Disorders of consciousness (DoC) represent a spectrum of neurological conditions that pose significant treatment challenges. Percutaneous short-term spinal cord stimulation (SCS) has emerged as a promising experimental diagnostic treatment to assess and potentially improve consciousness levels. However, the effectiveness of this intervention is frequently compromised by the shift of electrodes, particularly in the cervical region, which can negatively affect therapeutic outcomes.
This retrospective study aimed to study if electrodes shift in percutaneous short-term SCS in patients with DoC would affect the outcome. We analyzed the relationship between electrode shift length and patient outcome, as well as the correlation with various anatomical parameters, including the actual length of the cervical spine, linear length, spinal canal transverse diameter, spinal canal diameter, and C2 cone height, in a cohort of patients undergoing the procedure.
Our findings revealed that in patients with better outcome, there are significant less patient with electrode shift (
These results highlight the clinical importance of electrode stability in the cervical region during SCS treatment for patients with DoC. Ensuring secure placement of electrodes may play a crucial role in enhancing patients’ outcome and minimize postoperative complications. Given the lack of association with expected anatomical parameters, future research should investigate other factors that could impact electrode stability to optimize this therapeutic intervention.