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Introduction: Alzheimer’s disease (AD) is the most widespread

neurodegenerative disease in the world. Previous studies have shown that

peripheral immune dysregulation plays a paramount role in AD, but whether

there is a protective causal relationship between peripheral immunophenotypes

and AD risk remains ambiguous.

Methods: Two-sample Mendelian randomization (MR) was performed using

large genome-wide association study (GWAS) genetic data to assess causal

effects between peripheral immunophenotypes and AD risk. Utilizing the genetic

associations of 731 immune cell traits as exposures. We adopted the inverse

variance weighted method as the primary approach. The Weighted median

and MR-Egger regression methods were employed as supplements. Various

sensitivity analyses were performed to assess the robustness of the outcomes.

Results: Based on the IVW method, we identified 14 immune cell traits that

significantly reduced the risk of AD, of which six demonstrated statistical

significance in both IVW and Weighted median methods. Among the seven

immune traits, four were related to regulatory T (Treg) cells : (1) CD25++

CD45RA- CD4 not regulatory T cell % T cell (odds ratio (OR) [95% confidence

interval (CI)] = 0.96 [0.95, 0.98], adjusted P = 1.17E−02), (2) CD25++ CD45RA-

CD4 not regulatory T cell % CD4+ T cell (OR [95% CI] = 0.97 [0.96, 0.99], adjusted

P = 3.77E−02), (3) Secreting CD4 regulatory T cell % CD4 regulatory T cell (OR

[95% CI] = 0.98 [0.97, 0.99], adjusted P = 7.10E−03), (4) Activated & secreting

CD4 regulatory T cell % CD4 regulatory T cell(OR [95% CI] = 0.98 [0.97, 0.99],

adjusted P = 7.10E−03). In addition, HLA DR++ monocyte % monocyte (OR [95%

CI] = 0.93 [0.89, 0.98], adjusted P = 4.87E−02) was associated with monocytes,

and HLA DR on myeloid Dendritic Cell (OR [95% CI] = 0.93 [0.89, 0.97], adjusted

P = 1.17E−02) was related to dendritic cells (DCs).
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Conclusion: These findings enhance the comprehension of the protective role

of peripheral immunity in AD and provide further support for Treg and monocyte

as potential targets for immunotherapy in AD.

KEYWORDS

peripheral immunity, peripheral blood immune cell phenotype, Alzheimer’s disease,
Mendelian randomization, protective factor

1 Introduction

Alzheimer’s disease (AD) is comprised of a group of
primary neurodegenerative diseases with unspecified etiology,
representing the most common type of dementia. The most
characteristic pathological changes in AD are the accumulation
of neuroinflammatory extracellular β-amyloid (Aβ) deposits
and intracellular hyperphosphorylated tau protein neurofibrillary
tangles (NFT) (Serrano-Pozo et al., 2011; Reitz and Mayeux,
2014). Neuroinflammation and immune system dysregulation
are prominent drivers of the development of AD. Regarding
neuroinflammation, microglia and their phagocytic capacity are
the focus of attention in the present work (Hemonnot et al.,
2019). Studies have shown that microglia surrounding Aβ plaques
in the central nervous system (CNS) activate and eliminate
plaques and reduce their accumulation (Hansen et al., 2018).
However, immunotherapeutic agents targeting the reduction of
neuroinflammatory extracellular Aβ and tau proteins have failed
in several clinical and animal trials in recent years, accompanied
by serious immune-related side effects, suggesting a deficiency in
the recognition of the immune mechanisms of AD (Wilcock et al.,
2004; Sperling et al., 2012; Sevigny et al., 2016).

