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Purpose: Observational studies have reported inconsistent results on the 
relationship between chronic kidney disease (CKD) and age-related macular 
degeneration (AMD). The primary objective of this study was to investigate the 
causal relationships between estimated glomerular filtration rate (eGFR), CKD, 
its common causes, and AMD among participants of European descent.

Methods: Genetic variants associated with eGFR, CKD and its common causes, 
encompassing diabetic nephropathy (DN), immunoglobulin A nephropathy 
(IgAN), and membranous nephropathy (MN) were obtained from previously 
published genome-wide association studies (GWAS) and FinnGen database. 
Summary statistics for early AMD, AMD, dry AMD, and wet AMD were acquired 
from the GWAS and FinnGen database. Inverse-variance-weighted (IVW) method 
was the main MR analysis. Sensitivity analyses were performed with Cochran’s 
Q, MR-Egger intercept, and leave-one-out analysis. In addition, RadialMR was 
utilized to identify and remove outliers.

Results: IVW results showed that CKD, eGFR were not associated with any type 
of AMD (p  >  0.05). DN (OR: 1.042, 95% CI: 1.002–1.083, p  =  0.037) and MN (OR: 
1.023, 95% CI: 1.007–1.040, p  =  0.005) were associated with an increased risk of 
earl AMD. DN (OR: 1.111, 95% CI: 1.07–1.154, p  =  4.87  ×  10−8), IgAN (OR: 1.373, 95% 
CI: 1.097–1.719, p  =  0.006), and MN (OR: 1.036, 95% CI: 1.008–1.064, p  =  0.012) 
were associated with an increased risk of AMD. DN (OR: 1.090, 95% CI: 1.042–
1.140, p  =  1.57  ×  10−4) and IgAN (OR: 1.480, 95% CI: 1.178–1.858, p  =  7.55  ×  10−4) 
were associated with an increased risk of dry AMD. The risk of wet AMD was 
associated with DN (OR: 1.107, 95% CI: 1.043–1.174, p  =  7.56  ×  10−4) and MN (OR: 
1.071, 95% CI: 1.040–1.103, p  =  5.48  ×  10−6).

Conclusion: This MR study found no evidence of causal relationship between 
CKD and AMD. DN, IgAN, and MN may increase risk of AMD. This findings 
underscore the importance of ocular examinations in patients with DN, MN, 
and IgAN. More studies are needed to support the findings of our current study.
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1 Introduction

Age-related macular degeneration (AMD) stands as the principal 
cause of non-reversible visual impairment among the elderly, with 
projections suggesting an affected population of approximately 288 
million globally by 2040 (Wong W. L. et al., 2014). The condition not 
only imposes a substantial economic impact but also significantly 
diminishes the quality of life (Jonas, 2014). AMD is clinically stratified 
into early, intermediate, or advanced stages, and further distinguished 
by the presence of neovascularization as either wet (neovascular) or 
dry (non-neovascular) AMD. The latter, dry AMD, represents the 
more prevalent form and may evolve into the more detrimental wet 
AMD, which is responsible for roughly 80% of severe vision loss from 
AMD due to retinal hemorrhage and exudation (Lim et al., 2012; 
Gil-Martínez et  al., 2020). Despite considerable progress in 
comprehending AMD, the precise causes remain partially elusive. 
Consequently, early detection and timely intervention are crucial for 
preserving functional vision.

Chronic kidney disease (CKD) represents a condition of growing 
prevalence, which escalates notably with advancing age. As an 
emergent public health concern, CKD affects an estimated 9–16% of 
the global population (Coresh et al., 2003). Notably, there is evidence 
to suggest that CKD and AMD may share overlapping risk factors 
(Haroun et al., 2003; Heesterbeek et al., 2020) and pathophysiological 
pathway (Mullins et al., 2001; Haines et al., 2005; Xing et al., 2008). 
Recent research has indicated a potential link between these two 
diseases. Nonetheless, the literature presents divergent results; while 
some studies have identified an increased risk of AMD in patients with 
CKD (Liew et al., 2008; Weiner et al., 2011; Cheung et al., 2014), 
others have not established a connection (Park et al., 2014; Wong et al., 
2016; Zhu et al., 2020). Consequently, the existence of a definitive 
association between CKD and AMD is still unresolved.

