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Introduction: Although white matter hyperintensity (WMH) shares similar

vascular risk and pathology with small vessel occlusion (SVO) stroke, there were

few studies to evaluate the impact of the burden of WMH volume on early and

delayed stroke outcomes in SVO stroke.

Materials and methods: Using a multicenter registry database, we enrolled

SVO stroke patients between August 2013 and November 2022. The WMH

volume was estimated by automated methods using deep learning (VUNO

Med-DeepBrain, Seoul, South Korea), which was a commercially available

segmentation model. After propensity score matching (PSM), we evaluated the

impact of WMH volume on early neurological deterioration (END) and poor

functional outcomes at 3-month modified Ranking Scale (mRS), defined as mRS

score >2 at 3 months, after an SVO stroke.

Results: Among 1,718 SVO stroke cases, the prevalence of subjects with severe

WMH (Fazekas score ≥ 3) was 68.9%. After PSM, END and poor functional

outcomes at 3-month mRS (mRS > 2) were higher in the severe WMH group

(END: 6.9 vs. 13.5%, p < 0.001; 3-month mRS > 2: 11.4 vs. 24.7%, p < 0.001).

The logistic regression analysis using the PSM cohort showed that total WMH

volume increased the risk of END [odd ratio [OR], 95% confidence interval [CI];

1.01, 1.00–1.02, p = 0.048] and 3-month mRS > 2 (OR, 95% CI; 1.02, 1.01–1.03,

p < 0.001). Deep WMH was associated with both END and 3-month mRS > 2,

but periventricular WMH was associated with 3-month mRS > 2 only.

Conclusion: This study used automated methods using a deep learning

segmentation model to assess the impact of WMH burden on outcomes in SVO

stroke. Our findings emphasize the significance of WMH burden in SVO stroke

prognosis, encouraging tailored interventions for better patient care.
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Introduction

Small-vessel occlusion (SVO) stroke is a distinct type

of stroke characterized by small, deep cerebral infarcts

primarily involving the perforating arteries (Rost et al.,

2010a). While SVO stroke is generally associated with a

better prognosis than large-vessel stroke, patients with

this subtype nevertheless show considerable variability in

outcomes (Ntaios et al., 2016). Therefore, understanding

the factors that influence stroke outcomes in SVO stroke is

critical to optimizing patient management and improving the

long-term prognosis.

One potential factor influencing stroke outcomes is the burden

of white matter hyperintensities (WMH), defined as the extent of

white matter pathology in the brain (Kim and Lee, 2015). The

white matter is composed of myelinated nerve fibers that facilitate

efficient communication between different brain regions, and it has

been hypothesized that the WMH burden on magnetic resonance

imaging (MRI) may contribute to worse outcomes in patients

with SVO stroke. WMH and SVO stroke are consequences of

endothelial failure, which share several vascular risk factors that

may explain their coexistence (Wen and Sachdev, 2004; Wardlaw

et al., 2013a).

Several studies have indicated a higher prevalence and

severity of white matter disease in patients with SVO stroke,

suggesting an association between the WMH burden and this

type of stroke (Yan et al., 2015; Zhang et al., 2015; Helenius

et al., 2017; Tian et al., 2022). However, to date, no studies

have examined how the severity of WMH burden in the

deep and periventricular areas impacts outcomes following

acute SVO stroke. Previous studies have further shown that

WMH burden may worsen stroke outcomes in large-vessel

occlusion stroke and cryptogenic stroke (Jeong et al., 2018;

Griessenauer et al., 2020; Derraz et al., 2022). Given the

hypothesis of an association between WMH burden severity

and the prevalence of SVO stroke, it is plausible that the

effect of WMH burden may worsen outcomes following acute

SVO stroke.

