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Alzheimer’s disease (AD) is one of the most common neurodegenerative

diseases, and the most prevalent form of dementia. The main hallmarks for

the diagnosis of AD are extracellular amyloid-beta (Aβ) plaque deposition

and intracellular accumulation of highly hyperphosphorylated Tau protein as

neurofibrillary tangles. The brain consumes more oxygen than any other organs,

so it is more easily to be affected by hypoxia. Hypoxia has long been recognized

as one of the possible causes of AD and other neurodegenerative diseases, but

the exact mechanism has not been clarified. In this review, we will elucidate

the connection between hypoxia-inducible factors-1α and AD, including its

contribution to AD and its possible protective effects. Additionally, we will

discuss the relationship between oxidative stress and AD as evidence show that

oxidative stress acts on AD-related pathogenic factors such as mitochondrial

dysfunction, Aβ deposition, inflammation, etc. Currently, there is no cure for AD.

Given the close association between hypoxia, oxidative stress, and AD, along

with current research on the protective effects of antioxidants against AD, we

speculate that antioxidants could be a potential therapeutic approach for AD

and worth further study.

KEYWORDS

Alzheimer’s disease, hypoxia, HIF-1α, oxidative stress, Aβ, mitochondrial dysfunction,
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1 Introduction

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases, and
the most prevalent form of dementia. It usually manifests as a gradual decline in episodic
memory and cognitive abilities, leading to impairments in language, visuospatial skills,
and often behavioral disturbances like apathy, aggression, and depression (Høgh, 2017;
Porsteinsson et al., 2021). The main neuropathological criteria for the diagnosis of AD
are extracellular amyloid-beta (Aβ) plaque deposition and intracellular accumulation of
highly hyperphosphorylated Tau protein as neurofibrillary tangles (Long and Holtzman,
2019). As the population ages, the incidence of AD continues to rise (Weller and Budson,
2018). According to Alzheimer’s Disease International the prevalence of dementia is about
50 million people worldwide, and is predicted to more than triple by 2050 as the population
ages (Lane et al., 2018; Scheltens et al., 2021). Over the next few years, there’s an anticipated
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spike in dementia prevalence, particularly in low and middle
income countries, aligning with the rising incidence of
cardiovascular disease, hypertension, and diabetes, while on
the contrary, emerging evidence indicates a decline in dementia
incidence in high-income countries, although the evidence
supporting a decrease in prevalence is less convincing (Lane et al.,
2018; Scheltens et al., 2021). In the United States, unpaid dementia
caregiving was valued at US$346.6 billion in 2023 and may exceed
US$600 billion in 2050 which results in great societal burden (Lane
et al., 2018; Alzheimer’s Association, 2024). AD is a heterogeneous
disease with a complicated pathophysiology. Mounting evidence
show that AD is 60%∼80% dependent on heritable factors and
there are several hypothesizes such as the amyloid and neuro-
inflammation hypothesis (Liu et al., 2019). Hypoxia is also believed
to have a tight connection with AD. Our brain consumes 20% of
the oxygen and maintains a continually active state relying on the
oxygen (Bailey, 2019). As a result of the high energy-consumption
of the brain, it is more likely to be influenced by hypoxia than any
other organ. Neurons, as the basic functional unit of the brain,
are also likely to be influenced by hypoxia as they contain low
levels of glutathione which plays crucial roles in the antioxidant
defense system and the maintenance of redox homeostasis in
neurons (Aoyama, 2021). Since the 19th century, people realized
that hypoxia can lead to neurological consequences (Burtscher
et al., 2021). There are evidences showing that hypoxia has a tight
connection with AD. Studies show that the risk of AD increases
a lot after persistent systemic hypoxia or stroke (Vijayan and
Reddy, 2016; Sriram et al., 2022) and reduced oxygen supply has
also been observed in both AD pathology and the aging process
(Adeyemi et al., 2021). As the underlying molecular mechanisms
connecting hypoxia with AD is still unclear, the involvement of
kynurenine pathway has gained interest. Tryptophan (Trp) is an
essential amino acid as it cannot be produced in human body
and it is a precursor to a number of metabolites like serotonin,
melatonin, and niacin as well as neurotransmitters (Mohapatra
et al., 2021). The kynurenine pathway is one of the three major
pathways of Trp metabolism which metabolizes 90% of Trp
into kynurenic acid, xanthurenic acid, picolinic acid, quinolinic
acid, and nicotinamide adenine dinucleotide (Cervenka et al.,
2017; Doifode et al., 2021). Studies have found that the several
metabolites of kynurenine pathway including quinolinic acid,
kynurenine and 3-hydroxykynurenine are associated with AD, due
to their involvement in excitotoxic neurotransmission, oxidative
stress, uptake of neurotransmitter, amyloid aggregation, and
inflammation (Wang et al., 2015; Venkatesan et al., 2020; Sharma
et al., 2022). Studies also found that hypoxia can induce the
increase of Trp production thus leading to more metabolites
of kynurenine pathway, thus suggesting a connection between
hypoxia and AD (Mohapatra et al., 2021). However, there are
researches showing that the increase of Trp in hypoxia is due
to the decrease of kynurenine pathway function suggesting that
Trp catabolites are not key of factors in the pathophysiology
of AD (Mohapatra et al., 2021; Almulla et al., 2022). There is
also evidence showing that hypoxia is related with AD. Chronic
intermittent hypoxia (CIH) is a feature of obstructive sleep apnea
(OSA). Recent studies on OSA compared the serum levels of Aβ

proteins and tau proteins in 46 cognitively normal OSA patients
and 30 healthy controls: the results showed that patients with
OSA had significantly higher median serum levels of Aβ40, Aβ42

and total tau than controls. One study also found that Aβ level
are associated with the changes in sleep architecture, specifically,
rapid eye movement sleep was negatively correlated with Aβ

proteins. Another study on APP/PS1 mice (an animal model of
AD) examined the effects of CIH on cognition and hippocampal
function and found that CIH induced long-term potentiation
dysfunction of the hippocampus in APP/PS1 mice as they found
the decrease of N-methyl-D-aspartic acid receptor (NMDAR) NR1
subunit and postsynaptic density 95 (PSD95) in the hippocampus
of APP/PS1 mice after CIH treatment (Li and Ye, 2024). NMDAR
is a type of ionotropic glutamate receptor found in nerve cells while
PSD95 is a scaffolding protein found in the post-synaptic density
of neurons. They are both crucial for synaptic plasticity, learning,
and memory processes in the brain. These results suggest that CIH
is related to the AD (Bhuniya et al., 2022).

