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Background and objectives: Cognitive reserve (CR) is a property of the brain that

allows for better–than–expected cognitive performance relative to the degree

of brain change over the course of life. However, neurophysiological markers

of CR remain under-investigated. Electroencephalography (EEG) features may

function as suitable neurophysiological markers of CR. To assess this, we

investigated whether the dorsal attention network (DAN) and ventral attention

network (VAN) activities, as measured during resting–state EEG, moderate the

relationship between hippocampal volume and episodic memory.

Methods: Participants were recruited as part of the National Center for Geriatrics

and Gerontology–Study of Geriatric Syndromes. Hippocampal volume was

determined using magnetic MRI, and episodic memory was measured using

word lists. After testing the effect of hippocampal volume on memory

performance using multiple regression analysis, we evaluated the interactions

between hippocampal volume and DAN and VAN network activities. We further

used the Johnson–Neyman technique to quantify the moderating effects of

DAN and VAN network activities on the relationship between hippocampal

volume and word list memory, as well as to identify specific ranges of DAN and

VAN network activity with significant hippocampal–memory association.

Results: A total of 449 participants were included in this study. Our analysis

revealed significant moderation of DAN with a slope of β = −0.00012 (95% CI:

−0.00024; −0.00001, p = 0.040), and VAN with a slope of β = 0.00014 (95%

CI: 0.00001; 0.00026, p = 0.031). Further, we found that a larger hippocampal

volume was associated with improved memory performance, and that this

association became stronger as the DAN activity decreased until a limit of

DAN activity of 944.9, after which the hippocampal volume was no longer

significantly related to word-list memory performance. For the VAN, we found

that a higher hippocampal volume was more strongly associated with better

memory performance when VAN activity was higher. However, when VAN

activity extended beyond −914.6, the hippocampal volume was no longer

significantly associated with word-list memory.
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Discussion: Our results suggest that attentional networks help to maintain

memory performance in the face of age-related structural decline, meeting the

criteria for the neural implementation of cognitive reserve.

KEYWORDS

cognitive reserve, electroencephalography, dorsal attention network, ventral attention
network, neurophysiological markers, community-dwelling older adults

1 Introduction

Cognitive reserve (CR) is a property of the brain that allows
for better cognitive performance than could be expected given the
degree of life–course brain changes, brain injury, or disease (Stern
et al., 2023). Typically, measures such as childhood intelligence
quotient (IQ) (Deary et al., 2004), educational history (Bennett
et al., 2003), and occupational exposure (Habeck et al., 2019)
have been examined as proxy markers of CR (Song et al., 2022),
as research has shown that they are associated with improved
cognitive performance, given the same degree of age–related brain
changes (Stern et al., 2023). Overall, higher CR may delay cognitive
decline and the onset of dementia. However, investigation of
proxy CR markers such as childhood IQ, educational history,
and occupational exposure, do not provide information on the
neural implementation of CR. Therefore, in the present study, we
investigated whether differential expression of the dorsal attention
network (DAN) and ventral attention network (VAN) could be
involved in CR by moderating the impact of differences in
hippocampal volume on memory performance.

Prior research has established a close relationship between the
hippocampal volume and memory function (Laakso et al., 2000),
while hippocampal atrophy has been shown to be associated with
decreased verbal memory capacity (Walhovd et al., 2004). A decline
in episodic memory is the most common cognitive function-
related symptom in patients diagnosed with Alzheimer’s disease
(AD) (Albert, 2011). In mild cognitive impairment (MCI), which
is considered as a transitional period between healthy aging and
AD dementia, the subcategory of patients with impaired memory
function (amnestic MCI) has been shown to be at a high risk of
transitioning to AD (Petersen et al., 2001). As such, the assessment
of both immediate and delayed episodic memory is important for
the early detection of cognitive decline (Hamel et al., 2015).