The widely used Fazekas scale is an easy and quick method

used in clinical practice to estimate the volume of WMHs (Fazekas

et al., 1987). However, due to the inherent heterogeneity in the

size, number, shape, and location of WMH, a more reliable and

objective method to assess WMH volume may be needed (Vermeer

et al., 2003; Ding et al., 2020). In recent years, automated methods

using deep learning, such as convolutional neural networks, have

been applied tomeasureWMHvolumes, with varying results (Jiang

et al., 2020; Balakrishnan et al., 2021). One commercially available

segmentation model, the VUNOMed-DeepBrain (Suh et al., 2020),

focuses on treating highly imbalanced WMH labels, especially,

primarily deep WMH, by applying generalized cube loss (Joo et al.,

2022).

This study aimed to investigate the impact of the severity of

WMH burden, estimated using a deep learning-based automatic

WMH segmentation algorithm, on stroke outcome in acute SVO

stroke, a field that has not yet been evaluated.

Methods

Study population

Patients with acute ischemic stroke were consecutively enrolled

in two university-affiliated multicenter registry databases between

August 2013 and November 2022. We identified patients with

acute ischemic stroke due to SVO according to the Trial of Org

10172 in Acute Stroke Treatment (TOAST) classification, with

some modifications (Ko et al., 2014). Accordingly, we reviewed

all diffusion-weighted imaging (DWI) lesions in enrolled patients

to confirm SVO stroke. SVO lesions were documented as a single

lesion with the largest diameter of≤20mm on an axial slice of DWI

that penetrate the arterial infarction of the basal ganglia, corona

radiata, thalamus, or pons without a cardioembolic source or

relevant stenosis of the corresponding artery. We excluded patients

meeting the following criteria: (1) those with an unavailable initial

MRI, (2) those unavailable for early neurological deterioration

(END) and a 3-month modified Rankin Scale (mRS) assessment,

and (3) those with a pre-stroke mRS score ≥2.

Data collection and definition of
parameters

Demographic, clinical, laboratory, and outcome data were

obtained directly from the web-based registry databases of the

two institutions. We prospectively recruited patients from Hallym

Sacred Heart Hospital, a regional cardiocerebrovascular center in

southwestern Gyeonggi-do, South Korea, and Chuncheon Sacred

Heart Hospital, a regional emergency center in western Gangwon-

do, South Korea. These hospitals serve populations of ∼1 million

and 500,000, respectively. Both institutions are part of the Clinical

Research Collaboration for Stroke in Korea (CRCS-K) registry, in

which prospectively trained stroke coordinators enter information

about stroke patients, including their outcomes, into the registry

website using the same enrollment protocol (Bae et al., 2022).

We identified WMH as an MRI feature of cerebral small

vessel disease (SVD), according to the Standards for Reporting

Vascular Changes on Neuroimaging (STRIVE) criteria (Wardlaw

et al., 2013b; Duering et al., 2023). Baseline WMH assessment was

performed by two expert vascular neurologists (M Lee and S-H

Lee) in a double-blinded manner [interclass correlation coefficient

[ICC] = 0.88, p < 0.001]. The degree of WMH burden was rated

visually on axial FLuid-Attenuated Inversion Recovery (FLAIR)

images using the modified Fazekas scale and was graded separately

as periventricular WMH (PWMH) or deep WMH (DWMH;

Vermeer et al., 2003). A total Fazekas score, ranging from 0 to

6, was estimated by summing the Fazekas scores for PWMH and

DWMH. We defined severe WMH as a total Fazekas score of ≥3,

as previously described (Guo et al., 2021). In accordance with the

STRIVE criteria (Staals et al., 2014; Duering et al., 2023), the SVD

score was determined by a double-blinded review of FLAIR images

by two expert vascular neurologists (M Lee and S-H Lee; ICC =

0.92, p < 0.001).
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Acute SVO stroke was defined as a single lesion with the largest

diameter of≤20mm in an axial slice of DWI for penetrating artery

infarction of the basal ganglia, corona radiata, thalamus, or pons

based on the TOAST classification (Ay et al., 2005; Rost et al., 2010a;

Ko et al., 2014). In addition, this lesion should be matched to a low

signal on apparent diffusion coefficient (ADC) maps and correlate

with the neurological symptom (Rost et al., 2010a).