Previous studies have revealed that the blood-brain barrier is
compromised before the onset of AD and that the central nervous
system is not “immune privileged,” providing the possibility for
the brain and peripheral immune cells to inter-communicate
(Carson et al., 2006; Desai et al., 2007). In this neuroinflammatory
response, the upregulation of the cell adhesion molecule (CAM)
and CAM ligand expression on blood-brain–barrier endothelial
cells mediate peripheral immune cells, prompting them to cross
the blood-brain barrier and interact with immune cells residing in
the CNS (Engelhardt and Ransohoff, 2005). The subpopulations
of peripheral blood immune cell types are sophisticated and
diverse, and each subpopulation and its cytokines exert various
or opposing influences on AD development (Skias et al., 1985;
Ziegler-Heitbrock, 2007; Lueg et al., 2015; Xu and Jia, 2021; Aries
and Hensley-Mcbain, 2023). The intricate relationship between the
peripheral immune system and AD can be adequately understood
only by systematic and exhaustive studies of different subgroups.

Mendelian randomization is a robust type of analysis capable
of dodging confounding and reverse causality bias by using genetic
variation associated with exposure as an instrumental variable
(IV) or a proxy instrumental variable to evaluate the causal
effects of exposure on outcome (Davey Smith and Ebrahim, 2003;
Burgess et al., 2012). The assignment of genetic variation is
random and not influenced by environment or lifestyle during
gametogenesis during pregnancy. Consequently, compared with

traditional observational studies, Mendelian randomization studies
can avoid confounding factors and the bias of reverse causality
(Lawlor et al., 2008).

Previous studies on peripheral blood immune cell
subpopulations in AD have been mainly observational, based
on the number of the proportional changes of the subpopulations
observed in AD patients or animal models. In contrast, relatively
few studies have directly investigated the correlation between
the traits of various peripheral blood immune cells and AD.
With a comprehensive genome-wide association study (GWAS)
dataset of peripheral blood immune cell phenotypes now available,
MR provides a robust analytical approach to further explore the
interplay of peripheral blood immune cell biomarkers in AD risk,
which is rarely conducted in this field. We hypothesized that the
subtypes in peripheral immunophenotypes have a proximate causal
effect on AD risk. To determine this relationship, we performed
a two-sample MR analysis using the GWAS data of the largest
peripheral immunophenotypes as exposures to further explore
their causal roles in AD risk.

2 Materials and methods

2.1 Data sources

This study strictly adhered to the STROBE-MR guidelines
(Skrivankova et al., 2021). We employed a two-sample MR
approach to investigate the relationship between peripheral blood
immune cell traits and AD risk. GWAS data for peripheral
immune cell traits, including 731 immune traits, were collected
from 3,757 general populations from the east-central coast of
Sardinia, Italy, in a population-based prospective study (Orrù et al.,
2020). GWAS summary data for outcomes were obtained from the
European Alzheimer’s and Dementia Biobank (EADB), including
85,934 cases (39,106 clinically diagnosed cases, 46,828 proxy
cases) and 401,577 controls (Bellenguez et al., 2022). Additionally,
use GWAS summary data from the International Genomics of
Alzheimer’s Project (IGAP) as a validation cohort, comprising
17,008 individuals with an AD diagnosis and 37,154 healthy
individuals (Lambert et al., 2013).

2.2 Instrument selection

Three basic assumptions are required to screen unbiased
and eligible instrumental variables in MR studies exploring

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1403077
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1403077 June 5, 2024 Time: 11:18 # 3

Zuo et al. 10.3389/fnagi.2024.1403077

the association between peripheral blood immune cell traits
and AD risk as follows (Glymour et al., 2012; Hemani et al.,
2018): (1) correlation hypothesis: genetic variants as instrumental
variables are intimately associated with risk factors of interest; (2)
independence hypothesis: genetic variants are not associated with
any confounding factors affecting exposure-outcome associations;
and (3) exclusion hypothesis: genetic variants affect outcomes
exclusively through risk factors. Accordingly, in compliance with
the above assumptions, we performed the following filtering
measures (Figure 1). First, the correlation hypothesis of MR was
confirmed by screening single nucleotide polymorphisms (SNPs)
that were significantly associated with peripheral immune cell traits
from the GWAS summary data using p < 5E−08. Second, to
ensure that the genetic variants of the IVs used were independent,
we clustered the extracted SNPs based on the 1000 Genomes
Project linkage disequilibrium (LD) structure. We clumped SNPs
(R2 < 0.001 with any other associated SNP within 1,000 kb) and
retained the SNPs with the lowest P-values. Third, we extracted
these instrumental variables from the GWAS AD summary data.
If no SNPs in the GWAS summary data of AD satisfied the
above criteria, proxy SNPs strongly correlated with exposure
(R2 > 0.8) were selected. Fourth, we harmonized the dataset to
align the effect alleles for exposure and outcome (Hartwig et al.,
2016). Additionally, we calculated F-statistics for each exposure to
quantify the strength of the instrumental variables and then elected
those traits with F-statistics > 10 (Burgess and Thompson, 2011;
Pierce et al., 2011).