As the accurate pathogenesis of AD is still unknown, a good
understanding of the relationship between hypoxia and AD can
help us know more about this disease and help discover potential
therapeutic approaches for it. In this review, we focus on the
relationship between hypoxia-inducible factors-1α (HIF-1α) with
AD as well as the link between oxidative stress and AD.

2 HIF-1α is an essential factor in AD
onset

2.1 Structure and function of HIF-1α

Hypoxia-inducible factors (HIFs) are transcription factors
consisting of α and β subunits that regulate cellular reactions to
low oxygen levels. The latter is a constructive subunit which forms
a heterodimeric complex with the former, while the former is an
oxygen-sensitive subunit, thus, the transcriptional activity of HIF-
1 is primarily regulated by the levels of HIF-1α protein (Forsythe
et al., 1996; Zagórska and Dulak, 2004; Figure 1).

Three isoforms of HIF-α (HIF-1α, HIF-2α, HIF-3α) have
been identified. Among the three types of HIF-α isoforms,
HIF-1α is involved in the acute hypoxic response associated
with erythropoietin, whereas HIF-2α is associated with the
response to chronic hypoxia (Xie et al., 2019). Under normal
oxygen conditions, HIF-1α undergoes degradation through a
process involving the von Hippel-Lindau (VHL) protein. Prolyl
hydroxylase enzymes (PHDs) are a group of enzymes which can be
found in various tissues and cells throughout the body, including
the liver, kidneys, and heart. They are involved in the modification
of proteins, specifically in the hydroxylation of proline residues.
In normoxia, PHDs are active and hydroxylate specific proline
residues on HIF-1α at P402 and P564. This hydroxylation marks
HIF-1α for recognition by the VHL protein, which is part of an
E3 ubiquitin ligase complex. Upon binding to hydroxylated HIF-
1α, the VHL complex ubiquitinates HIF-1α. This ubiquitination
signals for the proteasomal degradation of HIF-1α, preventing its
accumulation and subsequent activation of HIF-1. This process
is a key regulatory mechanism that ensures HIF-1α is degraded
under normoxic conditions, maintaining cellular homeostasis in
the presence of sufficient oxygen (Yu et al., 2001; Semenza, 2007;
Figure 1). Conversely, under hypoxic conditions, HIF-1 levels
can quickly increase in order to adapt from anoxic condition

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1402774
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-16-1402774 July 13, 2024 Time: 16:38 # 3

Tao et al. 10.3389/fnagi.2024.1402774

(Wang et al., 1995). In low oxygen condition, PHDs are less
active: as a result, HIF-1α is not hydroxylated as extensively. With
reduced hydroxylation and degradation, HIF-1α accumulates in
the cytoplasm, where it stabilizes and can translocate into the
cell nucleus. In the nucleus, HIF-1α forms a complex with HIF-
1β. This heterodimeric complex is the active form of HIF-1. The
HIF-1 complex binds to specific DNA sequences called Hypoxia-
Response Elements (HREs) in the promoter regions of target
genes (Yang C. et al., 2021). CREB-binding protein (CBP) and
p300 are related transcriptional coactivators that play important
roles in regulating gene expression by interacting with a variety
of transcription factors. They possess histone acetyltransferase
activity, which allows them to modify chromatin structure and
promote transcription (Wu et al., 2013). When HIF-1α is stabilized
under hypoxic conditions, the C-terminal transactivation domain
forms a complex with CBP/p300. The latter then acetylates specific
lysine residues on HIF-1α, enhancing its transcriptional activity.
This acetylation event facilitates the recruitment of additional
transcriptional machinery, leading to the transcription of genes
involved in cellular adaptation to low oxygen levels (Figure 1;
Dames et al., 2002; Wu et al., 2013). Finally, under hypoxic
conditions, HIF-1α together with other molecular mediators like
peroxisome proliferator-activated receptor γ coactivator α (PGC-
1α), c-MYC (a protein plays a crucial role in regulating cell
growth, proliferation and apoptosis), SIRT1 (a protein involved
in regulating various cellular processes such as aging, DNA
repair, metabolism, and stress response), and AMPK (an enzyme
that plays a crucial role in cellular energy homeostasis which
is activated in response to low cellular energy levels) become
activated and function as transcription factors, regulating the
expression of genes involved in various adaptive responses (Ham
and Raju, 2017). HIF-1 promotes the cellular adaptation to hypoxia
by activating genes that enhance oxygen delivery. For example,
VEGF, acting as the downstream target gene of HIF-1α, is crucial
in controlling angiogenesis (formation of new blood vessels).
Research indicates that the HIF-1α/VEGF pathway participates
in various pathophysiological processes, including inflammation,
ischemia-reperfusion injury, oxidative stress, and other conditions
associated with angiogenesis or vascular remodeling as well as
tumor immunity (Palazon et al., 2017; Liu et al., 2018; Lin et al.,
2019; Chen et al., 2022). HIF-1α is also involved in the acute
hypoxic response associated with erythropoiesis (Sala et al., 2018;
Xie et al., 2019; Hirota, 2021). Additionally, it stimulates glycolysis,
a process that does not rely on oxygen, providing an alternative
energy source when oxygen availability is limited (Cheng et al.,
2014; Wang et al., 2021).

2.2 HIF-1α in Alzheimer’s disease: friend
or foe?

Amyloid-beta is formed by the sequential cleavage of amyloid
precursor protein (APP) by β-secretases (BACE1) as well as γ-
secretases (Sun et al., 2017) and its accumulation in brain tissue
is now acknowledged as the major pathogenic event in AD (Zou
et al., 2020). BACE1 serves as a pivotal enzyme in APP processing,
linked to the generation of the membrane-bound C-terminal
fragment C99 (APP-C99) and its production. Numerous studies

have highlighted the involvement of BACE1 regulation in AD
pathogenesis, including Aβ accumulation and memory impairment
associated with Aβ (Ohno et al., 2004; Laird et al., 2005). γ-
Secretase is a macromolecular complex that contains four essential
subunits: anterior pharynx-defective 1 (Aph1), nicastrin (NCT),
presenilin enhancer 2 (Pen-2), and its catalytic core presenilin (PS)
(Yang G. et al., 2021). Aβ exists in a variety of species, including
monomers, soluble oligomers, protofibrils, and insoluble fibrils,
which are eventually deposited as senile plaques (Huynh et al.,
2017; Chai et al., 2021). Specifically, Aβ peptides can transform
structurally from monomers into β-stranded fibrils via multiple
oligomeric states. Structured oligomers among different Aβ species
are suggested to be more toxic than fibrils and the identification
of Aβ oligomers has proven challenging due to their diversity
and instability (Lee et al., 2017). Research on the relationship
between hypoxia and Aβ generation has been conducted for a
long time, however, the specific mechanisms remain unclear. We
suggest that HIF-1α may connect them. A number of studies
highlight that hypoxia, through the mediation of HIF-1α, leads
to an increase in BACE1 expression and contributes to elevated
Aβ production which is considered the driving force of AD
according to the amyloid hypothesis, the most accepted theory for
AD pathogenesis (Zhang et al., 2007; Guglielmotto et al., 2009).
In vitro and in vivo studies indicate that hypoxia up-regulates
BACE1 expression through a biphasic mechanism both in vitro and
in vivo. The early post-hypoxic upregulation of BACE1 depends
on the production of reactive oxygen species (ROS) caused by
the sudden interruption of the mitochondrial electron transport
chain, which will be discussed in the next part, while the late
expression of BACE1 is attributed to the activation of HIF-
1α (Guglielmotto et al., 2009). A study by Zhang et al. (2007)
further elucidated that overexpression of HIF-1α leads to elevated
levels of both BACE1 mRNA and protein, while when HIF-1α