Brain MRI was performed on a 3.0 T superconducting

system (3T Achieva X-series; Philips Healthcare, Best,

Netherlands). All brain MRI protocols have been described

in Supplementary Table 1.

Outcome measures

In this study, the primary outcome measure was END, defined

as an increase of at least 1 point in motor power or a worsening

of the total National Institute of Health Stroke Scale (NIHSS) score

of ≥2 points within 72 h of hospitalization, as compared with the

initial NIHSS score (Park et al., 2020). The secondary outcome

measure was poor functional outcomes at 3 months, defined as an

mRS score of >2.

Quantitative WMH volume assessment

We performed WMH segmentation using a pre-trained model

based on the 2D UNet architecture with a ResNet34 encoder (Joo

et al., 2022). The model features an encoder-decoder framework

with skip connections, where the encoder pulls out features from

the input while the decoder generates a segmentation mask based

on the latent feature vector. Skip connections facilitate improved

learning of high-level features by concatenating the outputs of

the encoder extracts with their corresponding decoder inputs. The

workflow of the 2D UNet architecture with the ResNet34 encoder

is presented in Supplementary Figure 1.

Resizing each input T2-FLAIR MRI image to a constant

dimension is necessary to construct the training dataset; however,

we found a certain amount of distortion when the 2D MRI image

was resized to a predetermined size. This is because the number

of slices varies, meaning that the image size is adjusted to the

specified dimensions (256, 256, z) when the original dimensions

(x, y, z) and voxel sizes (a, b, c) are given in the RAS (Right,

Anterior, Superior) orientation, voxel size is adjusted to (a ∗

256/x, b ∗ 256/x, c), and voxel intensity is normalized within the

range of [0, 255] using min-max normalization. All images used

for training and testing were normalized using min-max scaling

within the range of [0, 255] to maintain a uniform voxel intensity

distribution. We subsequently applied the T2-FLAIR intracranial

volume segmentation tool available in the software to perform

brain extraction and reduce artifacts (Suh et al., 2023). The training

dataset did not include any acute or old infarcts. Small infarcts

were included in WMH because they appear high on FLAIR.

Acute infarcts that do not appear frequently on FLAIR imaging

were inevitably omitted. PWMH and DWMH were segmented

separately. The PWMH boundary was located 1 cm from the

ventricular wall. The reliability and validation of the automated

WMH segmentation and Fazekas scale prediction model of VUNO

Med-DeepBrain demonstrated its accuracy compared with manual

annotation in a previous study (Jung et al., 2022). Furthermore, we

intend to continue accumulating evidence to support its reliability.

Statistical analysis

We hypothesized that increased WMH volume would increase

the risk of END and poor functional outcomes in patients with

acute SVO stroke. We separated the groups into the following

subgroups: normal to mild WMH (Fazekas score, 0–2) and severe

WMH (Fazekas score, 3–6). Covariates and outcomes between the

two groups were compared using Pearson’s chi-squared test for

categorical variables and the Student’s t-test or the Mann-Whitney

U-test for continuous variables.

To account for potential covariate imbalances and confounding

factors between the normal-to-mild and severe WMH groups, we

applied propensity score matching (PSM) techniques to enhance

the robustness of our analysis. The propensity score for each group

was defined as the probability of being in the normal-to-mild

WMH group, based on the patients’ baseline demographics and

vascular risk factors in the baseline logistic regression analysis.

Using these propensity scores, we then matched the normal-to-

mild and severe WMH groups in a 1:1 ratio using the nearest-

neighbor method. The covariates used in PSM analysis included

all of the demographic variables, stroke risk factors, treatment

modalities, lesion locations, and SVD markers that have been

demonstrated to influence the outcome, as described in Table 1.