2.3 Power calculation

Power analysis of each exposure was performed using a web
tool,1 with a Type-I error rate a = 0.05 and the estimated OR from
the IVW method (Brion et al., 2013; Burgess, 2014).

2.4 Sensitivity analyses

Inverse variance weighting (IVW) was chosen as the main
method of two-sample MR analysis to explore the causal
relationship between exposure and outcome (Woolf et al., 2022).
The Weighted median (Bowden et al., 2016) and MR-Egger
regression methods (Bowden et al., 2015) were complementary.
Subsequently, we performed a sensitivity analysis to examine the
robustness of the results. The MR-Egger intercept determined
whether the results had horizontal multiplicity, indicating the
presence of horizontal multiplicity when the intercept significantly
deviates from zero. We used Cochran’s Q statistic (Bowden et al.,
2019) to test for heterogeneity in IV, with a Q-value > 0.05
indicating no heterogeneity among the instrumental variables.
In addition, we used the MR pleiotropy residual sum and
outlier (MR-PRESSO) method to detect horizontal pleiotropy
(MR-PRESSO global test) (Verbanck et al., 2018). If horizontal
pleiotropy was detected, horizontal pleiotropy was corrected
using the MR-PRESSO outlier test to obtain unbiased causal

1 https://shiny.cnsgenomics.com/mRnd/

estimates. For exposures with no more than three instrumental
SNPs, pleiotropy analyses were performed using the PhenoScanner
database, querying for other relevant traits found in previously
published GWAS data that influenced the outcome and removing
these SNPs to obtain a robust analysis (Kamat et al., 2019). Leave-
one-out analysis (LOO) was performed to detect the presence
of outliers substantially affected the causal effect. The odds ratio
(OR) was applied to represent causality, for AD is a binary
outcome (Palmer et al., 2011). Since exposure (peripheral immune
cell traits) was repeatedly compared with the outcome (AD),
P-values were corrected via the false discovery rate (FDR) method.
All MR analyses were performed via R software (v.4.1.3). Two-
sample MR analyses were performed using the TwoSampleMR
package (v.0.5.6) and MRPRESSO (v.1.0) (Hemani et al., 2018;
Verbanck et al., 2018).

3 Results

3.1 Overview

Details of the 731 immune traits in the peripheral blood
analyzed in this study are provided in Supplementary Table 1. The
results of the MR analysis of these immune cell traits are shown in
Supplementary Tables 2–5. Based on IVW as the primary analysis
method for MR, after FDR correction, we identified 14 remarkable
results with protective effects on AD, as shown in Figure 2 and
Table 1, of which six traits showed significant negative relationships
in both the IVW method and the weighted median method. No
proxy SNPs were used in our analysis. The minimum value of
the calculated F-statistic for the instrumental variables was above
60, indicating that all selected IVs represent robust instrumental
variables. Additionally, among the six protective immune traits
mentioned, we selected specific SNPs based on a threshold of
p < 5E−08, LD window of 10,000 kb, and R2 = 0.001, which map to
a total of eight genes encoding proteins (Supplementary Table 9).
Among them, FCGR3A, MICB, IL2RA, and NEK7 encode proteins
involved in immune regulation and inflammation, suggesting their
potential as modulatory genes.