is downregulated, BACE1 levels decrease. Meanwhile, this study
also shows that hypoxia treatment after HIF-1α activation does
not further increase the expression of BACE1, suggesting that
hypoxia-induced BACE1 expression is predominantly mediated by
HIF-1α (Zhang et al., 2007). In addition, HIF-1α is able to bind
and activate γ-secretase, thus promoting the production of Aβ

under hypoxic conditions and reduced blood flow in the brain
(Alexander et al., 2022). Another study also showed that HIF-1α

activated BACE1 and γ-secretase through different ways: HIF-
1α transcriptionally upregulates BACE1 and non-transcriptionally
activates γ-secretase for Aβ production (Alexander et al., 2022).
Moreover, HIF-1α also plays a crucial role in regulating Aβ

generation under the influence of other environmental factors
like high-glucose. Specifically, studies have indicated that BACE1
localizes within the lipid raft, and alterations in cholesterol levels
within these rafts could impact BACE1 function, consequently
affecting Aβ generation. This implies that modifications to lipid
rafts induced by hyperglycemia might serve as a potential initiator
of AD pathogenesis. Under high glucose conditions, increased
levels of ROS trigger the activation of HIF-1α and liver X
receptor α (LXRα) which is a key factor regulating intracellular
cholesterol. This stimulation leads to the reorganization of lipid
rafts, thereby enhancing the production of Aβ mediated by BACE1
(Lee et al., 2016).

Tau protein, encoded by MAPT on chromosome 17Q21,
is a microtubule-associated protein (Lou et al., 2023).
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Hyperphosphorylation of Tau leads to its pathological aggregation,
thus eventually promoting the formation of intracellular
neurofibrillary tangles (NFTs). These NFTs, along with Aβ

plaques, are characteristic features of AD (Scheltens et al., 2021;
Figure 2). There is evidence showing that under intermittent
hypoxia conditions, the levels of Tau protein in the serum increase,
indicating a close relationship between hypoxia and Tau protein
(Bhuniya et al., 2022). However, the specific mechanism of how
hypoxia affects tau metabolism remains unclear. A recent study
suggested HIF-1α may play a vital role in tau pathology. Under
conditions of chronic hypoxia, HIF-1α leads to a deficiency
in leucine carboxyl methyltransferase 1 (LCMT1) and protein
phosphatase 2A (PP2A), thereby mediating the abnormal
hyperphosphorylation of Tau protein (Lei et al., 2022). LCMT1
is an enzyme that plays a role in the methylation of the carboxyl
group on leucine residues in proteins. The specific function of
LCMT1 includes regulating the activity of PP2A, a critical enzyme
involved in the regulation of various cellular processes such as cell
division, signal transduction, and metabolism. LCMT1-mediated
methylation of PP2A catalytic subunits enhances the activity
of PP2A, thereby affecting its ability to dephosphorylate target
proteins and modulating cellular signaling pathways (Lei et al.,
2022). The methylation activity of LCMT1 can influence the
phosphorylation levels of Tau protein, thereby regulating the
biological functions of Tau. Specifically, the methylation activity of
LCMT1 may contribute to maintaining the normal physiological
state of Tau protein, preventing its excessive phosphorylation.
However, if LCMT1 function is impaired or disrupted, it may lead
to the abnormal phosphorylation of Tau protein, thus contributing
to the pathogenesis of neurological disorders, such as AD (Sontag
et al., 2013, 2014). Another study conducted on Sprague-Dawley
rats shows that there is a significant increase in the phosphorylated
PP2A and a significant decrease in the methylated PP2A levels in
the rats’ hippocampus after hypoxia treatment. Combined with the
elevated tau protein levels in rats, it can be concluded that hypoxia
can lead to inactivation of PP2A, resulting in hyperphosphorylation
of tau protein and memory deficits (Zhang et al., 2014). However,
there are also studies showing that HIF-1α plays a protective role
in tau pathology in AD. Glucose transporters (GLUTs) are proteins
that facilitate the transport of glucose across cell membranes. They
play a crucial role in glucose uptake, particularly in cells that rely
heavily on glucose for energy, such as neurons. According to Liu
et al. (2008), decreased brain levels of HIF-1α in AD patients
were linked to the downregulation of GLUT-1 and GLUT-3
compared to age-matched controls. This impedes glucose uptake
and metabolism, ultimately resulting in reduced O-GlcNAcylation
and subsequent hyperphosphorylation of tau (Liu et al., 2008). T-2
toxin is a type A trichothecene mycotoxin produced by certain
Fusarium species. It has been regarded as a neurotoxin as it can
enter the brain through the blood-brain barrier. After entering the
brain, T-2 toxin can cause further damage by triggering oxidative
stress, neuroinflammation, and even apoptosis and it can also
induce the rise of phosphorylated tau protein. A study has found
that T-2 toxin can induce the expression of hyperphosphorylated
tau (Zhao et al., 2024). In Zhao et al.’s (2024) study, they found the
level of hyperphosphorylated tau induced by T-2 toxin increased
when HIF-α signaling was inhibited. This suggested that HIF-1α

played a protective role in the T-2 toxin-induced expression of
hyperphosphorylated tau (Zhao et al., 2024). Taken together, we

have sufficient reasons to believe that HIF-1α is associated with tau
pathology in AD, however, the specific mechanism remains unclear
and requires further research.