Many studies have investigated brain activation patterns using
resting–state (rs) functional MRI (fMRI). Further, an increasing
number of reports have investigated statistical differences in

Abbreviations: AD, Alzheimer’s disease; CR, cognitive reserve; DAN, Dorsal
attention network; EEG, electroencephalography; eLORETA, exact low–
resolution brain electromagnetic tomography; fMRI, functional magnetic
resonance imaging; ICs, independent components; ICA, independent
component analysis; IQ, intelligence quotient; MCI, mild cognitive
impairment; MMSE, mini–mental state examination; MRI, magnetic
resonance imaging; NCGG–FAT, National Center for Geriatrics and
Gerontology–Functional Assessment Tool; rs–EEG, resting–state EEG; rs–
fMRI, resting–state fMRI; SD, standard deviation; VAN, ventral attention
network

the activity of the dorsal attention network (DAN) and ventral
attention network (VAN) among healthy subjects, subjects with
MCI, and patients with AD, using rs–fMRI (Zhang et al., 2015; Wu
et al., 2022). Further, the trajectory of an individual’s brain network
composition over time, as measured by fMRI, has been shown to
be independent of AD–related genetic risk factors (APOE status),
AD–related pathology (cerebrospinal fluid phosphorylated tau, and
cortical amyloid), and cortical thinning. However, this trajectory
was found to be related to educational history. As such, the
trajectory of an individual’s brain network composition has been
proposed as a unique indicator of brain health in old age (Chan
et al., 2021). Since the development of software to analyze brain
networks using electroencephalography (EEG) (Pascual-Marqui
et al., 2011), it has become possible to easily capture brain networks,
such as the DAN and VAN, using rs–EEG (Aoki et al., 2023;
Caravaglios et al., 2023).

Herein, we tested whether DAN and VAN could serve as
direct neurophysiological markers for CR. DAN and VAN were
measured using an EEG, a technique suitable for assessing
the neural implementation of CR in community–dwelling older
adults because it is non-invasive, relatively inexpensive, has
few restrictions on the measurement location, and does not
require a special license for measurement. Herein, we derived the
DAN and VAN activity levels from rs–EEG, which have been
shown to begin to change in patients with MCI, based on EEG
measured at rest (Aoki et al., 2023; Caravaglios et al., 2023), and
further tested whether they moderate the relationship between
hippocampal volume and episodic memory performance. If so,
it would suggest that specific EEG measures could be considered
as neurophysiological markers of CR. If this were the case, these
easily measured EEG markers could also help to determine the
effectiveness of intervention studies aimed at preventing dementia
by increasing CR.

2 Materials and methods

2.1 Study design

This investigation represents part of an ongoing study by the
National Center for Geriatrics and Gerontology–Study of Geriatric
Syndromes (NCGG–SGS) (Shimada et al., 2022a) to investigate
health promotion for older adults in Aichi prefecture in Japan. The
NCGG–SGS is a cohort study aimed at establishing a screening
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system for geriatric syndromes and validating evidence–based
interventions to prevent them.

2.2 Standard protocol approvals,
registrations, and participant consents

The research protocol was approved by the ethics committee
of the National Center for Geriatrics and Gerontology (Approval
Number: 1440–6). This study adhered to the principles outlined
in the Declaration of Helsinki. All participants provided written
informed consent prior to study inclusion.

2.3 Participants

Our inclusion criteria were as follows: a total of 449 participants
(249 women; mean age: 74.0 years, standard deviation [SD]: 5.5
years; age range: 65–87 years) were recruited from the “Self–
Management Activity Program for the Older” study (Shimada
et al., 2022b). Exclusion criteria were as follows: (1) did not wish
to participate for this study (n = 2409); (2) MRI measurements
contraindicated (such as metals, implants, or stents) (n = 189);
(3) notable or unstable medical conditions (panic disorder or
claustrophobia) (n = 45); (4) significant neurological background
(such as epilepsy, brain tumors, or stroke) (n = 88); (5) missing
questionnaires on MRI measurements (n = 30); and (6) MRI or
EEG measurements have not been taken (n = 386). Of the initial
3,596 participants, 3,147 were excluded based on these criteria (see
Figure 1). The participants’ global cognitive function was evaluated
using the Mini–Mental State Examination (MMSE) (Folstein et al.,
1975). The measures described in the following sections were
assessed in all participants.

2.4 Episodic memory assessments

Cognitive function was assessed using the National Center for
Geriatrics and Gerontology Functional Assessment Tool (NCGG–
FAT) (Makizako et al., 2013). Episodic memory was assessed
using word-list memories I [immediate recognition] and II
[delayed recall]. Immediate recognition and delayed recall involved
the processing of a 10–word target list. To assess immediate
recognition, participants were instructed to memorize 10 words,
each shown for 2s on a tablet PC. Afterwards, a total of 30 words,
including 10 target and 20 distracter words, were shown, and the
participants were asked to identify the 10 target words (word list
memory I). This procedure was repeated thrice. The mean number
of correct answers was calculated using scores ranging from 0 to 10.
Additionally, participants were instructed to recall (write down) the
10 target words after approximately 20 min (word list memory II).
The total number of recalled target words was then recorded. One
point was given for each correctly recalled word completed within
60 seconds, with a maximum score of 10 (Makizako et al., 2013).
We subsequently calculated the episodic memory composite score
using the sum of the immediate and delayed recognition scores
(score range: 0–20) (Bae et al., 2020).

