fNIRS) while
walking has been demonstrated to provide reliable and valid
measures of PFC activity in older adults, as noted by a recent review
(Bishnoi et al., 2021). Furthermore, in PW tasks, cortical changes in
control have been confirmed using either electroencephalography
(EEG) (Peterson and Ferris, 2018) or fNIRS (Koren et al., 2019;
Lee et al., 2023), consistent with the use of increased attentional
resources during PW. However, the examination of changes in
the use of attentional resources in older adults due to unexpected
perturbations while walking, which provide an analogue to walking
on icy surfaces in the community, merit further investigation.

The objective of this cross-sectional study was to investigate
the effects of PW on PFC activation using fNIRS and walking
performance in older women with and without osteoarthritis. We
hypothesized that there would be an increase in PFC activation in
older women during PW, relative to comfortable walking (CW)
and this increase would be greater in healthy controls compared
to older women with osteoarthritis, due to reductions in the
availability of neural resources due to chronic pain (Seidler et al.,
2010). In addition to this, we expected an improvement in walking
performance after PW tasks based on previous studies including on
PW tasks (Madehkhaksar et al., 2018). This study will further our
understanding of brain activation changes explored in older women
with osteoarthritis during challenging walking tasks. Future studies
can evaluate the benefits of PW as an intervention to improve the
overall functional capacity of older adults with osteoarthritis.

2 Materials and methods

2.1 Participants

Twenty community-dwelling older females (66.7 ± 5.41 years
of age [Mean ± SD]) were recruited for this two-session cross-
sectional laboratory study and divided into two groups, healthy
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older adults (HOA, n = 11) and older adults with osteoarthritis
(OA, n = 9) based on their reported diagnosis. Inclusion criteria
consisted of no report of any neurological condition, cardiovascular
condition, no physical disabilities, and able to walk independently
without any assistive device. Exclusion criteria consisted of score
less than 19 on the Telephone Interview for Cognitive Status
(Welsh et al., 1993) or inability to walk without assistive device.
All participants signed a written consent form approved by the
local institutional review board. Based on prior work examining the
differences in hemodynamics during painful stimuli in older adults
with osteoarthritis (Oztürk et al., 2021), a sample size of 8 OA and
8 HOA participants was needed to detect a significant effect at the
p = 0.05 level with.90 power and an effect size f = 0.8, based on an
a priori sample size analysis using G∗Power (Version 3.1.9.6).

2.2 Protocol

All participants made two separate visits to the mobility and
fall prevention laboratory situated at the University of Illinois,
Urbana-Champaign. On day 1, participants provided informed
consent, performed physical and cognitive assessments, and
received treadmill training. On Day 2, participants performed CW
and PW tasks at a fixed comfortable walking speed.

2.3 Physical and cognitive assessments

Participants had their cognitive function assessed using the
Repeated Battery for the Assessment of Neuropsychological Status
(RBANS) (Randolph et al., 1998), and Trail Making Test (TMT)
(Ashendorf et al., 2008). Education was assessed as the number
of years of higher education post high school. During physical
assessment, participants performed several motor behavioral tests
including the Mini Balance Evaluation Systems Test (Mini-BEST)
(Yingyongyudha et al., 2016), Short Physical Performance Battery
Test (SPPB) (Veronese et al., 2014), and single and dual task Timed
Up and Go (TUG). The depression was assessed using geriatric
depression scale (GDS) (Kurlowicz and Greenberg, 2007). Pain
was assessed using self-reported Western Ontario and McMaster
Universities Osteoarthritis Index assessing activity and pain levels
(WOMAC) subscale (Salaffi et al., 2003).