Inflammation is a pathological process characterized by injury
or destruction of tissues. There is a substantial amount of evidence
indicating that both neuro-inflammation and the inflammation in
periphery are also a significant factor in the development of AD
(Heneka et al., 2015; Ozben and Ozben, 2019; Xie et al., 2021; Lou
et al., 2023). Zhao et al. (2021) found that HIF-1α is implicated in
the inflammatory response and oxidative stress in the condition
of elevated glucose levels and hypoxia. This study observed that
high glucose and hypoxia upregulated HIF-1α expression, while
downregulated HIF-1α decreased the level of inflammation (Zhao
et al., 2021). Astrocytes have been shown to participate in both
innate and subsequent adaptive immune responses (Han et al.,
2021). HIF-1α was identified as a mediator in the transcriptional
regulation of chemokines, specifically monocyte chemoattractant
proteins 1 (MCP-1/CCL2) and 5 (Ccl12), in hypoxic astrocytes
(Mojsilovic-Petrovic et al., 2007). Interleukin-1 (IL-1β) beta is a
mediator that triggers inflammation. Another comparative study
shows that HIF-1α mediates transcriptional activation of IL-1β in
astrocyte cultures which also demonstrates the association between
HIF-1α and inflammation in astrocyte (Zhang et al., 2006). On
the other hand, HIF-1α also plays an important role in the
pathology of neuroinflammation in microglia. A study shows Aβ

exposure initiates immediate microglial inflammation and this
process is proved to rely on the mTOR-HIF-1α pathway (Baik et al.,
2019). These pieces of evidence suggest that HIF-1α is related to
inflammation. Interestingly, the interaction between HIF-1α and
inflammation seems influenced by the degree of inflammation.
A study by de Lemos et al. (2013) revealed that HIF-1α assumes
a significant role in an acute inflammation model induced by pro-
inflammatory TNF-α, IL-1β, and IFN-γ while in a chronic model
of inflammation using an APP/PS1 transgenic mouse model of AD
HIF-1α seems to have no effect. This phenomenon could possibly
be explained by the deactivation of relevant cells following acute
inflammatory responses. In fact, studies indicate that once activated
by acute inflammation, microglial cells enter a state of chronic
tolerance due to extensive defects in energy metabolism and
subsequent attenuation of immune responses, including cytokine
secretion and phagocytosis (Baik et al., 2019).

Despite numerous evidence confirming HIF-1α as a risk
factor in AD, intricately linked to key mechanisms such as
Aβ aggregation, tau phosphorylation, neuroinflammation, some
studies suggest that HIF-1α may exhibit a protective role in
the onset of AD. Desferoxamine (DFO) is a medication used
to treat iron overload in conditions such as thalassemia and
hemochromatosis. Research indicates that DFO has a protective
effect against neurological damage caused by ischemia and hypoxia
(Li et al., 2008). A comparative study suggests that inhibiting
HIF-1α diminishes the protective effect of DFO, indicating
that DFO’s neuroprotection involves the induction of HIF-1α

(Hamrick et al., 2005). Methylene blue (MB) is another drug
with neuroprotective effects. Investigations have shown that, the
nuclear translocation of HIF-1α increased nearly threefold after
MB treatment compared to the control group. This suggests that
its protective effect may be linked to HIF-1α (Ryou et al., 2015).
Due to hypoxia and ischemia being significant risk factors for
various neurological diseases, the protective role of HIF-1α in
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FIGURE 1

The HIF-1α undergoes distinct cleavage processes in normoxia and hypoxia. In normoxia, hydroxylation of two proline residues and acetylation of a
lysine residue within the oxygen-dependent degradation domain prompt its binding to the VHL E3 ligase complex, initiating degradation through the
ubiquitin-proteasome pathway. Conversely, in hypoxia, the HIF-1α subunit attains stability and engages with coactivators like CBP/P300,
orchestrating the regulation of gene expression.

FIGURE 2

In AD, Tau proteins undergo pathological aggregation, leading to the formation of NFTs. These NFT plaques are one of the characteristic features
of AD.

hypoxia and ischemia indirectly suggests its protective effects
in AD and other neurodegenerative disorders. Other studies
also indicate that HIF-1α is a crucial component in several

other neuroprotective pathways. Cardamonin is a chalcone with
neuroprotective activity. Compelling evidence showed that in
middle cerebral artery occlusion-treated mice, cardamonin reduced
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brain injury and stimulated the activation of the HIF-1α/VEGFA
signaling and blocking the HIF-1α/VEGFA signaling with an
inhibitor can reverse such protective effects. This indicates that
HIF-1α is involved in neuroprotective activity (Ni et al., 2022). Due
to the fact that ischemia-reperfusion injury concurrently triggers
neuropathology and gene expression associated with AD, including
the development of amyloid plaques, neurofibrillary tangles, and
hippocampal atrophy, which are crucial for the progression of
AD (Pluta and Ulamek-Koziol, 2021), the protective role of
HIF-1α against ischemia-reperfusion injury indirectly suggests its
protective effects against AD.

3 Oxidative stress and AD

Oxidative stress refers to an imbalance between the production
of ROS and the body’s ability to detoxify them or repair the resulting
damage. ROS are highly reactive molecules containing oxygen that
can damage cells and tissues in the body. Oxidative stress can result
from various factors such as environmental pollutants, toxins, poor
diet, radiation, smoking, and even normal metabolic processes in
the body (Lim and Thurston, 2019). Hypoxia can also lead to
different pathological processes that can eventually develop into
oxidative stress. Hypoxia undoubtedly has a close relationship with
mitochondrial dysfunction as hypoxic condition can promote the
production of ROS, cause damage to mitochondrial membrane
potential (MMP) and mitochondrial DNA (mtDNA) and further
lead to the insufficient energy production. Recent studies on cold
inducible RNA binding protein (Cirbp) suggested that it can rescue
cognitive retardation and dendritic spine injury as Cirbp can reduce
the abnormal expression of PSD95, a vital synaptic scaffolding
molecule, and attenuate hypoxia induced deficiency of energy and
oxidative stress (Zhou et al., 2021; Liu et al., 2022). Cirbp can
also control mitochondrial homeostasis and ATP biogenesis at
hypoxic condition by sustaining the protein levels of respiratory
chain complexes II (SDHB) and IV (MT-CO1) and directly binding
3′UTR of Atp5g3 (Liu et al., 2022). In conclusion, hypoxia is one
of the most important factors leading to oxidative stress as it
can induce unfavorable factors like mitochondrial dysfunction, Aβ

accumulation as well as inflammation. At the same time, hypoxia
can also directly lead to oxidative stress. It is reported that hypoxic
conditions could upregulate HIF-1α expression and HIF-1α can
regulate oxidative stress through HIF-1α/JMHD1A pathway (Zhao
et al., 2021). However, there are also researches showing that
HIF-1α plays a protective role against oxidative stress. Research
showed the expression of mito-HIF-1α, a mitochondrial-targeted
form of HIF-1α, can decrease apoptosis induced by hypoxia
or H2O2 treatment (Li H. et al., 2019). Mito-HIF-1α can also
reduce the production of ROS and the collapse of mitochondrial
membrane potential (Li H. et al., 2019) which means it can protect
mitochondria from oxidative stress and hypoxia.