2.5 MRI acquisition and image
processing and analysis

MRI was performed using a 3T Siemens MAGNETOM Trio
Tim scanner (Siemens Medical Solutions, Erlangen, Germany),
equipped with a 12-channel head coil. A three-dimensional T1-
weighted magnetization prepared rapid acquisition gradient echo
sequence was obtained in the sagittal plane with the following
parameters: repetition time = 1800 ms, echo time = 1.99 ms,
flip angle = 9◦, 160 slices with a thickness of 1.1 mm, voxel
size = 1.0 × 1.0 × 1.1 mm, image matrix = 256 × 256 mm,
and field of view = 250 mm. The scans lasted for 4 min and
6 s each. Image processing was performed using FreeSurfer
version 71 on a Linux server running Ubuntu version 20.04
(Fischl et al., 2002). The automated processing pipeline involves
several steps, including elimination of non-brain tissues, Talairach
transformation, segmentation of gray and white matter tissues,
intensity normalization, correction of cortical surface topology,
and deformation of surfaces to enhance the accuracy of tissue
boundary placement. The brain volumes (mm3) of the left and
right hippocampi were computed from this data. Subsequently,
to normalize the hippocampal volume, we divided the combined
volume of the left and right hippocampi by the estimated total
intracranial volume.

2.6 rs–EEG recording and analysis

The participants underwent rs–EEG recordings for 5 min,
during which they were instructed to keep their eyes closed while
remaining awake throughout the recording. Spontaneous cortical
electrical activity was measured using a high-quality mobile dry-
based 19-channel EEG system (CGX Quick-20r; Cognionics Inc.)
and sampled at a rate of 500 Hz. EEG signals were acquired
with electrodes placed according to the International 10–20 system
(specifically, Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8,
T3, T4, T5, T6, Fz, Cz, and Pz) using an ear reference. Electrode
impedances were maintained below 10 k�. Bandpass filtering
ranging from 0.53 to 120 Hz with a 60 Hz notch filter were
applied using Brain Vision Analyzer software 2.2 (Brain Products,
Munich, Germany).

We investigated the EEG data using exact low–resolution
brain electromagnetic tomography (eLORETA), an open–source
academic software available at http://www.uzh.ch/keyinst/loreta.
htm (Pascual-Marqui et al., 2011). The eLORETA technique is
used to estimate the cortical electrical patterns from scalp electrical
potentials recorded at each electrode site. It can accurately identify
any focal source within the brain by employing specific weights
in a weighted minimum-norm inverse solution. While arbitrary
distributions can be localized with reasonable accuracy based on
the principles of linearity and superposition, the current iteration
of eLORETA utilizes 6239 cortical gray matter voxels, with a spatial
resolution of 5 mm within a realistic head model (Fuchs et al.,
2002). The lead field was finally calculated based on anatomical
labels corresponding to Brodmann areas. eLORETA uses a realistic

1 http://surfer.nmr.mgh.harvard.edu
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FIGURE 1

Flow diagram of sample selection.

head model to estimate the focal source, and it is widely used in a
variety of EEG data research papers (Hata et al., 2016; Piano et al.,
2017; Ikeda et al., 2019). The frequency bands under investigation
(delta [2–4 Hz], theta [4–8 Hz], alpha [8–13 Hz], beta [13–30 Hz],
and gamma [30–60 Hz]) aligned with those used in previous studies
(Aoki et al., 2015, 2019; Katayama et al., 2023). Neural activity was
calculated as the global field power value (Pascual-Marqui, 2002).