Mendelian randomization (MR) analysis leverages genetic 
variation as an instrumental variables (IVs) to assess the potential 
causal links between risk factors and diseases (Lawlor et al., 2008; 
Burgess et al., 2017). This method capitalizes on the principle that 
genetic variants are assigned randomly at conception and remain 
uninfluenced by typical confounders. Due to this random allocation, 
MR analysis is less prone to biases from confounders and reverse 
causation than are traditional observational studies. In this study, 
we  employed a two-sample MR approach to explore the causal 
relationships between renal function, CKD, its common etiologies 
[diabetic nephropathy (DN), IgA nephropathy (IgAN), membranous 
nephropathy (MN)], and diverse forms of AMD including early AMD, 
overall AMD, dry AMD, and wet AMD, specifically in a 
European population.

2 Methods

2.1 Study design

We employed a two-sample MR, leveraging summary-level 
genetic associations from diverse genome-wide association studies 
(GWAS). A robust MR framework adheres to three critical 
assumptions: (1) IVs exhibit strong associations with the exposures; 
(2) IVs are not linked with any confounders; (3) IVs affect the outcome 
solely via the exposures under consideration. Considering the chronic 
progression and complex etiology of CKD, our analysis encompassed 

multiple phenotypes. These encompassed CKD (defined as an 
estimated glomerular filtration rate (eGFR) below 60 mL/
min/1.73 m2), creatinine-based eGFR (eGFRcrea), cystatin C-based 
eGFR (eGFRcys), and particular renal diseases, namely DN, IgAN, 
and MN, which are prevalent causes of CKD. Regarding AMD, 
we examined four subtypes: early AMD, AMD (whether dry or wet), 
dry AMD (inclusive of geographic atrophy), and wet AMD. The study 
design overview is presented in Figure 1.

2.2 Data source of exposure

The GWAS summary statistics for CKD were obtained from a 
meta-analysis by the CKDGen Consortium, which included data from 
23 cohorts of European descent (comprising 480,698 individuals; 
among them, 41,395 were CKD patients and 439,303 were controls) 
(Wuttke et  al., 2019). The summary statistics for eGFRcrea and 
eGFRcys were derived from a separate meta-analysis (Stanzick et al., 
2021) that combined information from the CKDGen Consortium and 
the UK Biobank. For DN, summary-level GWAS data were sourced 
from the FinnGen database, which featured 312,650 participants of 
European ancestry, including 4,111 DN cases and 308,539 controls 
(Kurki et al., 2023). The GWAS meta-analysis for IgAN integrated data 
from FinnGen, the UK Biobank, and the Biobank Japan, accounting 
for 477,784 individuals of European background (with 15,587 cases 
and 462,197 controls) and 175,359 individuals of East Asian descent 
(with 71 cases and 175,288 controls) (Sakaue et al., 2021). Our analysis 
focused on the GWAS data from the European cohorts. For MN, 
we utilized the most recent GWAS data, which included 2,150 MN 
cases and 5,829 controls, all of European ancestry (Xie et al., 2020). 
These participants were all diagnosed with primary MN. Furthermore, 
the cohort underwent genotyping with high-density SNP arrays, and 
approximately 7 million common, high-quality genetic markers were 
imputed using the most up-to-date genome-wide sequence reference 
panel. Supplementary Table S1 presents additional details regarding 
each dataset.

2.3 Data source of outcome

The GWAS summary data for early AMD were obtained from a 
recently published genome-wide association meta-analysis, 
encompassing 14,034 cases and 91,214 controls, all of whom are of 
European descent (Winkler et al., 2020). The summary-level data for 
AMD, including AMD (whether dry or wet), dry AMD (includes 
geographic atrophy), and wet AMD, were derived from the tenth 
round of analysis from the FinnGen (Kurki et  al., 2023). 
Supplementary Table S1 provides further details on each dataset.