When oxidative stress overwhelms the body’s antioxidant
defenses, it can lead to damage to proteins, lipids, and DNA,
contributing to various diseases such as cancer, neurodegenerative
disorders, cardiovascular diseases, and aging. As the accurate
pathogenesis of AD is still unknown, oxidative stress is supposed
to play an important role in the pathogenesis of AD and is
supposed to be a potential treatment target for AD. Oxidative

stress is one of the major events involved in AD (Tönnies and
Trushina, 2017; Dumitrescu et al., 2018; Ionescu-Tucker and
Cotman, 2021). Currently, many studies on AD focus on the
degeneration of neuronal cells, which can be caused by several
risk factors, including oxidative stress. The damaged DNA bases,
protein oxidation and lipid peroxidation products in brain after
oxidative stress are sings of AD (Nunomura and Perry, 2020).
Recent studies have found significant differences in 8-OHdG and
8-OHdG/2-dG between patients with mild cognitive impairment
due to AD and normal elderly subjects. Both of 8-OHdG and 8-
OHdG/2-dG are markers of DNA oxidative damage and can be
used to assess the oxidative damage to the DNA (Peña-Bautista
et al., 2019). In addition, oxidative stress also leads to the differences
in protein between AD patients and normal people. Hydroxyl
free radicals are known to convert phenylalanine to the non-
physiological isomers of tyrosine o-tyrosine and m-tyrosine (o-Tyr
and m-Tyr) (Mohás-Cseh et al., 2022). Previous research found
protein oxidation (m-Tyr and o-Tyr) in AD plasma and CSF
samples (Ryberg et al., 2004; Ahmed et al., 2005). Meanwhile,
since 3-nitrotyrosine (3-NT) is a marker of protein oxidation,
there are also studies suggesting using 3-NT as a marker for
early diagnosis of AD (Ryberg et al., 2004). Herpes simplex virus
type-1 (HSV-1), a DNA neurotropic virus, has been considered
a potential etiological agent of AD through inducing incomplete
autophagic response according to previous research (Santana et al.,
2012; De Chiara et al., 2019). Oxidative stress induced by HSV-1
infection may promote the development of AD. Oxidative stress
could significantly enhance HSV-1 infection-mediated intracellular
Aβ accumulation and further inhibit its secretion into extracellular
media (Santana et al., 2013). Additionally, studies found that at
the prodromal stage of AD, there are oxidized RNAs including
mRNA, rRNA, and tRNA have been identified in patients’ brains.
Oxidative stress interferes with both translational machineries and
regulatory mechanisms of noncoding RNAs, especially microRNAs
and leads to retarded or aberrant protein synthesis (Nunomura
and Perry, 2020). As one of the AD central pathological lesions
in brain, NFTs are composed mainly of hyperphosphorylated tau
(Naseri et al., 2019) and oxidative stress has a close relationship
with tau pathology. Early studies found that specific fatty acid
oxidative products could provide a direct link between oxidative
stress mechanisms and the formation of NFTs in AD (Gamblin
et al., 2000). All these evidence show that oxidative stress indeed
takes part in the pathology of AD and oxidative damage of DNA
can be an early marker of AD. Besides the direct connections,
oxidative stress is also linked with AD due to some key events like
Aβ accumulation, inflammation, mitochondrial dysfunction, metal
dysregulation, and protein misfolding. In the next section, we will
explore how the oxidative stress due to factors like mitochondrial
dysfunction, DNA damage, Aβ pathology, and inflammation can
be prodromal to AD.

3.1 Mitochondrial dysfunction and
oxidative stress

Mitochondria play an important role in cells, including ATP
production, intracellular Ca2+ regulation, ROS production, and
cell damage and death (Bhatti et al., 2017; Marín et al., 2020).
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Research has shown that mitochondrial dysfunction is associated
with AD. For example, due to the special open circular structure of
mtDNA, it is highly vulnerable to oxidative damage. ROS leads to
the oxidation of guanosine to form 8-OHdG and results in mtDNA
mutations including base mispairing, random point mutation as
well as deletions (Soltys et al., 2019; Antonyová et al., 2020) and the
mutations in mtDNA are linked with misfolding and aggregation
of Aβ, α-syn and tau, and neuronal apoptosis (Sengupta et al.,
2015; Antonyová et al., 2020). Moreover, the connection between
the impact of mtDNA haplogroups B5a on the onset of AD
and mitochondrial abnormalities under oxidative stress has also
been demonstrated (Bi et al., 2015). Mitochondrial dysfunction
has connection with ROS accumulation. Early-onset Alzheimer’s
disease (EOAD) refers to AD that develops in individuals under
the age of 65. Clinical studies have implied that changes in
mtDNA methylation and transitions (position 5633: T → C;
position 7476T: C → T; and position 15812A: G → A) can
play a significant role in the development of EOAD (Chagnon
et al., 1999). Thus, considering the relationship between AD
and mitochondrial dysfucntion, if there is evidence showing that
mitochondrial dysfunction is related to oxidative stress, we can
infer that AD is also related to oxidative stress.

Mitochondria are the primary site of ROS which are closely
associated with oxidative stress. Therefore, it can be inferred
that mitochondrial dysfunction is related to oxidative stress. ROS
species are the product of one-electron reduction of oxygen
and include singlet oxygen (1O2), superoxides (O2·

−), peroxides
(H2O2), hydroxyl radical (·OH), and hypochlorous acid (HClO)
(Taysi et al., 2019; Sahoo et al., 2022; Figure 3). Complexes I
and III of the mitochondrial respiratory chain are the major
sited of superoxide production (Mailloux and Harper, 2011). As
a by-product of cellular metabolism, ROS has both beneficial and
deleterious effects on our health. On one hand ROS contribute
to the healthy cell function as they play an essential role
in the regulation of growth, apoptosis, autophagy, memory,
blood pressure, cognitive function as well as immune function
(Scherz-Shouval et al., 2007; Oswald et al., 2018; Luo et al.,
2019; Lloberas et al., 2020). Also, recent research showed that
ROS has antimicrobial activity against Gram-positive and Gram-
negative viruses as well as fungi (Dryden, 2018) and play a
role in modulating endoplasmic reticulum and Golgi homeostasis
(Mennerich et al., 2019). However, at high concentrations, ROS are
harmful for living organisms as ROS are included in processes of
many diseases like metabolic disorders, genetic diseases, diabetes,
cancer as well as neurodegenerative diseases. The accumulation of
ROS is related to lipid peroxidation, protein oxidation and DNA
damage which are all features of oxidative stress (Su et al., 2019;
Juan et al., 2021).

Furthermore, oxidative stress can induce damage to
mitochondria through ROS which is characterized by the
cytochrome c (cyt C) release and the increase in mtDNA
fragmentation (Rizwan et al., 2020).