To identify spectral components that were maximally spatially
independent, we conducted eLORETA–independent component
analysis (ICA) on the eLORETA localization images, following
the method outlined by Aoki et al. (2015, 2023), which
is available in the eLORETA software. The eLORETA–ICA
method decomposes non–Gaussian cortical electrical activity into
independent components (ICs) across various frequency bands.
It is a superior option for EEG data compared to alternative
decomposition methods such as principal component analysis or
correlation analysis (Bell and Sejnowski, 1997; Hyvärinen and
Oja, 2000). eLORETA–ICA is capable of independently analyzing
EEG activity in different frequency bands, allowing simultaneous
and unambiguous identification of signals in multiple frequency
bands (Aoki et al., 2015; Caravaglios et al., 2023). Conventional
structural source localization methods, on the other hand, focus
primarily on spatial resolution and are limited in their ability
to discriminate frequency bands. We used eLORETA’s realistic
head model because we want to apply our analysis method to
future CR measurements in community–dwelling older adults who
do not have MRI measures available. Therefore, we decided to
use eLORETA’s realistic head model instead of estimating the
focal source of EEG data by modeling individual anatomical
structures from MRI measurements. The technical details of
the eLORETA–ICA have been previously detailed by Pascual-
Marqui et al. (2011). The mean localization image was computed
for each participant across different frequency bands using the
respective data that were subsequently concatenated. To discern a
set of maximally independent components within the eLORETA
spectrocortical electrical activity across a cohort of subjects, we

employed group ICA using eLORETA–ICA software (Pascual-
Marqui and Biscay-Lirio, 2011). The data matrix comprised
subjects × (concatenated frequency bands and spatial dimensions
[cortical voxels]). More precisely, the 5–frequency (delta, theta,
alpha, beta, and gamma) source images derived from eLORETA
for each subject were represented in a voxel-by-frequency matrix
format, denoted as Nv × Nf, where Nv = 6239 (total number
of voxels generated by eLORETA) and Nf = 5 (total number
of frequency bands). ICA was subsequently applied to this data
matrix to identify the maximally independent spectrocortical
components (Cardoso, 1989; Cichocki and Amari, 2002). The
ICs were subsequently arranged based on their total power and
depicted using a color coding system for each frequency band.
In this color-coded map, red and blue denote an increase and
decrease in power, respectively, corresponding to enhanced IC
activity. It is crucial to understand that ICA comprises two
components: spectrocortical networks shared across all subjects
and a set of "loadings" (i.e., network activities) unique to
each subject. For an individual subject, these loadings (i.e.,
network activities) were used to quantify the contribution of each
network to their specific spectrocortical activity. Furthermore, after
identification of the spectrocortical networks common across a
broad sample of subjects, these can be applied to the activity
of any new subject, thereby generating loadings (i.e., network
activities) specific to that individual (Aoki et al., 2019). That
is, we used network activities as IC loading in the regression
equation as follows: word list memory ∼ IC loading + covariates
+ interactions.

2.7 Confounding factors

Variables with a potential impact on episodic memory
performance include demographic characteristics, chronic diseases,
physical function, depressive symptoms, and living conditions
associated with cognitive decline in older adults (Livingston et al.,
2020; Collyer et al., 2022). As such, our multiple regression model
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included the following covariates: age, sex, years of education,
heart disease, diabetes, hypertension, hyperlipidemia, number of
medications, walking speed, 15-item Geriatric Depression Scale
(GDS) score (Yesavage, 1988), living alone, and work status.
Information on chronic diseases was obtained by a qualified nurse
through a face–to–face interview with the participants. GDS scores
and information on living alone and work status were assessed in
face–to–face interviews with trained study assistants.

2.8 Statistical analysis

First, we tested the effect of hippocampal volume on memory
performance using multiple regression analysis (“Main Effects”).
Each multiple regression model included word list memory as the
dependent variable and hippocampal volume as the independent
variable, and was adjusted for age, sex, years of education,
heart disease, diabetes, hypertension, hyperlipidemia, number of
medications, walking speed, GDS score, living alone, and work
status as covariates. The DAN and VAN network activities were
subsequently evaluated in the same model after replacing the
hippocampal volume with the DAN and VAN network activity.
We evaluated the interactions between hippocampal volume and
DAN and VAN network activity by adding the hippocampal
volume x DAN and VAN network activity Interaction Terms in
the model (“Interaction Terms”). For analyses where significant
hippocampal volume × DAN and VAN network activity interaction
(p < 0.05) was noted, we performed a post-hoc analysis using
the Johnson–Neyman (JN) method to quantify the moderating
effects of these network activities on the relationship between
hippocampal volume and word list memory, as well as to identify
the relevant ranges of DAN and VAN network activity (Chou et al.,
2023). Overall, we identified a significant hippocampal–memory
association. Finally, Spearman’s rank correlation coefficient was
used to calculate the correlation coefficient between DAN and VAN
activities. For all analyses, the significance level was set at p < 0.05.
All analyses were performed using R version 4.2.2 (R Foundation
for Statistical Computing, Vienna, Austria).