3.2 Regulatory T cell-related protective
traits and AD

In the current study, we identified seven regulatory T (Treg)
cell–associated immune traits that are protective against AD based
on the IVW method. The association statistics are summarized
in Table 1. The results demonstrated that after FDR correction,
the following four phenotypes associated with Treg cells showed
remarkable protective effects against AD in both IVW analysis and
Weighted median analysis (Supplementary Figure 1): (1) CD25++
CD45RA- CD4 not regulatory T cell % T cell in IVW analysis
method (OR [95% confidence interval (CI)] = 0.96 [0.95, 0.98],
adjusted P = 1.17E−02) and Weighted median analysis (OR [95%
CI] = 0.96 [0.94, 0.98], adjusted P = 2.40E−02); (2) CD25++
CD45RA- CD4 not regulatory T cell % CD4+ T cell in IVW analysis
method (OR [95% CI] = 0.97 [0.96, 0.99], adjusted P = 3.77E−02)
and Weighted median analysis (OR [95% CI] = 0.97 [0.94, 0.99],
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FIGURE 1

Flow chart for statistical analysis. Flow chart for the Mendelian randomization analysis exploring effects of peripheral blood immune traits on
Alzheimer’s disease. SNP, single nucleotide polymorphism; IVW, inverse variance weighted; MR-PRESSO, Mendelian Randomization Pleiotropy
RESidual Sum and Outlier.

adjusted P = 2.40E−02); (3) Secreting CD4 regulatory T cell % CD4
regulatory T cell in IVW analysis method (OR [95% CI] = 0.98
[0.97, 0.99], adjusted P = 7.10E−03) and Weighted median analysis
(OR [95% CI] = 0.98 [0.96, 0.99], adjusted P = 2.40E−02); and (4)
Activated & secreting CD4 regulatory T cell % CD4 regulatory T cell
in IVW analysis method (OR [95% CI] = 0.98 [0.97, 0.99], adjusted
P = 7.10E−03) and Weighted median analysis (OR [95% CI] = 0.98
[0.96, 0.99], adjusted P = 2.40E−02). In addition, MR-Egger results
tended to be in the same direction, excepting CD25++ CD45RA-
CD4 not regulatory T cell % CD4+ T cell. The remaining three
Treg cell-associated immunophenotypes (Secreting CD4 regulatory
T cell Absolute Count, Activated & secreting CD4 regulatory T
cell Absolute Count and CD25++ CD45RA- CD4 not regulatory T
cell Absolute Count) were only shown to reduce AD risk by IVW
analysis (Supplementary Figure 1). However, the weighted median
analysis and MR-Egger results trended in the same direction.

Subsequently, extensive sensitivity analyses verified the
causal relationship between Treg cell-related immunophenotypes
(CD25++ CD45RA- CD4 not regulatory T cell % T cell, CD25++
CD45RA- CD4 not regulatory T cell % CD4+ T cell, Secreting CD4
regulatory T cell Absolute Count and Activated & secreting CD4
regulatory T cell Absolute Count) and AD. Sensitivity analysis
based on Cochran’s Q test (Q-value > 0.05) and MR-Egger intercept

(MR-Egger intercept did not significantly deviate from zero and
intercept P-value > 0.05) did not show significant pleiotropy
or heterogeneity (Table 2 and Supplementary Tables 6, 7). In
addition, there was no horizontal pleiotropy in MR-PRESSO
global test (P-value < 0.05). No single SNP significantly
affected the estimated causal effects in the LOO analysis
(Supplementary Figure 2).

3.3 Monocyte-related protective traits
and AD

As shown in Figure 2 and Table 1, after preliminary analysis,
we identified four monocyte-associated immunophenotypes that
showed potentially protective effects against AD. HLA DR++
monocyte % monocyte implied a negative association with AD
risk in both the IVW analysis method (OR [95% CI] = 0.93 [0.89,
0.98], adjusted P = 4.87E−02) and Weighted median analysis (OR
[95% CI] = 0.92 [0.88, 0.97], adjusted P = 2.40E−02), and the
MR-Egger results trended in the same direction (Supplementary
Figure 1). HLA DR on the monocyte, CD14+ monocyte, and
CD14+ CD16- monocyte showed a potential protective effect
against AD only in the IVW analysis (Supplementary Figure 1).
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FIGURE 2

Forest plot showing results from the IVW method to evaluate potential causal associations between 14 protective immune cell traits and Alzheimer’s
disease. IVW, inverse variance weighted; nsnp, the number of single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.