Cytochrome c is a small heme protein associated with the
inner membrane of the mitochondria. It plays a crucial role in the
electron transport chain, transferring electrons between Complex
III and Complex IV. cyt C is closely linked to the production of
ROS in the mitochondria. During the electron transport chain,
electrons are transferred through various complexes, including
cyt C. If the electron transfer process is inefficient, electrons can

prematurely reduce oxygen, leading to the formation of O2·
−,

a type of ROS. Additionally, when cyt C is released into the
cytosol during apoptosis, it can enhance ROS production, which
further contributes to cellular damage and the progression of cell
death (Radi et al., 2014; Cadenas, 2018). Thus, considering cyt
C is one of the important part of mitochondria, we can infer
that mitochondria dysfunction has a connection with oxidative
stress. On the other hand, mtDNA is highly susceptible to ROS
influence due to its attachment with inner membrane and the
lack of protective histones or nonhistone proteins. Evidence shows
that when exposed directly to ROS, the levels of oxidative mtDNA
damage are higher and more extensive compared to nuclear DNA
(Richter et al., 1988). There is also a vicious cycle theory of
mitochondrial ROS production which proposes a self-perpetuating
cycle where mitochondrial dysfunction leads to increased ROS
production. This elevated ROS generation, in turn, causes further
damage to mitochondrial components, exacerbating dysfunction
and ROS production (Bandy and Davison, 1990).

3.2 Aβ and oxidative stress

Alzheimer’s disease is a progressive neurodegenerative
condition characterized by the accumulation of extracellular Aβ

plaques and intracellular neurofibrillary tangles composed of
hyperphosphorylated tau-protein in specific regions of the human
brain, notably cortical and limbic areas. Clinical signs include
memory impairment and deteriorating neurocognitive function.
Dysregulated processing of APP by β-secretases and γ-secretases
results in the generation of Aβ40 and Aβ42 monomers, which
subsequently aggregate to form senile plaques (Soria Lopez et al.,
2019; Tiwari et al., 2019). Given the relationship between Aβ

and AD, and considering the compelling evidence indicating
the involvement of Aβ in oxidative stress, it can be inferred that
oxidative stress is associated with AD.

Amyloid-beta has indeed been proven to be associated with
oxidative stress in AD pathogenesis and progression (Tamagno
et al., 2012; Hilt et al., 2018; Mcdonald et al., 2021), both in vivo
and in vitro investigation.

Electron paramagnetic resonance (EPR), also known as
electron spin resonance (ESR), is a technique which is particularly
useful in studying paramagnetic species, like free radicals (Dikalov
et al., 2018; Sahu and Lorigan, 2020). Aβ1−40 and Aβ25−35
fragments refer to specific shorter protein of the full Aβ

peptide sequence. Studies have found that they participated in
the pathology of AD and related with other neurodegenerative
disorders (Kaminsky et al., 2010; Yang et al., 2020). Spin
trapping experiments conducted by Butterfield et al. (1994)
employing highly purified N-tert-butyl-phenylnitrone (PBN)
revealed that both Aβ1−40 and Aβ25−35 autonomously prompted
the transformation of PBN from its non-paramagnetic nitrone form
to the stable, paramagnetic nitroxide form in phosphate buffered
saline (PBS), and the reaction only achievable through interaction
with a free radical (Butterfield et al., 1994; Hensley et al., 1995).
Comparable to Aβ1−40, Aβ1−42 was likewise demonstrated to
produce an EPR signal within this framework. Protein carbonyl
and 3-NT are indicators of protein oxidation (Campolo et al.,
2020; Akagawa, 2021). Studies in vitro also find Aβ25−35, Aβ1−40,
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FIGURE 3

The mitochondrial respiratory chain involves a series of protein complexes (I–IV) that transfer electrons from NADH and FADH2 to oxygen, thus
creating an electrochemical gradient that pumps protons across the inner mitochondrial membrane. This gradient drives ATP synthesis through ATP
synthase. During this process, molecular oxygen can be partially reduced to form reactive oxygen species (ROS) such as superoxide (O2·

−),
hydrogen peroxide (H2O2), and hydroxyl radicals (HO·), which are eventually converted to water (H2O).

FIGURE 4

Oxidative stress may lead to AD through different pathogenesis including inflammation, metal deposition, mitochondrial dysfunction, and Aβ

accumulation. In turn AD itself may exacerbate oxidative stress. Antioxidant might be an effective treatment for oxidative stress. As oxidative stress
plays an important role in AD, the use of antioxidant molecules is also a potential treatment for AD. Oxidative stress products like 8-OHG could be
diagnostic biomarkers of AD.

and Aβ1−42 were demonstrated to cause notable rises in protein
carbonyls as well as 3-NT in cortical synaptosomes, cultured
hippocampal neurons, primary neuronal cultures, and cultured
astrocytes (Harris et al., 1995a,b; Yatin et al., 1998). When it
comes to in vivo researches, studies suggest that Aβ increases the
generation of ROS in neurons through activation of the NADPH
oxidase. Moreover, Aβ induces mitochondrial depolarization
through calcium overload and free radical production, which can