3 Results

3.1 Association between hippocampal
volume and word list memory
performance

Table 1 presents the demographic information of the
participants. Larger hippocampal volume was associated with
better memory performance (β = 0.154 (95% CI: 0.055; 0.253,
p = 0.002, see Table 1).

3.2 eLORETA–ICA

Using eLORETA–ICA to analyze the rs–EEG data of
449 participants, we found that the number of independent
components varied from 11 to 15. eLORETA–ICA does not

TABLE 1 The demographic information of the participants.

Variable Total
(n = 449)

Age, median (IQR) [in year] 73 (69–78)

Sex, woman, n (%) 249 (55.5)

Education, median (IQR) [in year] 12 (12–16)

MMSE score, median (IQR) 29 (27–30)

Heart disease, yes, n (%) 57 (12.7)

Diabetes, yes, n (%) 64 (14.3)

Hypertension, yes, n (%) 170 (37.9)

Hyperlipidemia, yes, n (%) 157 (35.0)

Medication, median (IQR) 2 (1–4)

Walking speed, median (IQR) [in m/sec] 1.24 (1.12–1.36)

GDS score, median (IQR) 2 (1–4)

Living alone, yes, n (%) 76 (16.9)

Work, yes, n (%) 101 (22.5)

Word list memory composite score, median (IQR) 12.3 (9.7–14.3)

Hippocampal volume, median (IQR) [in % eTIV] 0.56 (0.52–0.60)

DAN, median (IQR) [in µV2/M4/Hz] 2566.4
(2225.5–3059.0)

VAN, median (IQR) [in µV2/M4/Hz] 9691.6
(9257.0–10072.2)

IQR, interquartile range; n, Number; MMSE, mini-mental state examination; GDS, 15–item
geriatric depression scale; DAN, dorsal attention network; VAN, ventral attention network;
eTIV, estimated total intracranial volume.

calculate objective criteria or similarity measures to quantify the
goodness of fit. In other words, there is no automatic matching
to a template, based on spatial correlation or overlap. Therefore,
IC selection was performed visually based on spatial maps, as
in previous studies using eLORETA–ICA (Aoki et al., 2015,
2019; Jancke and Alahmadi, 2016; Caravaglios et al., 2023). This
technique has been used in studies of functional brain networks
using independent component analysis. Based on previous
literature (Corbetta and Shulman, 2002; Corbetta et al., 2008;
Tosoni et al., 2023), we selected ICs corresponding to DAN
(IC–14) and VAN (IC–15) from a spatial map of ICs. To ensure the
highest possible reliability of the visual inspection, we also checked
whether the brain regions reported to contribute to VAN and DAN
were included in the corresponding ICs. In addition, we led three
researchers independently select the ICs for DAN and VAN and
compared their level of agreement. Where there were differences
in the selected ICs, they were discussed to reach consensus among
the 3 researchers. Furthermore, we confirmed that the selected
ICs were consistent with the functional properties of DAN and
VAN. Three ICs turned out to represent artifact activities (IC–1,
IC–4, and IC–12). These artifacts included an occipital baseline
shift at the occipital cortex in the delta frequency band (IC–1 and
IC–4) and an electromyogram at the temporal cortex in the gamma
frequency band (IC–12) (Aoki et al., 2015). The mean values of
DAN and VAN activity were 2727.5 ± 743.9 µV2/M4/Hz and
9618.3 ± 734.4 µV2/M4/Hz, respectively. The coefficient (Rs) and
P value (p) of the correlation between DAN and VAN activities
was Rs = −0.79, p < 0.001. The DAN consisted of bilateral beta
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FIGURE 2

Images of the DAN and the VAN in their specified frequency bands were obtained by applying eLORETA–ICA to the EEG data. (A) beta of the DAN
image; (B) gamma of the DAN image; (C) beta of the VAN image; (D) gamma of the VAN image. DAN, dorsal attentional network; VAN, Ventral
attentional network.

TABLE 2 The coordinates of DAN and VAN regions.