The Weighted median analysis results converged in the same
direction. Nevertheless, the MR-Egger results hinted that only HLA
DR on monocyte tended toward the same direction.

Subsequently, we performed a further sensitivity analysis of
HLA DR++ monocyte % monocyte (Table 2). Cochran’s Q test
(Q-value > 0.05) did not detect heterogeneity (Supplementary
Table 6). Moreover, the MR-Egger regression intercept was
also insignificant, suggesting an absence of horizontal pleiotropy
(Supplementary Table 7). We performed pleiotropy analyses using
the PhenoScanner database and found no other relevant traits of
instrumental SNPs affecting AD.

3.4 Dendritic cell–related and myeloid
cell–related protective traits and AD

After screening, based on the IVW approach, we identified
two protective immune features associated with dendritic cells
and one related to myeloid cells (Figure 2 and Table 1). HLA
DR on myeloid Dendritic Cell was dramatically correlated with
the IVW method (OR [95% CI] = 0.93 [0.89, 0.97], adjusted
P = 1.17E−02) and the Weighted median method (OR [95%
CI] = 0.92 [0.89, 0.95], adjusted P = 8.61E−04); additionally, the
MR-Egger results tended to move in the same direction. CD45
on Immature Myeloid-Derived Suppressor Cells and Plasmacytoid
Dendritic Cell % Dendritic Cell showed some correlation only in
the IVW method.

Subsequently, we conducted an extensive sensitivity analysis
of HLA DR on myeloid Dendritic Cell (Table 2). Cochran’s Q
test (Q-value < 0.001) indicated substantial heterogeneity between
instrumental variables, and then a random effects model (IVW) was
used to estimate the MR effect size (Supplementary Table 6). The
results (P-value < 0.05) suggested that causality existed between
HLA DR on myeloid Dendritic Cell and AD risk. The sensitivity

analysis showed no evidence of heterogeneity or pleiotropy based
on the MR-PRESSO global test and the MR-Egger intercept test,
and the weighted median analysis was also significant.

3.5 Validation analysis

The validation was conducted using AD GWAS data from
IGAP. Select independent and significant SNPs according to the
same criteria, and perform a two-sample MR analysis. Results
indicate that HLA DR on myeloid dendritic cells is statistically
significant in the IVW method (OR [95% CI] = 0.89 [0.84, 0.94],
adjusted P = 7.42E−03) and the Weighted median method (OR
[95% CI] = 0.88 [0.83, 0.93], adjusted P = 4.72E−04) (Table 3,
Supplementary Table 8, and Supplementary Figure 3).

4 Discussion

Utilizing the largest published GWAS of peripheral immune
cell phenotypes to date, we evaluated the causal relationship
between peripheral immune cell traits and AD risk by two-
sample MR analysis. To data this is the most comprehensive
MR study exploring a potential protective causal relationship
between peripheral immune cell traits and AD. Mendelian
randomization analysis uses genetic variants strongly associated
with exposure as instrumental variables to infer causal relationships
between exposure and outcome while avoiding bias from various
confounding factors and reverse causal associations. In the present
study, we identified a total of six peripheral immune phenotypes
significantly associated with a low risk of AD, including four Treg
cell-associated immune phenotypes (CD25++ CD45RA- CD4 not
regulatory T cell % T cell, CD25++ CD45RA- CD4 not regulatory T
cell % CD4+ T cell, Secreting CD4 regulatory T cell Absolute Count
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TABLE 1 Summary of the causal relationships of 14 protective immune cell traits on Alzheimer’s disease (AD) with various Mendelian randomization (MR) methods.