ultimately lead to oxidative damage and trigger cell death via
the opening of the mitochondrial permeability (Angelova and
Abramov, 2017; Chauhan and Chauhan, 2020). AD patients show
an abnormal level of brain metals including copper, zinc, iron,
calcium, and aluminum (Tong et al., 2018; Huat et al., 2019;
Mcdonald et al., 2021; Peng et al., 2021; Plascencia-Villa and Perry,
2021), the incorrect accumulation of the metal in different brain
regions induces oxidative stress (Wang et al., 2020). Evidence
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indicate that Aβ plays a significant role in metal-induced oxidative
stress in AD patients. The binding of iron to Aβ can induce
misfolded Aβ aggregating, leading to the formation of neurotic
plaques and can also increase neurotoxicity of Aβ (Rogers et al.,
2019). At the same time Aβ can be a pro-oxidant, and when it is
complexed with copper or iron, it can produce ROS (H2O2) by
redox activity and causes oxidative damage to protein and lipid
(Greenough et al., 2013; Wang et al., 2020). Different mentals may
have distinct roles in AD pathology. The role of copper as a risk
factor for AD has been confirmed to promote the aggregation
of Aβ in vitro. Additionally, copper enhances APP translation
via the 5′ untranslated region (5′ UTR) of mRNA in SH-SY5Y
cells, and increases amyloidogenic processing and the expression of
related pro-inflammatory cytokines (such as MCP-5) in Alzheimer’s
APP/PS1 double transgenic mice (Yang et al., 2019). Zinc, on the
other hand, performs a protective effect as zinc can exchange with
copper in the Aβ-copper complex and protect cells from oxidation
(Vašák and Meloni, 2017). Studies have found that antioxidants can
improve AD symptoms by alleviating oxidative stress, and Aβ is
involved in this process. Nobiletin is a bioflavonoid isolated from
citrus fruits peels with anti-oxidative function. In a study, rats
were treated with nobiletin after bilateral intrahippocampal (CA1
subfield) injection of Aβ1−40. Research found that mice treated
with nobiletin performed better in behavioral observations and
memory performance compared to the control group. Nobiletin
treatment was also associated with lower hippocampal levels of
ROS and partial reversal of superoxide dismutase (SOD) activity
(Ghasemi-Tarie et al., 2022). These findings indicated that nobiletin
prevents Aβ1−40-induced AD via the inhibition of oxidative
stress. N-adamantyl-4-methylthiazol-2-amine (KHG26693) is a
new thiazole derivative and was reported that it effectively
inhibits Aβ-induced oxidative damage in primary cortical neuron
cultures (Cho et al., 2016). In a recent study, malondialdehyde
(sign of lipid oxidation) and protein carbonyl (sign of protein
oxidation) levels increased in the Aβ-treated group and were
significantly downregulated by KHG26693 treatment. Meanwhile
KHG26693 significantly decreased Aβ-induced ROS generation by
47% compared to the control group (Kim et al., 2017). These results
illustrate that KHG26693’s protection against Aβ-induced oxidative
stress stems from its ability to restrain the excessive generation
of ROS triggered by Aβ. Other antioxidants like benzothiazole,
azelnidipine, engeletin, adenosine, and epigallocatechin gallate
have the similar effect of ameliorating Aβ-related oxidative stress by
different pathways including Keap1/Nrf2 pathway, NFκB pathway,
and ERα pathway, etc and have a potential therapeutic efficacy in
AD (Cifelli et al., 2016; Zhang et al., 2017; Teng et al., 2019; Huang
et al., 2020; Zeng et al., 2022).

The studies here discussed demonstrated that Aβ is associated
with oxidative stress. Therefore, we can infer that oxidative stress is
related to AD due to its role on Aβ production and deposition.

3.3 Inflammation and oxidative stress

Inflammation is a physiological response to harmful stimuli,
such as pathogens, damaged cells, or irritants. It is a protective
mechanism that aims to remove the harmful stimuli and initiate
the healing process. There are two stages of inflammation, acute

and chronic inflammation. While acute inflammation is typically
a short-term and beneficial response, chronic inflammation can
contribute to various diseases, including arthritis, cardiovascular
diseases, and cancer (Hussain and Harris, 2007; Lin and Karin,
2007). Numerous research and studies highlight that both systemic
inflammation and neuroinflammation are tightly connect with the
pathology of AD (Doifode et al., 2021; Twarowski and Herbet,
2023). Specifically, neuroinflammation denotes an inflammatory
reaction occurring within the central nervous system (CNS),
triggered by diverse pathological insults such as infection, trauma,
ischemia, and toxins. This cascade entails the release of pro-
inflammatory cytokines like IL-1β, IL-6, IL-18, and tumor necrosis
factor (TNF), chemokines including C-C motif chemokine ligand
1 (CCL1), CCL5, and C-X-C motif chemokine ligand 1 (CXCL1),
as well as small-molecule mediators like prostaglandins and nitric
oxide (NO) by innate immune cells in the CNS. Microglia and
astrocytes orchestrate this response principally (DiSabato et al.,
2016; Leng and Edison, 2021). Research on neuroinflammation
suggests that microglia, astrocytes, and neurons collaborate to
drive neurodegeneration in a coordinated manner. Studies have
demonstrated that Aβ activates the NF-κB pathway in astrocytes,
leading to heightened complement C3 release. Subsequently,
C3 acts on C3a receptors present on neurons and microglia,
culminating in neuronal dysfunction and microglial activation
(Lian et al., 2015). Conversely, activated microglia have been found
to induce neurotoxic astrocytes by secreting IL-1α, C1q, and TNF.
This interplay between microglia and astrocytes may establish
a positive feedback loop in AD, perpetuating an uncontrolled
and self-amplifying inflammatory response (Leng and Edison,
2021). Additionally, aberrant neuronal-glial communication has
been observed in AD. Under normal circumstances, neuronal-
microglial communication via CD200-CD200R and CX3CL1-
CX3CR1 (microglial receptor) signaling pathways help maintaining
microglial homeostasis. However, reduced expression of CD200,
CD200R, and CX3CR1 in the brains of individuals with AD
suggests a loss of regulatory control over microglial behavior
(Bolós et al., 2017). When it comes to systemic inflammation,
cross-sectional investigations reveal that individuals with cognitive
impairment showed heightened systemic inflammation and
elevated microglial activation compered to cognitively healthy
subjects (Surendranathan et al., 2018). There are also evidences
showing that gut inflammation can affect AD pathology through
gut-brain axis (Abdel-Haq et al., 2019; Doifode et al., 2021).
As discussed earlier, both neuroinflammation and systemic
inflammation are linked to AD. Therefore, demonstrating the
association between inflammation and oxidative stress indirectly
implies a connection between oxidative stress and the occurrence
of AD. Inflammation and oxidative stress seem like two indivisible
parts in a large number of diseases including cardiovascular
diseases, cancer, and AD (Chamorro et al., 2016; Marchev et al.,
2017; Papaconstantinou, 2019; Li et al., 2020; Figure 4). Hypoxia
is a common feature in inflammation and can lead to chronic
inflammation through the activation of NF-κB and multiple
isoforms of HIFs and PHDs (Watts and Walmsley, 2019; Korbecki
et al., 2021). A treatment that may regulate both inflammation
and oxidative stress at the same time is the inhibition of TREM1
(Li Z. et al., 2019). Moreover, mounting evidence suggest that
continued oxidative stress can lead to chronic inflammation by
activating a variety of transcription factors like NF-κB, AP-1, p53,
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HIF-1α, PPAR-γ, β-catenin/Wnt, and Nrf2 (Reuter et al., 2010; Fan
et al., 2013; Korbecki et al., 2021). These transcription factors link
inflammation to diseases through different signaling pathways. For
example, NF-κB and STAT3 are rapidly activated in response to
diverse stimuli, including oxidative stress. Upon activation, they
govern the expression of genes involved in anti-apoptotic functions,
proliferation, and immune responses. Some of these genes overlap,
requiring transcriptional cooperation between the two factors.
The activation and interplay of STAT3 and NF-κB are pivotal
in regulating the interaction between malignant cells and their
microenvironment, particularly with inflammatory and immune
cells infiltrating tumors (Grivennikov and Karin, 2010; Fan et al.,
2013). Metals also play an important role in inflammation. Zinc,
as an essential micronutrient, is involved in both inflammation and
oxidative stress. The lack of Zinc can elevate inflammatory response
as it is involved in the NF-κB pathway (Gammoh and Rink, 2017).
Chronic inflammation manifests through heightened production of
inflammatory cytokines. In Certain conditions like obesity which
correlates with chronic inflammation, individuals with inadequate
zinc intake exhibit reduced plasma and intracellular zinc levels,
coupled with elevated gene expression of IL-1α, IL-1β, and IL-
6, in contrast to those with sufficient zinc intake (Gammoh and
Rink, 2017). As critical participants in inflammation, microglia and
astrocytes can be regulated by ROS as well as by pro-inflammatory
molecules such as MAPK and NF-κB pathway and other pathways
(Park et al., 2015). On the other hand, microglia and astrocytes
can release pro-inflammatory molecules like cytokines and ROS
(Chen and Zhong, 2014). In addition, microglia and astrocytes
interact with Aβ. The accumulation of neurotoxic Aβ itself can
be regulated by microglia and their receptors as microglia can
phagocyte Aβ (Ennerfelt et al., 2022), while Aβ can activate
both microglia and astrocytes and be deposited in brain thus
leading to ROS production: this in turn may result in oxidative
stress and potentially lead to AD and other neurodegenerative
disease (Chen and Zhong, 2014). A recent study revealed a critical
function of SYK signaling in microglia as it can impede the
development of disease-associated microglia, alter AKT/GSK3β-
signaling and restrict Aβ phagocytosis by microglia (Ennerfelt
et al., 2022). The strong correlation between inflammation and
oxidative stress is further evidenced by studies demonstrating
aggravated inflammatory phenotype in the absence of antioxidant
defense proteins, such as superoxide dismutases, heme oxygenase-
1, and glutathione peroxidases or overexpression of ROS producing
enzymes, for example, NADPH oxidases (Steven et al., 2019).