Network IC Frequency band X (MNI) Y (MNI) Z (MNI) Brodmann area Structure

DAN 14 Beta 20 −65 65 7 SPL

DAN 14 Beta −20 −60 65 7 SPL

DAN 14 Beta 65 −35 25 40 IPL

DAN 14 Gamma 15 −65 65 7 SPL

DAN 14 Gamma −15 −60 65 7 SPL

VAN 15 Beta −20 60 25 10 MFG

VAN 15 Beta 70 −30 5 42 STG

VAN 15 Beta 35 −65 40 39 IPL

VAN 15 Beta 65 −50 25 40 SMG

VAN 15 Beta 65 −50 20 22 TPJ

VAN 15 Beta 45 −85 −10 19 VC

VAN 15 Gamma −65 −20 −15 21 MTG

VAN 15 Gamma −60 −10 −25 20 ITG

VAN 15 Gamma −10 −100 −5 17 VC

DAN, dorsal attention network; VAN, ventral attention network; ICs, independent components; SPL, superior parietal lobule; IPL, Inferior parietal lobule; MFG, middle frontal gyrus; STG,
superior temporal gyrus; SMG, supramarginal gyrus; TPJ, temporoparietal junction; VC, visual cortex; MTG, middle temporal gyrus; ITG, inferior temporal gyrus.
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and gamma activity in the bilateral superior parietal lobes and
anti-correlated beta activity in the right temporoparietal junction,
while the VAN consisted of beta activity in the right occipital to
inferior parietal lobes and gamma activity in the left occipital and
left inferior temporal lobes (Figure 2 and Table 2).

3.3 DAN and VAN as moderators of the
association between hippocampal
volume and word list memory
performance

Overall, we found a significant moderation of DAN on the
hippocampus-memory association with a slope of β = −0.00012
(95% CI: −0.00024; −0.00001, p = 0.040, see Table 3) and of VAN
with a slope of β = 0.00014 (95% CI: 0.00001; 0.00026, p = 0.031,
see Table 3). Overall, we found no significant main effect of DAN
or VAN, whereas the main effect of hippocampal volume remained
significant in both models.

The JN plot shows the size and significance of the slope of
the hippocampal volume on memory performance for all observed
levels of the moderator variables, DAN (see Figure 3A), and
VAN (see Figure 3B) activity. Overall, the larger the hippocampal
volume, the better the memory performance. However, once
DAN activity exceeded 944.9, hippocampal volume was no
longer significantly associated with word list memory capacity
(see Figure 3A). For VAN, hippocampal volume was no longer
significantly associated with word list memory when VAN activity
was less than −914.6 (Figure 3B).

4 Discussion

Overall, in the present study, we found a significant
association between the hippocampal volume and word-list
memory performance, which is consistent with the results of
previous studies (Laakso et al., 2000; Walhovd et al., 2004).
Further, the DAN and VAN activities detected by eLORETA–ICA
were found to moderate the relationship between hippocampal
volume and word-list memory performance. In particular, a
high DAN activity and low VAN activity at rest supported the
maintenance of episodic memory function in the presence of
a lower hippocampal volume, as they were associated with a
higher degree of independence of memory performance from
hippocampal volume. Therefore, these measures may serve as
neurophysiological markers of CR.

Beta and gamma activities observed in the DAN and VAN
have been suggested to play important roles in attention, working
memory, and long–term memory (Jensen et al., 2007; Marco-
Pallarés et al., 2015). It has further been suggested that DAN
activity is related to memory performance (Kragel and Polyn,
2015); however, we added the novel observation that DAN and
VAN activity moderate the impact of lower hippocampal volume on
memory performance. In a recent report, functional connectivity
has been identified between the hippocampus and the DAN and
VAN networks. It has been reported that these networks may
modulate the hippocampus to switch between external and internal
attention (Poskanzer and Aly, 2023). Therefore, it is possible that

TABLE 3 Main and interaction effects of hippocampal volume and
attentional networks.