2.4 Selection of instrumental variables (IVs)

To adhere to the three fundamental assumptions of MR and 
guarantee the precision of our findings, we  employed single 
nucleotide polymorphisms (SNPs) as IVs after a thorough quality 
control process. First, we  identified SNPs that were strongly 
associated with the exposures in each MR analysis, indicated by a 
p-value threshold of less than 5 × 10−8. Second, we  subsequently 
carried out a clumping procedure to select independent SNPs using 
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a linkage disequilibrium threshold (r2 < 0.001, clumping 
distance = 10,000 kb). For MN, a more lenient threshold was used 
(r2 < 0.01, clumping distance = 1,000 kb) to ensure a sufficient number 
of SNPs. SNPs associated with the outcomes at a significance level of 
p < 5 × 10−8 were excluded. Third, we  utilized the Phenoscanner 
database (Staley et  al., 2016) to scrutinize potential confounding 
factors linked to the SNPs, excluding any that were associated with 
known confounders such as smoking, alcohol consumption, 
hypertension, and obesity. Then, we excluded SNP with F values <10 
to ensure the strength of the association between SNP and exposure 
factors (Burgess and Thompson, 2011). The F statistic is computed 
using the formula F = R2(n−k−1)/[k(1−R2)]. In order to prevent the 
influence of alleles on results for the causal relationship between CKD 
and AMD, palindrome SNPs were removed. We also applied Steiger 
filtering to discard SNPs that exhibited a stronger correlation with the 
outcomes than with the exposures (Hemani et al., 2017). Finally, 
we  eliminated outlier SNPs as identified by Radial MR analysis, 
further refining our selection of IVs (Bowden et al., 2018).

2.5 MR analysis

To investigate the potential causal link between the exposure and 
the outcome, we applied a suite of MR methods, including inverse 
variance weighted (IVW), MR-Egger, weighted median, simple mode, 

and weighted mode approaches. The IVW method, chosen as the 
primary method for our analysis, presupposes the absence of horizontal 
pleiotropy, under the assumption that either all the SNPs being utilized 
are valid instrumental variables or that any pleiotropic effects are 
counterbalanced (Burgess et al., 2013). The weighted median method 
provides a reliable estimate if a majority (at least 50%) of the IVs are 
valid (Bowden et al., 2016). Weighted mode is less capable of detecting 
causal effects, but also have fewer biases (Hartwig et al., 2017). Even if 
most IVs have pleiotropy, MR Egger can provide effective estimates 
(Bowden et al., 2015). We assessed heterogeneity using the Cochran Q 
statistic (Greco et al., 2015), and examined the potential for horizontal 
pleiotropy using the MR-Egger intercept (Bowden et al., 2015). We also 
performed the leave-one-out analysis by eliminating SNPs one by one 
and recomputing the effect. All statistical analyses were conducted 
using R version 4.2.3 and the “TwoSampleMR,” and “RadialMR” 
packages. A two-sided p value of <0.05 was considered significant.

3 Results

3.1 The causal relationship between CKD 
and early AMD

IVW and other MR methods demonstrated no association 
between CKD, eGFRcrea, eGFRcys, and IgAN with early AMD 

FIGURE 1

Study design overview. CKD, chronic kidney disease; eGFRcrea, creatinine-based estimated glomerular filtration rate; eGFRcys, cystatinC-based 
estimated glomerular filtration rate; DN, diabetic nephropathy; IgAN, immunoglobulin A nephropathy; MN, membranous nephropathy; IVW, inverse-
variance weighted; AMD, age-related macular degeneration.
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(p > 0.05, Table 1). However, IVW results indicated a significant 
increase in the risk of early AMD associated with genetically 
predicted DN (OR: 1.042, p = 0.037). Consistent effect sizes were 
observed across other MR methods (OR > 1, Table 1). And IVW 
showed a positive association between the risk of early AMD and 
MN (OR: 1.023, p = 0.005). MR-Egger, weighted median, and 
weighted mode analyses confirmed these findings (OR > 1, 
p < 0.05, Table  1). The scatter plots for the causal relationship 
between CKD and early AMD were presented in Figure 2. There 
was no evidence of significant heterogeneity or pleiotropy 
(p > 0.05, Supplementary Table S2). The results of leave-one-out 
sensitivity and single SNP risk analysis were shown in 
Supplementary Figures S1, S2.