Exposure SNP N IVW Weighted median MR-Egger F statistic

OR (95%CI) P-value
(adjusted)

OR (95%CI) P-value
(adjusted)

OR (95%CI) P-value
(adjusted)

CD25++ CD45RA- CD4 not
regulatory T cell % T cell

5 0.96 (0.95, 0.98) 1.17E−02 0.96 (0.94, 0.98) 2.40E−02 0.99 (0.93, 1.05) 0.96 61.76

CD25++ CD45RA- CD4 not
regulatory T cell Absolute Count

4 0.97 (0.94, 0.99) 4.76E−02 0.96 (0.94, 0.99) 1.02E−01 0.99 (0.93, 1.04) 0.95 66.78

Secreting CD4 regulatory T cell
Absolute Count

6 0.97 (0.95, 0.99) 1.13E−02 0.97 (0.95, 0.99) 7.13E−02 0.99 (0.96, 1.02) 0.95 61.34

Activated & secreting CD4 regulatory
T cell Absolute Count

6 0.97 (0.96, 0.99) 1.68E−02 0.98 (0.96, 1.00) 1.09E−01 0.99 (0.96, 1.02) 0.95 60.37

CD25++ CD45RA- CD4 not
regulatory T cell % CD4+ T cell

6 0.97 (0.96, 0.99) 3.77E−02 0.97 (0.94, 0.99) 2.40E−02 1.00 (0.96, 1.05) 0.96 71.30

Secreting CD4 regulatory T cell %
CD4 regulatory T cell

11 0.98 (0.97, 0.99) 7.10E−03 0.98 (0.96, 0.99) 2.40E−02 0.98 (0.96, 1.00) 0.53 110.27

Activated & secreting CD4 regulatory
T cell % CD4 regulatory T cell

15 0.98 (0.97, 0.99) 7.10E−03 0.98 (0.96, 0.99) 2.40E−02 0.98 (0.96, 0.99) 0.53 107.06

HLA DR++ monocyte % monocyte 3 0.93 (0.89, 0.98) 4.87E−02 0.92 (0.88, 0.97) 2.40E−02 0.94 (0.68, 1.31) 0.96 118.81

HLA DR on CD14+ CD16- monocyte 9 0.96 (0.93, 0.98) 3.70E−02 0.96 (0.93, 1.00) 2.02E−01 1.04 (0.90, 1.19) 0.95 343.53

HLA DR on CD14+ monocyte 8 0.95 (0.93, 0.98) 3.77E−02 0.96 (0.93, 1.00) 2.22E−01 1.04 (0.89, 1.20) 0.95 318.91

HLA DR on monocyte 8 0.96 (0.94, 0.98) 7.10E−03 0.97 (0.94, 0.99) 9.78E−02 0.99 (0.93, 1.04) 0.95 251.56

Plasmacytoid Dendritic Cell
%Dendritic Cell

2 0.88 (0.81, 0.95) 4.00E−02 NA NA NA NA 168.98

CD45 on Immature Myeloid-Derived
Suppressor Cells

2 0.93 (0.91, 0.96) 5.17E−03 NA NA NA NA 166.65

HLA DR on myeloid Dendritic Cell 10 0.93 (0.89, 0.97) 1.17E−02 0.92 (0.89, 0.95) 8.61E−04 0.84 (0.76, 0.93) 0.53 394.40

AD, Alzheimer’s disease; MR, Mendelian randomization; IVW, inverse variance weighted; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; NA, not applicable.
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TABLE 2 Results of sensitivity analysis for traits that showed significant correlations in both IVW and Weighted median methods.