Word list memory

Independent
variables

β 95%CI p

Model 1:

Hippocampal volume 0.1543806 [0.0553502,
0.2534111]

0.002

Model 2:

DAN activity values 0.0000029 [−0.0000045,
0.0000103]

0.439

Model 3:

VAN activity values −0.0000035 [−0.0000110,
0.0000040]

0.357

Model 4:

Hippocampal volume 0.2009565 [0.0915488,
0.3103643]

< 0.001

DAN activity values −0.0000024 [−0.0000160,
0.0000113]

0.735

VAN activity values −0.0000012 [−0.0000149,
0.0000125]

0.863

Hippocampal volume x DAN 0.0000043 [−0.0002294,
0.0002380]

0.971

Hippocampal volume x VAN 0.0000374 [−0.0002098,
0.0002846]

0.767

DAN x VAN −0.000000004 [−0.000000010,
0.000000002]

0.222

Hippocampal volume x DAN
x VAN

0.0000001 [−0.000000003,
0.000000219]

0.057

Model 5

Hippocampal volume 0.1552881 [0.0559102,
0.2546660]

0.002

DAN activity values 0.0000023 [−0.0000051,
0.0000096]

0.544

Hippocampal volume x DAN −0.0001227 [−0.0002396,
−0.0000058]

0.040

Model 6:

Hippocampal volume 0.1525955 [0.0536656,
0.2515255]

0.003

VAN activity values −0.0000029 [−0.0000103,
0.0000045]

0.441

Hippocampal volume x VAN 0.0001360 [0.0000130,
0.0002591]

0.031

Model 7:

DAN activity values −0.0000017 [−0.0000154,
0.0000121]

0.813

VAN activity values −0.0000018 [−0.0000156,
0.0000120]

0.800

DAN x VAN −0.000000003 [−0.000000009,
0.000000003]

0.324

DAN, dorsal attention network; VAN, ventral attention network; β: standardized regression
coefficient; CI, confidence interval; p: p-value.

DAN and VAN activity may moderate the effect of hippocampal
volume on word list memory. However, since this study is only
a cross-sectional analysis, reverse causality cannot be ruled out.
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FIGURE 3

Interaction between the hippocampal volume and the DAN and the VAN for word list memory in regression model. (A,B) The Johnson–Neyman plot
indicates the size and significance of the slope of hippocampal volume on word list memory throughout all observed levels of the DAN and the VAN
activity. DAN, dorsal attention network; VAN, ventral attention network.

Activity in the DAN is believed to support the selection of sensory
stimuli based on internal goals or expectations (goal–driven
attention), as well as to link selected sensory stimuli to appropriate
motor responses (Corbetta et al., 2008). The VAN works in the
opposite manner to the DAN, primarily leading the detection
of salient and behaviorally relevant stimuli in the environment
(stimulus–driven attention) (Corbetta et al., 2008). Indeed, one
rs–fMRI study confirmed that VAN connectivity is increased in
the inattentive subtype of attention-deficit hyperactivity disorder
(Sanefuji et al., 2017). It has further been reported that DAN
and VAN interact dynamically to control information processing
(Suo et al., 2021). Specifically, the role of DAN as a “network
gate” that facilitates top–down attention processing by suppressing
VAN and eliminating irrelevant bottom–up information has been
identified (Pini et al., 2022). It has further been shown that the
attention network of patients with amnestic MCI is selectively
degenerated; specifically, functional connectivity is reduced in the
DAN, whereas functional connectivity is maintained or enhanced
in the VAN (Qian et al., 2015; Zhang et al., 2015). It has also been
suggested that DAN plays an important role in facilitating top–
down processes that suppress irrelevant information, that is, VAN
control is diminished in AD (Pini et al., 2022). In this study, there
was a significant strong negative correlation between DAN and
VAN activities. However, the negative correlation between DAN
and VAN activity values is only the result of the correlation analysis
between the summarized 5-minute activities and does not directly
imply an antiphase relationship observed in real time between the
two networks. In other words, mean component activities of DAN
and VAN activities are negatively correlated in this study, but it is
not clear that real-time activity within subjects is anticorrelated.
In future work, we would like to further clarify the dynamic
relationship between attentional networks by examining the time
course of DAN and VAN activities over the entire rs–EEG time
course, to calculate the antiphase between the time courses of both
networks in each time window.