2.4 Perturbation walking task

After baseline testing on day 1, a researcher determined the
comfortable speed of the participant by starting the treadmill
speed at 0.7 m/s and increased the speed until the participant
felt that the speed was not too fast or too slow. After finding
the comfortable walking (CW) speed, participants did a training
session of CW fixed speed for 5 min on the instrumented treadmill
(C-Mill, Motekforce link, Culemborg, The Netherlands). On day
2, participants performed two CW fixed speed tasks of 2 min
each and two PW tasks on an instrumented treadmill (C-Mill,
Motekforcelink, Culemborg, The Netherlands), where the treadmill
belt provided anterior-posterior perturbations at pseudo random
intervals between 5–25 s using a counterbalanced design. During

each PW task, there were 10 perturbations during the 120 s interval,
averaging it to 1 perturbation every 20 s. In PW tasks, custom
belt speed profiles were used to simulate slips at pseudorandom
intervals between 5 and 25 s, which subjects were asked to recover
from as best as possible while they were walking at a comfortable
pace. In specific, a perturbation profile with a brief deceleration
of up to −5 m/s2 for up to 0.2 s, followed by an acceleration
of up to 5 m/s2 for up to 0.2 s was employed to examine the
participant’s recovery response to a partial slip. The tasks took place
in the following order: first comfortable walking task (CW1), first
perturbation walking task (PW1), second perturbation walking task
(PW2), and second comfortable walking task (CW2). Participants
completed the PW on the treadmill while wearing a harness and an
fNIRS headband. Their instruction for PW tasks was to recover as
best as possible to each perturbation.

2.5 Spatiotemporal gait data

Spatiotemporal data and gait event data using online
gait event detection (Roerdink et al., 2008) were collected
during gait assessments using CueFors 2 software (Motekforce
Link, Culemborg, The Netherlands), which is equipped in the
C-Mill instrumented treadmill. Spatiotemporal gait characteristics,
including stride time (StrT) (seconds), stride length (StrL) (m),
stride width (StrW) (m), and stance time (StaT) (seconds) were
calculated using custom python scripts, as described and defined
in prior work (Kaur et al., 2021). Stride time is the time between
two successive heel strikes (i.e., right heel strike to right heel
strike). Stride length is the anteroposterior distance between two
subsequent heel strikes of the same foot, while adjusting for belt
travel. Stride width is the medio-lateral distance between the two
feet (i.e. perpendicular distance between the line connecting two
consecutive heel strikes of the same foot). Stance time is the time
between heel strike and toe off of the same foot. Throughout each
walking trial, ground reaction forces, treadmill speed, and center
of pressure position coordinates were recorded at 500 Hz while
position and time of gait events were calculated using CueFors 2
software.

2.6 Functional near infrared
spectroscopy

FNIRS data was obtained using an fNIRS Imager 1200 system
(fNIRS Devices, LLC, Potomac, MD). The headband sensor
contained 10 photodetectors and 4 LED light sources with a 2.5 cm
source detector separation distance that covered the forehead
with the use of 16 optodes and a 2Hz sampling rate. The light
sources on the sensor (Epitex Inc. type L6 × 730/6 × 850)
contain two built-in LEDs having peak wavelengths at 730 and
850 nm, with an overall outer diameter of 9.2 ± 0.2 mm.
The photodetectors (Bur Brown, type OPT101) are monolithic
photodiodes with a single supply transimpedance amplifier. The
center of the headband sensor was placed on the central point
of the forehead above the nasion (Fpz) in accordance with the
10/20 electroencephalography system. Relative HbO2 and Hb levels
(µM) were used because of their reliability in evaluating cortical
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TABLE 1 Participant characteristics (Mean (SD) presented).

Characteristics HOA
(n = 9)

OA
(n = 11)

P-Value

Age (years) 67.7 ± 6.6 65.8 ± 3.2 0.200

BMI (kg/m2) 22.2 ± 3.1 27.1 ± 5.4 0.016*

RBANS [0–130] 111.7 ± 14.5 104.9 ± 9.2 0.110

TUG-ST (seconds) 9.7 ± 1.2 11.5 ± 1.2 0.003**

TUG-DT (seconds) 11.1 ± 1.9 13.1 ± 2.5 0.037*

WOMAC [0–20] 0.3 ± 0.5 3.4 ± 2.8 0.005**

CGS (m/s) 1.5 ± 0.3 1.3 ± 0.2 0.092

GDS [0–15] 0.4 ± 0.7 1.1 ± 1.4 0.092

CGS, Comfortable Gait Speed; BMI, body max index; TUG, Time up and Go test; ST,
Single Task; DT, Dual Task; WOMAC, Western Ontario and McMaster Universities
Osteoarthritis Index assessing activity and pain levels; RBANS, repeated battery for the
for the assessment of neurophysiological status; GDS, Geriatric Depression Scale. Table is
reported as Mean (SD). Significance set at *p < 0.05, **p < 0.01.