Exposure Cochran’s
Q

MR-Egger MR-PRESSO global test

Intercept P-value RSS P-value

CD25++ CD45RA- CD4 not regulatory T cell %T cell 0.646 −2.72E to −02 0.411 4.17 0.65

CD25++ CD45RA- CD4 not regulatory T cell %CD4+ T cell 0.544 −3.79E to −02 0.220 6.52 0.56

Secreting CD4 regulatory T cell %CD4 regulatory T cell 0.879 −2.23E to −03 0.790 7.34 0.88

Activated & secreting CD4 regulatory T cell %CD4 regulatory T
cell

0.653 4.22E−03 0.515 12.86 0.67

HLA DR++ monocyte % monocyte 0.289 −2.34E to −03 0.964 NA NA

HLA DR on myeloid Dendritic Cell 7.92E−05 6.51E−02 0.072 116.00 0.002

IVW, inverse variance weighted; MR-PRESSO,MR pleiotropy residual sum and outlier; RSS, residual sum of squares; NA, not applicable.

and Activated & secreting CD4 regulatory T cell Absolute Count),
one monocyte-associated phenotype (HLA DR++ monocyte %
monocyte), and one belonging to a dendritic cell subpopulation
(HLA DR on myeloid Dendritic Cell).

Our research discovered four immune phenotypes linked to
Treg cells (CD25++ CD45RA- CD4 not regulatory T cell % T
cell, CD25++ CD45RA- CD4 not regulatory T cell % CD4+
T cell, Secreting CD4 regulatory T cell Absolute Count and
Activated & secreting CD4 regulatory T cell Absolute Count),
suggesting that Treg cells may play a significant protective role
in the progression of AD. Interestingly, different activity states of
Treg cells were observed. Treg cells can be divided into activated
(CD25+++ CD45RA-), resting (CD25++ CD45RA +), and
secreting (CD25++CD45RA -) types according to the cell surface
markers (Miyara et al., 2009), each exhibiting distinct functions.
Our findings indicate that the Treg cell immunophenotypes
contributing to protection in AD are predominantly characterized
by the secreting and activated types. Activated Treg cells are
generated largely from resting Tregs after exposure to self-antigens
and express high levels of CD25 (Lykhopiy et al., 2023). CD25,
encoded by the gene interleukin (IL)2 receptor alpha, is the α-
chain of the IL-2 receptor, a component of the receptor complex.
It mediates the effects of IL-2 and efficiently uses IL-2 to promote
the survival and proliferation of Treg cells, thereby maintaining an
anti-inflammatory environment in the immune system. Biological
evidence from an experimental AD mouse model has explained
that IL-2 triggers the activation of Tregs and astrocytes in APP/PS1
mice and increases the recruitment of astrocytes around amyloid
plaques, reducing Aβ and slowing the development of AD (Alves
et al., 2016). Secreting Treg cells can release a large number
of cytokines such as IL-10 and transforming growth factor-beta
(TGF-β) to suppress inflammatory responses, thereby protecting
neurons from damage (Sanjabi et al., 2009; Saraiva and O’Garra,
2010; Kapoor and Chinnathambi, 2023). Research indicates that
reduced production of anti-inflammatory TGF-β heightens the risk
of developing AD in individuals with mild cognitive impairment
(Tarkowski, 2003). Caraci et al. (2011) found that compared to
healthy elderly individuals, AD patients have lower levels of TGF-
β1 in their plasma and serum, and a reduced release of TGF-β1 by
circulating peripheral blood cells (Caraci et al., 2011).

Monocytes play a key role in the pathogenesis of AD
through immune regulation, inflammatory responses, and the
elimination of Aβ. Our research demonstrates a significant negative

correlation between the immunophenotype HLA DR++ monocyte
% monocyte and AD risk. HLA DR is a major histocompatibility
complex (MHC) class II molecule, primarily involved in antigen
presentation in the immune system. Enhanced expression of
HLA DR++ indicates increased antigen-presenting capabilities of
monocytes. In the progression of AD, monocytes might facilitate
more efficient clearance of Aβ. A recent study reported that in an
APP/PS1/Cx3cr1 AD mouse model, patrolling monocytes could
climb up the lumen wall of Aβ-positive veins and target Aβ

clearance from the venous lumen, as observed by in-vivo two-
photon microscopy (Michaud et al., 2013). The selective removal
of these monocytes resulted in a significant increase in Aβ load
in the brain of the APP/PS1 mice. A recent MR study found an
inverse association between monocyte count and AD risk, and our
MR analysis obtained consistent results (Luo et al., 2022).