The results of examining the significant range of the interaction
using JN showed that while the main effect of hippocampal volume
on memory performance was significant within a certain range
for DAN, it became non-significant as DAN activity increased.
Conversely, for VAN, the main effect of hippocampal volume
on memory performance became non-significant as the VAN
activity decreased. Overall, the JN technique is not useful in
certain situations where the significance regions are small or
the confidence intervals are so wide as to become practically
useless, as, in such cases, the error variance is too large and/or
the sample sizes are insufficient to provide adequate information
(Potthoff, 1964). The simplest procedure for investigating the
significance of interactions is the pick-a-point (Rogosa, 1980)
or simple slope (Aiken et al., 1991) method. However, these
methods select arbitrary values for the moderator variable, yielding
information only for these arbitrary points (Carden et al., 2017).
As such, the use of the more complex JN technique may provide
a better resolution for clarifying interactions than traditional
techniques, given that this technique examines significance along
the continuum of values of the moderator, and delineates the
slope of the relationship across each value (Garcia-Hermoso et al.,
2021). Overall, these findings suggest that the activity patterns of
high DAN and low VAN activity, or attentional networks, help
to maintain memory performance in the presence of a lower
hippocampal volume, as they make memory performance more
independent of hippocampal atrophy, and may contribute to future
research on dementia prevention.

Our findings are in line with those of previous studies reporting
that IQ and education, traditionally treated as proxy markers
for CR, are positively associated with DAN activity (Franzmeier
et al., 2018; Koyama et al., 2020). Furthermore, DAN and VAN
activities have been found to be associated with global cognitive
function (Wang et al., 2015; Mao et al., 2020). It is therefore
conceivable that high CR (high IQ and education levels) leads
to increased DAN and decreased VAN activity, and that this
activation pattern is associated with better memory performance
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and global cognitive function. It has further been suggested that rs–
EEG activity differs across educational levels, with more-educated
individuals exhibiting greater neuroprotective activity (Babiloni
et al., 2020). Our results extend these findings by subjecting
activity in attentional networks directly to the rigorous CR test
suggested by the Reserve and Resilience Framework (Stern et al.,
2020), and determining the optimal range for the moderation
effect. These results further suggest that the attentional network
is related to the neurophysiological background of reported
CR proxy markers. As such, EEG measurement, which is non-
invasive, relatively inexpensive, and allows measurements with
minimal spatial constraints in community–dwelling older adults,
has the potential to contribute to the assessment of CR. In
the future, it would be exciting to examine the longitudinal
changes in CR using rs–EEG, which is highly feasible in
large cohort studies. The activity levels of the DAN and VAN
may represent the neural implementations of the CR, which
may help explain the results of intervention studies aimed at
preventing dementia by increasing CR in terms of DAN and VAN
activity.

This study had several limitations. First, the interaction effects
of hippocampal volume with DAN and VAN are both significant
but small, potentially limiting the generalizability and clinical
relevance of the results. In addition, for the generalizability and
clinical relevance of the results, further investigation of source
estimation using anatomical structural data from each individual’s
MRI images would be useful. Modulatory effects of transcranial
magnetic stimulation (TMS) and repeated transcranial direct
current stimulation (tDCS) on attentional networks have been
reported (Sacca et al., 2023; Massironi et al., 2024). As such, it may
be useful to conduct future studies to clarify whether modulating
the DAN and VAN through interventions, such as TMS and tDCS,
are effective at maintaining good memory performance in the
presence of age-related brain pathologies.

Next, the DAN activity is inversely correlated with the default
mode network (DMN) activity, and a growing number of reports
have indicated that this inverse correlation is related to cognitive
function (Kelly et al., 2008; Franzmeier et al., 2017; Wang et al.,
2019). Therefore, further studies are needed to disentangle the
contributions of each brain network by including the activity
of the DMN together with the activity of the DAN and VAN.
In addition, this cross–sectional study did not examine the
association between longitudinal changes in cognitive function.
To address this limitation, a 30–month follow–up examination is
currently underway to examine the relevance of baseline attentional
network activity to longitudinal changes in the relationship
between hippocampal volume and episodic memory performance.
Finally, this study focused solely on the relationship between
the hippocampal volume and episodic memory performance.
Therefore, it would be of interest to test whether DAN and VAN
network activities moderate the association between other brain
regions and cognitive performance.

5 Conclusion

Herein, we show that the noninvasive and relatively
inexpensive eLORETA–ICA approach for analyzing rs–EEG

data may be suitable for capturing the neural implementation of
CR. rs–EEG measurement is easy to perform and is not limited
by the measurement environment. Our study suggests that CR
can be measured in community–dwelling older adults using
this technique. Neurophysiological markers of CR measured
by rs–EEG may help to identify individuals at high risk of
developing dementia, as well as to monitor the efficiency of
specific interventions to promote attention network activity, such
as TMS and tDCS, which has been reported to modulate DAN
and VAN activity.
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