3.2 The causal relationship between CKD 
and AMD

Five methods consistently showed that CKD, eGFRcrea, and 
eGFRcys were not associated with AMD (p > 0.05, Table 1). IVW 
(OR: 1.111, p = 4.87 × 10−8) and other four MR methods consistently 
showed that DN induces the risk of AMD (OR > 1, Table 1). For 
IgAN, we found the same direction of effect size in five MR methods 
(OR > 1, Table 1), but only IVW method was significant (OR: 1.373, 
p = 0.006). IVW and other three methods found MN was associated 
with an increased risk of AMD (p < 0.05, Table 1). The Scatter plots 
of the effect of CKD on AMD were shown in Figure 3. The results 
from Cochrane’s Q test (Supplementary Table S2) showed that no 

TABLE 1 Associations of genetically determined CKD with early AMD and AMD.

Outcome

Early AMD AMD

Exposure MR method OR (95%CI) P OR (95%CI) P

CKD MR egger 0.755 (0.490–1.164) 0.223 0.605 (0.373–0.981) 0.063

Weighted median 0.893 (0.768–1.040) 0.145 1.054 (0.887–1.253) 0.549

IVW 0.921 (0.830–1.022) 0.121 1.027 (0.906–1.163) 0.682

Simple mode 0.817 (0.619–1.078) 0.172 1.097 (0.787–1.529) 0.592

Weighted mode 0.831 (0.624–1.106) 0.223 1.038 (0.757–1.422) 0.821

eGFRcrea MR egger 3.301 (0.766–14.235) 0.110 1.323 (0.258–6.785) 0.738

Weighted median 1.083 (0.393–2.987) 0.878 2.999 (0.899–9.999) 0.074

IVW 1.238 (0.648–2.367) 0.518 1.659 (0.801–3.438) 0.173

Simple mode 0.452 (0.021–9.594) 0.611 5.522 (0.199–153.265) 0.314

Weighted mode 0.673 (0.104–4.332) 0.677 4.829 (0.691–33.75) 0.114

eGFRcys MR egger 0.838 (0.364–1.930) 0.679 2.039 (0.759–5.477) 0.160

Weighted median 0.850 (0.369–1.959) 0.703 1.309 (0.519–3.301) 0.568

IVW 1.145 (0.696–1.886) 0.594 1.004 (0.567–1.779) 0.989

Simple mode 0.849 (0.124–5.811) 0.868 0.72 (0.093–5.584) 0.754

Weighted mode 0.696 (0.296–1.640) 0.409 2.093 (0.672–6.516) 0.204

DN MR egger 1.027 (0.948–1.114) 0.533 1.173 (1.078–1.276) 0.007

Weighted median 1.047 (0.999–1.097) 0.056 1.120 (1.071–1.171) 7.43E-07

IVW 1.042 (1.002–1.083) 0.037 1.111 (1.07–1.154) 4.87E-08

Simple mode 1.081 (0.996–1.173) 0.098 1.108 (1.023–1.201) 0.036

Weighted mode 1.048 (0.996–1.104) 0.109 1.121 (1.07–1.175) 0.001

IgAN MR egger 1.081 (0.692–1.688) 0.743 1.066 (0.627–1.813) 0.829

Weighted median 0.940 (0.793–1.114) 0.475 1.28 (0.953–1.719) 0.101

IVW 0.986 (0.863–1.125) 0.830 1.373 (1.097–1.719) 0.006

Simple mode 0.927 (0.685–1.256) 0.641 1.246 (0.832–1.866) 0.346

Weighted mode 0.891 (0.726–1.093) 0.304 1.187 (0.787–1.79) 0.460

MN MR egger 1.049 (1.011–1.088) 0.024 1.081 (1.023–1.144) 0.023

Weighted median 1.027 (1.004–1.050) 0.020 1.050 (1.014–1.088) 0.006

IVW 1.023 (1.007–1.040) 0.005 1.036 (1.008–1.064) 0.012

Simple mode 1.022 (0.988–1.058) 0.230 1.051 (0.996–1.11) 0.102

Weighted mode 1.031 (1.006–1.056) 0.028 1.052 (1.012–1.093) 0.029

CKD, chronic kidney disease; eGFRcrea, creatinine-based estimated glomerular filtration rate; eGFRcys, cystatinC-based estimated glomerular filtration rate; DN, diabetic nephropathy; 
immunoglobulin A nephropathy, IgAN; MN, membranous nephropathy; AMD, age-related macular degeneration; IVW, inverse-variance weighted.
The bold values in the tables indicate statistical significance with P-values less than 0.05.
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obvious heterogeneity was found in the selected SNPs (p > 0.05). 
Furthermore, the MR-Egger tests showed that there is horizontal 
pleiotropy between eGFRcys and AMD (Supplementary Table S2). In 
the presence of pleiotropy, MR Egger should be chosen as the primary 
analysis method (OR: 2.039, p = 0.160). The results of leave-one-out 
sensitivity and single SNP risk analysis were shown in 
Supplementary Figures S3, S4.