4 Antioxidants are potential
treatments for AD

As AD has caused great social burden, there is an urgent need
for new therapeutic targets and approaches. Efforts concentrating
on lowering amyloid beta or hyperphosphorylated Tau protein
have mostly proven unsuccessful in clinical trials. As emerging
evidence shows oxidative stress may be one of the key mechanisms
of AD, the antioxidants have become a potential treatment for AD
(Ionescu-Tucker and Cotman, 2021; Figure 4). Walnuts, one of
the most common antioxidative foods in our daily life, can reduce
oxidative stress by decreasing the generation of free radicals and

has a beneficial effect on memory, learning, anxiety (Chauhan and
Chauhan, 2020). Researches on the APP-transgenic AD mouse
model have shown that mice with a walnut-based diet had an
improvement in antioxidant defense and significant reductions
in free radicals’ levels, lipid peroxidation and protein oxidation
compared with a control diet (Chauhan and Chauhan, 2020).
Recent studies on PTEN-induced putative kinase 1 (PINK1) show
that PINK1 overexpression can reverse the abnormal changes
in mitochondria dynamics, defective mitophagy and decreased
ATP levels in the hippocampus (Du et al., 2017). PINK1
overexpression activates Nrf2 signaling increases the expression of
antioxidant proteins and reduces oxidative damage. PINK1 can
also alleviate tau hyperphosphorylation through PI3K/Akt/GSK3β

signaling (Wang et al., 2022). As an electron and proton carrier,
Coenzyme Q10 (CoQ10) or ubiquinone plays an important
part in mitochondrial bioenergetics and has long been used as
antioxidant and mitochondrial energizer (Garrido-Maraver et al.,
2014; Li X. et al., 2019; Alimohammadi et al., 2021). Recent
studies showed CoQ10 can protect cells from lipid peroxidation-
mediated cell death thus potentially reducing oxidative stress and
conferring neuroprotective properties (Arslanbaeva et al., 2022).
UBIA prenyltransferase domain-containing protein 1 (UBIAD1)
which is responsible for the biosynthesis of non-mitochondrial
CoQ10 has a similar effect like CoQ10 (Arslanbaeva et al., 2022).

5 Conclusion

This review primarily summarizes the impact of hypoxia on
AD focusing on two aspects: HIF-1α and oxidative stress. Hypoxia
is the direct and the most important consequence of both HIF-
1α release and oxidative stress. These two phenomena are linked
to pathological hallmarks of AD like the aggregation of Aβ,
mitochondrial dysfunction and tau accumulation, thus suggesting
that hypoxia is linked to AD. Current research indicates that HIF-
1α has a relationship with Aβ pathology of AD. HIF-1α can increase
Aβ production by regulating the expression of BACE-1. Moreover,
recent studies have found an interaction between HIF-1α and γ-
secretase. HIF-1α not only binds to γ-secretase but also activates
it, promoting the production of Aβ under hypoxic conditions and
reducing cerebral blood flow. Additionally, HIF-1α plays a crucial
role as a key regulator of Aβ generation under the influence of
high glucose and other environmental factors. Specifically, under
high glucose conditions, increased ROS levels trigger the activation
of HIF-1α and LXRα/ABCA1. This stimulation leads to lipid
raft rearrangement, enhancing the production of Aβ mediated by
BACE1. HIF-1α is also associated with tau phosphorylation and
neuroinflammation as it can lead to a deficiency in LCMT1 as well
as PP2A. Also, HIF-1α mediates neuroinflammatory responses in
microglial cells through mTOR-HIF-1α pathways also involving
Aβ. Moreover, compelling studies have provided evidence of a
protective role for HIF-1α in neurodegenerative diseases like AD.
For example, inhibiting HIF-1α diminishes the protective effect
of DFO, which plays a crucial role in managing iron metabolism
disorders and has a protective effect against neurological damage
caused by ischemia and hypoxia (Li et al., 2008). This indicates that
HIF-1α might not only serve as a potential target for AD drugs
but also potentially plays a direct protective role to AD and other
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neurodegenerative disease. However, further investigations are
needed to confirm our hypothesis. Oxidative stress interacts with
various AD risk factors, including mitochondrial dysfunction, Aβ

aggregation, and neuroinflammation. Studies found that protein
oxidation (m-Tyr/Phe and o-Tyr/Phe) in AD plasma and CSD
samples which confirms oxidative stress is associated with the
development of AD. Also, we explored the possibility of using
antioxidants as potential therapeutic agents for AD. Efforts aimed
at lowering amyloid beta or hyperphosphorylated Tau protein have
mostly proven unsuccessful in clinical trials. Emerging evidence
suggests that oxidative stress may be one of the key mechanisms
of AD, therefore, the antioxidants emerge as potential treatments
for AD, thus prompting further investigations.
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