MR analysis indicates that HLA DR on myeloid Dendritic Cell
is significantly associated with a reduced risk of AD, with similar
results obtained in the validation cohort. Dendritic cells (DCs) can
be divided into plasma cell-derived (CD123+) and myeloid-derived
(CD11c+) according to their origin (Ziegler-Heitbrock et al., 2010).
Myeloid DCs (mDCs) are professional antigen-presenting cells
that present antigens to T cells via HLA DR molecules, activating
a specific immune response (Banchereau et al., 2000). In AD,
higher HLA DR expression in mDCs may enhance T-cell mediated
immune clearance against Aβ. This partially explains why high
expression of HLA DR in mDCs can reduce the risk of developing
AD. Furthermore, research conducted by Ciaramella et al. (2016)
showed that in the peripheral blood of AD patients, the number of
mDCs was specifically reduced compared to healthy controls while
the plasma DC (pDC) subpopulation remained unchanged, this
suggests that the reduction in blood mDCs may be related to the
progression of AD. Our findings of a negative association between
peripheral mDCs with the high expression of HLA DR and AD risk
likely reinforce the innovative idea that blood mDC represents a
potential participant in AD from an epidemiological perspective.

Although in the validation cohort, we only observed a
significant protective effect of HLA DR on myeloid Dendritic Cell
on AD, we believe that this may be related to the following factors.
Firstly, there is a significant disparity in the sample sizes of the two
AD cohorts. Compared to IGAP’s GWAS summary data, the EADB
cohort offers stronger statistical power, facilitating the detection
of subtle associations. Secondly, Moreover, genetic diversity and
stratification across populations could result in variations in
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TABLE 3 Mendelian randomization (MR) estimates of HLA DR on myeloid
dendritic cells on risk of Alzheimer’s disease (AD) using the International
Genomics of Alzheimer’s Project (IGAP).

Method N(SNPs) Odds ratio
(95%CI)

P-value
(adjusted)

Inverse variance
weighted

5 0.89 (0.84, 0.94) 7.42E−03

Weighted median 5 0.88 (0.83, 0.93) 4.72E−04

Simple mode 5 0.90 (0.77, 1.04) 9.60E−01

Weighted mode 5 0.87 (0.82, 0.93) 4.24E−01

MR-Egger 5 0.78 (0.67, 0.92) 9.96E−01

AD, Alzheimer’s disease; IGAP, International Genomics of Alzheimer’s Project; MR,
Mendelian randomization; SNP, single nucleotide polymorphism; CI, confidence interval.

genetic risk expression. Furthermore, the EADB dataset comprises
approximately 21 million SNPs, in contrast to about 7 million SNPs
in the IGAP dataset. Variations in SNP coverage and genotyping
approaches between the datasets might impact the intensity and
identification of genetic associations.

The limitations of our study are as follows: (1) the GWAS data
on exposure used in this study were derived from the Sardinian
population only, and although the Mediterranean Sardinian
population has been exhaustively used for genetic analysis, some
of the immune traits and associations reported may be driven by
genetic variants that are more common in the Sardinian population
than elsewhere, and GWAS data on peripheral blood immune
phenotypes from other ethnic groups may be needed to validate
the results further. (2) The sample size of GWAS data for exposure
and the number of SNPs obtained was comparatively tiny. Future
studies using more extensive GWAS databases for immune cell
traits are needed. However, in our study, the F-statistic value was
used as the condition to measure the strength of instrumental
variables, and only the instrumental variables with F > 10 were used
in the subsequent analysis. Therefore, our findings were considered
reliable. (3) The results based on the GWAS data of European
ancestry may not apply to other ethnic populations and require
further validation by GWAS data of other ethnic groups.

5 Conclusion

In summary, we primarily identified several
immunophenotypes in Tregs, monocytes, and mDCs that
were associated with an appropriate reduction in AD risk.
Our work further validated the idea that peripheral immune
disorders play an important role in the progression of AD, and
these immunophenotypes may become potential biomarkers
for predicting disease progression, providing new insights into
potential immunotherapy targets for AD.
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