3.3 The causal relationship between CKD 
and dry AMD

Five MR methods, including IVW, found no association between 
CKD, eGFRcrea, eGFRcys, MN, and dryAMD (p > 0.05, Table 2). Four 
MR methods (IVW, MR Egger, weighted median and weighted mode) 
consistently showed that DN induces the risk of dry AMD (OR > 1, 
p < 0.05, Table 2). For IgAN, we found the same direction of effect size 
in five methods (OR > 1, Table 2). IVW (OR = 1.480, 95% CI = 1.178–
1.858, p = 7.55 × 10−4; Table 2) and weighted median (OR = 1.579, 95% 
CI = 1.184–2.105, p = 1.84 × 10−3; Table 2) showed that IgAN induces 
the risk of dry AMD (Table  2). The scatter plots for the causal 
relationship between CKD and dry AMD were presented in Figure 4. 
We  found no evidence of heterogeneity in our analysis (p > 0.05, 
Supplementary Table S2). MR Egger tests did not show evidence of 
horizontal pleiotropy (p > 0.05, Supplementary Table S2). The results 

of leave-one-out sensitivity and single SNP risk analysis were shown 
in Supplementary Figures S5, S6.

3.4 The causal relationship between CKD 
and wet AMD

Five MR methods provided no evidence of an association 
between CKD, eGFRcrea, eGFRcys, IgAN, and wet AMD (p > 0.05, 
Table 2). Except for the simple mode, the other four MR methods 
consistently showed that DN increases the risk of wet AMD (OR > 1, 
p < 0.05, Table  2). All five methods showed a causal relationship 
between MN and an increased risk of wet AMD (OR > 1, p < 0.05, 
Table  2). Figure  5 provided scatter plots showing the causal 
relationship between CKD and wet AMD. No significant 
heterogeneity and horizontal pleiotropy were found according to 
Cochrane’s Q, and MR-Egger (p > 0.05, Supplementary Table S2). The 
results of leave-one-out sensitivity and single SNP risk analysis were 
shown in Supplementary Figures S7, S8.

4 Discussion

In this study, we  conducted a comprehensive MR analysis to 
investigate the causal impact of CKD on the risk of AMD. We did not 

FIGURE 2

The scatter plots of CKD with the risk of early AMD. (A) The MR estimate for the effect of CKD on the risk of early AMD; (B) The MR estimate for the 
effect of eGFRcrea on the risk of early AMD; (C) The MR estimate for the effect of eGFRcys on the risk of early AMD; (D) The MR estimate for the effect 
of DN on the risk of early AMD; (E) The MR estimate for the effect of IgAN on the risk of early AMD; (F). The MR estimate for the effect of MN on the 
risk of early AMD. CKD, chronic kidney disease; eGFRcrea, creatinine-based estimated glomerular filtration rate; eGFRcys, cystatinC-based estimated 
glomerular filtration rate; DN, diabetic nephropathy; immunoglobulin A nephropathy, IgAN; MN, membranous nephropathy; AMD, age-related macular 
degeneration; MR, Mendelian randomization; SNP, single nucleotide polymorphism.
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find any association between CKD, eGFR, and any type of AMD 
(p > 0.05). However, DN and MN were associated with an increased 
risk of earl AMD. Furthermore, DN, IgAN, and MN were associated 
with an increased risk of AMD. Specifically, DN and IgAN were 
associated with an increased risk of dry AMD, while the risk of wet 
AMD was associated with DN and MN.