activation changes (Ferrari and Quaresima, 2012). The fNIRS data
were collected using COBI Studio software and processed and
analyzed using custom MATLAB scripts. Visual inspection of
raw data was used to monitor for excessive noise, saturation, or
dark current conditions. To minimize the effects of physiological
artifacts (e.g., breathing and heart rate) and any additional noise,
the raw data were filtered using a low-pass filter with a cut-
off frequency at 0.14Hz. HbO2 and Hb levels (µM) were then
calculated using the modified Beer-Lambert law for each of the 16
channels (Hamacher et al., 2015).

PFC activation levels were assessed during the two CW and two
PW tasks. The whole duration of the task was used to calculate
the mean PFC activation. Each task started and ended with 10s
of standing quietly. All participants were asked to look forward
and count silently starting from 1 in their head. After that 10s
baseline, the instructions for a specific task were then given. The
10s baseline before each task was used as a reference for both
HbO2 and Hb relative levels (µM) (Ohsugi et al., 2013). The task-
related changes were measured by averaging Hb and HbO2 levels
during the walking tasks and comparing it to baseline value just
prior to each condition. Individual mean HbO2 and Hb values were
extracted separately for each of the 16 optodes in each task.

2.8 Statistical analysis

Descriptive statistics for age, body mass index (BMI), RBANS,
comfortable gait speed, WOMAC, GDS, single and dual task TUG
were reported in Table 1 with differences between cohorts evaluated
using an independent t-test. Linear mixed effects model was used
to evaluate any significant differences between HOA and OA, as
a two-level between subject factor, walking task as a four-level
repeated within-subject factor (CW1, PW1, CW2, PW2), and PFC
activation, as measured by mean HbO2 levels and Hb levels as the
dependent measure while controlling for repeated measures across
the 16 optodes in analysis. The interaction term of cohort-by-task
and random intercept was also included in the model to allow the
entry point to vary across individuals. Data was visually inspected
for normality and homogeneity of variance and the assumptions
for the linear mixed effects model were met by all models. A linear

TABLE 2 Results from linear mixed model for mean oxyhemoglobin
(HbO2), deoxyhemoglobin (Hb), stride time (StrT), stride length (StrL),
stance time (StaT) and stride width (StrW).

Effects Estimate SE p-Value

Mean HbO2 (µM)

Task: PW1 0.550 0.122 <0.001***

Task: PW2 1.37 0.117 <0.001***

Cohort OA: TaskPW2 −0.54 0.197 0.006**

Mean Hb (µM)

Task: PW2 −0.32 0.096 0.0007***

Cohort OA: TaskCW1 0.317 0.155 0.041*

Cohort OA: TaskPW2 0.471 0.162 0.003**

Mean StrT (s)

Task: PW1 0.03 0.009 < 0.01**

Mean StrL (m)

Task: PW1 0.02 0.01 0.04*

Mean StaT (s)

lTask: PW1 0.02 0.006 0.01*

Mean StrW (m)

Task: PW2 0.008 0.003 <0.004**

Task: CW2 0.010 0.003 <0.0005***

Significance set at *p < 0.05, **p < 0.01, ***p < 0.001; SE, Standard Error.

mixed effects model was also used to examine the effect of group
and task, and its interaction on spatiotemporal gait parameters
(mean stride time, stance time, stride length and stride width).
Lastly, a spearman correlation was used between dependent and
independent variables. For all statistical tests, R version 3.1.1. was
used, and significance was set at p < 0.05. Supplemental figures are
provided to demonstrate group differences across PW1 and PW2
and correlation analyses.

3 Results

3.1 Participants

After doing independent sample t-test for group differences,
we found that there was a significant difference between HOA
and OA in single (p = 0.003) and dual timed up and go test
(p = 0.037), WOMAC (p = 0.005) and BMI (p = 0.016). No
other significant differences were observed between groups for age
(p = 0.200), RBANS (p = 0.110), gait speed (p = 0.092), and GDS
score (p = 0.092) (Table 1).