Several observational studies have shown that CKD increases the 
risk of AMD. For instance, Liew et al. conducted a population-based 
prospective cohort study involving 1,183 participants aged 54 and 
older. After adjusting for age, gender, smoking, and other risk factors, 
they found that individuals with moderate CKD (eGFR 30 to 59 mL/
min per 1.73 m2) were three times more likely to develop early AMD 
than those with no or mild CKD (Liew et al., 2008). Similarly, Beaver 
Dam Eye Study showed that mild CKD (45–59 mL/min per 1.73 m2) 
was associated with early AMD, but not the incidence of exudative 
AMD and pure geographic atrophy or the progression of AMD (Klein 
et al., 2009). Furthermore, in another study involving 3,008 Koreans 
aged 50–87 found a significant association between CKD and early 
AMD (Choi et al., 2011). Notably, a case–control subset analysis of 
NHANES III demonstrated that a lower eGFR was independently 
associated with late AMD (Weiner et  al., 2011). In a diverse 
population, a population-based cross-sectional study involving 9,799 
participants from Chinese, Malay, and Indian ethnic groups in 

Singapore found that CKD was identified as a significant risk factor 
for late AMD, but not for early AMD (Cheung et al., 2014). Numerous 
other investigations also have found an association between CKD and 
AMD (Deva et al., 2011; Gao et al., 2011; Wang et al., 2016; Cheng 
et al., 2017; Leisy et al., 2017a,b). More recently, a comprehensive 
study that pooled data from 51,253 participants across 10 different 
Asian population-based studies found a significant association 
between CKD (and decreased kidney function) and late 
AMD. Contrastingly, the same study found no significant association 
between CKD and early AMD (Xue et al., 2023).

However, not all studies support an association between CKD and 
AMD. In a population-based cross-sectional study of individuals aged 
75 and over in Britain, it was found that the association between 
reduced eGFR and AMD in men was not significant (Nitsch et al., 
2009). Similarly, another cross-sectional study involving 5,874 
participants (aged 45 to 84) indicated that there was no association 
between impaired kidney function and early AMD (Chong et al., 
2014). Moreover, the Singapore Epidemiology of Eye Diseases (SEED, 
2004–11) study revealed no link between CKD and AMD in adults 
aged 40–80 (Wong et  al., 2016). In the same vein, Zhu et al’s 
investigation of 5,518 participants aged 40 or above in the NHANES 
2005–2008 study found no correlation between CKD and AMD, even 
after accounting for multiple confounding factors (Zhu et al., 2020). 

FIGURE 3

The scatter plots of CKD with the risk of AMD. (A) The MR estimate for the effect of CKD on the risk of AMD; (B) The MR estimate for the effect of 
eGFRcrea on the risk of AMD; (C) The MR estimate for the effect of eGFRcys on the risk of AMD; (D) The MR estimate for the effect of DN on the risk of 
AMD; (E) The MR estimate for the effect of IgAN on the risk of AMD; (F) The MR estimate for the effect of MN on the risk of AMD. CKD, chronic kidney 
disease; eGFRcrea, creatinine-based estimated glomerular filtration rate; eGFRcys, cystatinC-based estimated glomerular filtration rate; DN, diabetic 
nephropathy; immunoglobulin A nephropathy, IgAN; MN, membranous nephropathy; AMD, age-related macular degeneration; MR, Mendelian 
randomization; SNP, single nucleotide polymorphism.
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And Dave et al’s research found no association between renal function 
parameters and AMD features, even after adjusting for age, as per their 
multimodal retinal imaging study (Dave et al., 2022).

In summary, whether a causal relationship exists between CKD 
and AMD remains uncertain. A significant reason for this uncertainty 
is that CKD and AMD share common risk factors, such as age, 
hypertension, obesity, smoking, and alcohol consumption (Wong 
C. W. et al., 2014). These factors concurrently promote the progression 
of both CKD and AMD, which could lead to the observed association 
between the two in epidemiological studies. The varying results of 
observational studies may also depend on the population studied, the 
definitions and rigor of AMD diagnosis and phenotypic assessments, 

as well as the sample sizes of the research groups. Moreover, it should 
be noted that in observational studies, CKD patients are defined as 
those with an eGFR <60 mL/min per 1.73 m2, and some studies stratify 
eGFR. However, these studies do not investigate the earlier stages of 
CKD, stages 1–2, and the disease spectrum of CKD varies among 
different populations. In Asian populations, chronic 
glomerulonephritis predominates, while in European populations, 
DN and hypertensive nephrosclerosis are more common. This could 
be another significant reason for the inconsistency in the results of 
observational studies that should not be overlooked.

In our study, we  did not find an association between CKD, 
eGFRcys, eGFRcrea, and various types of AMD. CKD (defined as an 

TABLE 2 Associations of genetically determined CKD with dry AMD and wet AMD.

Outcome

Dry AMD Wet AMD

Exposure MR method OR (95%CI) P OR (95%CI) P

CKD MR egger 0.666 (0.377–1.180) 0.185 0.865 (0.399–1.874) 0.718

Weighted median 0.995 (0.815–1.215) 0.964 1.006 (0.813–1.245) 0.958

IVW 1.038 (0.904–1.193) 0.594 1.09 (0.934–1.273) 0.273

Simple mode 0.932 (0.666–1.304) 0.686 0.964 (0.667–1.393) 0.846

Weighted mode 0.941 (0.685–1.293) 0.713 0.967 (0.669–1.396) 0.859

eGFRcrea MR egger 0.940 (0.136–6.489) 0.950 1.357 (0.146–12.599) 0.789

Weighted median 1.235 (0.298–5.117) 0.771 1.298 (0.256–6.571) 0.753

IVW 0.821 (0.348–1.939) 0.653 1.638 (0.620–4.326) 0.319

Simple mode 0.310 (0.007–12.903) 0.539 1.935 (0.029–128.214) 0.758

Weighted mode 2.547 (0.242–26.823) 0.437 1.372 (0.112–16.845) 0.805

eGFRcys MR egger 2.622 (0.823–8.359) 0.105 2.373 (0.640–8.799) 0.198

Weighted median 2.034 (0.693–5.973) 0.196 2.008 (0.592–6.813) 0.263

IVW 1.103 (0.562–2.167) 0.776 0.816 (0.386–1.726) 0.595

Simple mode 2.646 (0.161–43.526) 0.497 0.769 (0.055–10.822) 0.846

Weighted mode 4.354 (0.889–21.335) 0.072 2.028 (0.481–8.542) 0.337

DN MR egger 1.132 (1.025–1.251) 0.044 1.195 (1.053–1.355) 0.028

Weighted median 1.096 (1.036–1.159) 1.38E-03 1.131 (1.065–1.201) 6.59E-05

IVW 1.090 (1.042–1.140) 1.57E-04 1.107 (1.043–1.174) 7.56E-04

Simple mode 1.025 (0.940–1.118) 0.592 0.983 (0.861–1.123) 0.809

Weighted mode 1.094 (1.038–1.153) 0.010 1.134 (1.067–1.204) 0.004

IgAN MR egger 1.326 (0.742–2.371) 0.411 1.000 (0.500–2.00) 1

Weighted median 1.579 (1.184–2.105) 1.84E-03 0.948 (0.690–1.302) 0.739

IVW 1.480 (1.178–1.858) 7.55E-04 0.961 (0.748–1.233) 0.752

Simple mode 1.299 (0.878–1.920) 0.260 1.298 (0.750–2.247) 0.394

Weighted mode 1.645 (1.144–2.364) 0.055 0.740 (0.472–1.161) 0.247

MN MR egger 1.009 (0.954–1.067) 0.759 1.120 (1.054–1.190) 0.004

Weighted median 1.021 (0.988–1.055) 0.218 1.077 (1.038–1.117) 8.63E-05

IVW 1.013 (0.989–1.038) 0.298 1.071 (1.040–1.103) 5.48E-06

Simple mode 0.999 (0.947–1.054) 0.961 1.094 (1.032–1.159) 0.011

Weighted mode 1.023 (0.986–1.061) 0.250 1.081 (1.038–1.127) 0.003

CKD, chronic kidney disease; eGFRcrea, creatinine-based estimated glomerular filtration rate; eGFRcys, cystatinC-based estimated glomerular filtration rate; DN, diabetic nephropathy; 
immunoglobulin A nephropathy, IgAN; MN, membranous nephropathy; AMD, age-related macular degeneration; IVW, inverse-variance weighted.
The bold values in the tables indicate statistical significance with P-values less than 0.05.
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eGFR below 60 mL/min/1.73 m2) is an umbrella term encompassing a 
variety of etiologies and pathological processes. Different CKD 
subtypes may have distinct risk factors and pathogenic mechanisms. 
In GWAS of CKD, treating CKD as a whole may obscure the 
associations between individual CKD subtypes and AMD, as the 
effects of these subtypes may not be significant within the overall CKD 
population. In GWAS of CKD, there is a lack of subgroup analysis data 
for specific causes such as DN, hypertensive kidney damage, 
obstructive nephropathy, kidney stones, and glomerulonephritis (MN, 
IgAN), which limits our further research. This absence of detailed 
analysis may be one of the reasons why our MR study did not find an 
association between CKD and AMD. MR analysis targeting common 
etiologies of CKD suggests that DN, IgAN, and MN can increase the 
risk of AMD. There have been no observational studies reporting on 
this aspect to date. Current research indicates that kidney diseases 