3.2 PFC activation

A linear mixed effects model showed a significant increase in
PFC activation levels during the PW tasks relative to CW tasks in
both cohorts. During PW2, there was decrease in PFC activation in
OA, compared to HOA (p < 0.001). There was also a significant
interaction between cohort (OA) and PW2 task (p < 0.01), and
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cohort (OA) and CW1 task (p = 0.041) (Table 2). Post hoc Tukey’s
analysis showed that there were PFC activation differences in
between the tasks in both cohorts, but no overall changes between
the cohorts were found (Figure 1).

3.3 Gait parameters

While no walking speed comparisons were performed between
PW and CW tasks due to the fixed belt speed used in tasks, we
evaluated changes in spatiotemporal walking performance during
and after PW using linear mixed model analysis. Stride time, stance
time and stride length changed significantly from CW1 to PW1
task for both cohorts (Table 2). We found increases in stride time
(p< 0.01), stance time (p = 0.01) and stride length (p = 0.04) during
PW1, on the other hand, stride width changed significantly from
CW1 to PW2 (p = 0.004) and from CW1 to CW2 (p < 0.0005)
(Figure 2). Supplemental analysis was performed to quantify groups
differences across PW1 and PW2 presented in supplementary file
(Figure 1).

3.3 Correlation

Spearman correlations were used to check the association
between dependent and independent variables (see Supplementary
Appendix A). Through spearman correlation, we found a
significant negative association between mean HbO2 and BMI
(rho = −0.66, p = 0.003) during PW2 task for both cohorts. For
spatiotemporal gait parameters association with PFC activation
measures, we found a significant negative association between
mean HbO2 and mean stance time (rho = −0.63, p = 0.008) during
PW2 task for both cohorts.

4 Discussion

4.1 Primary findings of the study

This is the first study investigating the PFC activation and
spatiotemporal gait differences between older adults with and
without osteoarthritis while doing perturbation and comfortable
walking tasks. Consistent with our hypothesis and prior work in
adults (Koren et al., 2019), we found that both groups showed
increased PFC activation during PW in comparison to CW.
Furthermore, while similar increases in PFC activation were seen
by both groups from CW1 to PW1 trials, we found that adults with
OA didn’t demonstrate a comparable increase in PFC activation
as evaluated by both Hb and HbO2 from CW1 to PW2 trials,
as was seen in HOA. This might be due to a decrease in neural
reserve related to mobility impairments or neurological changes in
osteoarthritis as there was a decrease in PFC activation particularly
in OA during their PW2 task. The findings in this study are
consistent with a “supply and demand” framework in healthy adults
(Seidler et al., 2010), as HOA might have demonstrated this increase
in PFC activation during the more challenging PW tasks, relative
to OA, due to an increased availability of cognitive resources.
These findings are also consistent with the results of a recent study

showing increases in prefrontal cortical activation as unevenness
in terrain increases in older adults with different mobility function
(Hwang et al., 2024).

In addition to PFC activation changes, we found significant
effects on gait parameters, during the initial exposure to
perturbations and following a short bout of PW in both
groups. During the initial exposure of perturbations, both groups
demonstrated an increase in stance time, stride time and stride
length, which returned to baseline values by the next task.
Furthermore, an increased stride width was observed after a short
bout of PW during the PW2 task and afterward in both groups,
which demonstrates a potentially adaptive strategy to reduce loss of
balance or fall risk (Bhatt et al., 2013). Although, we didn’t find any
association of stride width with PFC activation variables, we did
find a negative association between PFC activation (mean HbO2)
and stance time during the PW2 task, consistent with the use
of increased attentional resources for restoring gait performance.
Furthermore, similar to prior findings (Meester et al., 2014) in
healthy young adults, we found that central mechanisms are
activated in these adults in response to more demanding walking
conditions. However, while reflex function and gait performance
in young adults has demonstrated independence from cortical
activation (Meester et al., 2014), increased neural activation may
be needed for maintaining gait performance during PW conditions
in these adults.