may promote the progression of AMD through multiple mechanisms. 
For instance, the critical role of the Renin-Angiotensin-Aldosterone 
System (RAAS) in the progression of renal damage in proteinuric 
kidney diseases has been extensively described. Upregulation of the 
RAAS can lead to endothelial dysfunction, inflammation, and 
oxidative stress (Izzedine et al., 2003). RAAS affects the blood flow in 
the retina, iris, and ciliary body, regulating intraocular pressure by 
altering the balance between aqueous humor production and outflow. 
The kidney and the eye share similarities in structure, development, 

and physiological pathways. Both organs possess extensive vascular 
networks. In fact, the inner retina and the glomerulus have similar 
filtration barriers that are regulated by the RAAS. Kidney diseases 
represented by DN, MN, and IgAN could promote the progression of 
ocular diseases such as AMD through the RAAS (Lai et al., 2022). 
Additionally, dysfunctions of the complement system (Zipfel et al., 
2006), apolipoprotein E (Baird et  al., 2004; Hsu et  al., 2005) and 
atherosclerosis (Friedman, 2000) may also be mechanisms through 
which kidney diseases can promote the progression of AMD.

However, our study has certain limitations. Firstly, CKD is a 
relatively broad diagnosis. In clinical practice, it is still necessary to 
pay attention to the etiology and staging of CKD. The current GWAS 
data on CKD and eGFR lack information on the etiology and staging 
of CKD, which limits our further research. Secondly, our study is 
subject to a degree of sample overlap. The GWAS data for DN, wet 
AMD, and dry AMD are all from the FinnGen. Thirdly, it is imperative 
to exercise caution when extrapolating our findings to populations 
beyond the scope of this study, given that the GWAS datasets 
employed were limited to participants of European ancestry. Lastly, 
although we  tried our best to exclude and correct potential 
confounders, there may still be other factors related to AMD that were 
not considered in the analysis. The IVs applied in our MR approach 
could still conceivably elevate the risk of AMD through pleiotropic 
effects that were not detected.

FIGURE 4

The scatter plots of CKD with the risk of dry AMD. (A) The MR estimate for the effect of CKD on the risk of dry AMD; (B) The MR estimate for the effect 
of eGFRcrea on the risk of dry AMD; (C) The MR estimate for the effect of eGFRcys on the risk of dry AMD; (D) The MR estimate for the effect of DN on 
the risk of dry AMD; (E) The MR estimate for the effect of IgAN on the risk of dry AMD; (F) The MR estimate for the effect of MN on the risk of dry AMD. 
CKD, chronic kidney disease; eGFRcrea, creatinine-based estimated glomerular filtration rate; eGFRcys, cystatinC-based estimated glomerular filtration 
rate; DN, diabetic nephropathy; immunoglobulin A nephropathy, IgAN; MN, membranous nephropathy; AMD, age-related macular degeneration; MR, 
Mendelian randomization; SNP, single nucleotide polymorphism.
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5 Conclusion

In conclusion, this MR study presents compelling evidence for a 
causal relationship between genetic predispositions to DN, MN, and 
IgAN, and a heightened risk of AMD. Conversely, the evidence is 
currently inadequate to confirm a causal connection between CKD, 
eGFR, and AMD. These results emphasize the significance of 
conducting ocular examinations in patients diagnosed with DN, MN, 
and IgAN. Additionally, our research underscores the need for further 
investigation into these associations using larger and more 
diverse cohorts.
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