4.2 BMI and PFC activation

The findings of an association between neural activation during
a challenging walking task and BMI differ from prior work
(Osofundiya et al., 2016). While neural activation increases during
walking have been observed in obese adults, particularly when
precise gait is required (Osofundiya et al., 2016), differences in
task, baseline selection, and co-morbidities may contribute to the
differences observed in our study. In particular, decreased neural
activation during the PW2 task was associated with higher BMIs
in HOA and OA in this study, which may have been due to
increased physical demands or central fatigue from the PW tasks
on a treadmill with a fixed speed, in comparison to prior work in
overground walking. Furthermore, while prior work used a single
baseline at the start of the experiment, we used a unique baseline
prior to the start of each task, for controlling hemodynamic changes
during the experiment. Lastly, as increased BMI was often observed
in OA in this study, further work disassociating the effect of body
composition and musculoskeletal conditions is needed.

4.3 Motor performance

Previous perturbation studies have looked at healthy young
adults, measuring gait measures and neural activation through
fMRI before and after perturbation training (Bhatt et al.,
2018), and found younger adults to take less compensatory
steps after a week of perturbation training and higher levels
of neural activation post-training compared to pre-training
(Bhatt et al., 2018). We found a similar increase in neural
activity and decrease of initial perturbation task changes after
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FIGURE 1

(Left) mean hemoglobin (Hb02) and (Right) mean deoxyhemoglobin (Hb) activation during comfortable walking (CW1, CW2) and perturbation
walking tasks (PW1, PW2) in healthy older adults (HOA) and older adults with osteoarthritis (QA). ***p < 0.001, **p < 0.01.

FIGURE 2

Mean stride time, stride length, stance time, and stride width during comfortable walking (CW1, CW2) and perturbation walking tasks (PW1, PW2) in
healthy older adults (HOA) and older adults with osteoarthritis (OA). **p < 0.01, *p < 0.05.

a short bout of PW. While no significant differences in gait
performance were observed between HOA and OA, the lower
increases in neural activation during the more challenging
PW conditions in OA, may be arising from changes due to
increased mobility impairment and pain, but further examination
is needed in a cohort with a wider range of functional
capacity.

4.4 Pain and cognitive function

Chronic pain has been linked to injurious falls in older adults
(Leveille, 2009; Cai et al., 2021). In older adults with knee pain, it
is found to be twice as likely to fall compared to healthy controls
(Hicks et al., 2020). As osteoarthritis often leads to increased
joint stiffness and inflammation, it can cause large amounts of
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pain during physical activity (Litwic et al., 2013). Furthermore,
chronic pain has been shown to be associated with cognitive
impairment (Apkarian et al., 2004; Gwilym et al., 2010; Parksl et al.,
2011; Bell et al., 2022), due to affected cognitive flexibility leading
to impairment in executive function while walking (Bell et al.,
2022). While cohort differences in pain and mobility function were
observed in this study, WOMAC pain scores were not found to be
associated with PFC activation, which may be due to small sample
size with low levels of pain in our study.

4.5 Clinical applications and future
recommendations

Cortical activity measures provide an important lens on early
changes in the control of walking in older adults (Braver et al.,
1997; Verstynen et al., 2005). This study highlights changes
in cortical control during the adaptation to more challenging
walking conditions and may provide a complementary measure to
evaluate the effectiveness of perturbation-based walking in older
adults with osteoarthritis. PW can be a useful tool to aide those
with osteoarthritis and improve cortical outcomes to control gait
(Rutherford et al., 2022). Thus, by recognizing the differences in
PFC activation in both groups, we can further refine targets for the
rehabilitation to emphasize improvements in both gait and cortical
control measures (Clark et al., 2021).

4.6 Limitations of the study

The present study has several key limitations. First, the
sample size of the study was small, which limits generalizability.
Secondly, we incorporated a two-day protocol only, longer
periods of PW and an evaluation of retention of learned
changes would be beneficial. Lastly, we examined only PFC
activation, due to limited spatial coverage of the fNIRS
device. Future studies are needed to examine the differences
in other cortical areas.

5 Conclusion

In conclusion, this study found an increase in PFC activation
during PW and gait adaptation after a short bout of PW in older
women with and without osteoarthritis. This increase in PFC
activation was higher in HOA compared to OA, particularly in
PW tasks, is consistent with limitations in mobility affecting neural
activation in older adults.
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