Logistic regression analysis was performed on the PSM cohort to

assess the effect of WMH volume on outcomes. Specifically, we

used quantitative measures of total WMH, PWMH, and DWMH

volume as independent variables to evaluate their associations with

post-stroke outcomes. Furthermore, we adjusted for significant

covariates with a p-value < 0.05 that were deemed clinically

plausible in relation to outcomes. We subsequently performed

the Hosmer-Lemeshow test to confirm the goodness of fit of

the logistic regression model. Statistical analyses were performed

using Statistical Package for the Social Sciences (SPSS) version 21.0

software (IBMCorporation, Armonk, NY, USA) and R version 4.0.3

moonBook and MatchIt (R Core Team 2020, R Foundation for

Statistical Computing, Vienna, Austria).

Results

Of the 7,782 consecutive patients with acute ischemic stroke

treated in the two centers during the study period, 1,792 were

diagnosed with acute SVO stroke. Of these patients with SVO

strokes, 1,718 who met the inclusion criteria were enrolled in

this study. Among the enrolled patients, 68.9% (1,184/1,718)

were classified into the severe WMH group. Patients with severe

WMH burden were generally older; had severe neurological

symptoms; had a higher prevalence of prior stroke, hypertension,

and hyperlipidemia; were less likely to belong to male sex and

current smokers; and were more likely to have previously received

antithrombotic therapy. Higher total SVD scores (3 and 4), as

defined by the STRIVE criteria, were more common in the severe
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TABLE 1 Baseline characteristics between the normal to mild WMH group and the severe WMH group in total and PSM cohort.

Total cohort PSM cohort

Normal-to-mild
WMH

Severe WMH p-value Normal-to-mild
WMH

Severe WMH p-value

n = 534 n = 1,184 n = 534 n = 534

Age, year (SD)† 62.1 (11.4) 68.5 (12.3) 0.003 62.1 (11.4) 76.1 (9.9) <0.001

Male sex, n (%)∗ 353 (66.1) 685 (57.6) 0.001 353 (66.1) 242 (45.3) <0.001

Initial NIHSS, score (IQR)‡ 2 (1–3) 2 (1–4) 0.004 2 (1–3) 3 (1–5) <0.001

Prior stroke, n (%)∗ 66 (12.4) 276 (23.3) <0.001 66 (12.4) 213 (39.9) <0.001

Hypertension, n (%)∗ 284 (53.2) 715 (60.2) 0.01 284 (53.2) 372 (69.7) <0.001

Diabetes mellitus, n (%)∗ 177 (33.1) 388 (32.8) 0.91 177 (33.1) 162 (30.3) 0.36

Hyperlipidemia, n (%)∗ 109 (20.4) 314 (26.5) 0.01 109 (20.4) 183 (34.3) <0.001

Current smoking, n (%)∗ 157 (29.4) 257 (21.7) 0.001 157 (29.4) 60 (11.2) <0.001

Prior antithrombotic, n (%)∗ 121 (22.7) 328 (27.7) 0.03 121 (22.7) 181 (33.9) <0.001

Prior statin, n (%)∗ 91 (17.0) 232 (19.6) 0.23 91 (17.0) 95 (17.8) 0.81

Prior IVT, n (%)∗ 34 (6.4) 45 (4.7) 0.16 34 (6.4) 19 (3.6) 0.059

Lesion location, n (%)∗ 0.10 0.58

Anterior 287 (53.7) 687 (58.0) 287 (53.7) 297 (55.6)

Posterior 247 (46.3) 497 (42.0) 247 (46.3) 237 (44.4)

SVD markers, n (%)∗

MBs 73 (13.7) 230 (19.4) 0.004 73 (13.7) 143 (26.8) <0.001

ePVS 10 (1.9) 124 (10.5) <0.001 10 (1.9) 124 (23.2) <0.001

Lacune 80 (15.0) 304 (25.7) <0.001 80 (15.0) 217 (40.6) <0.001

Total SVD score, n (%)∗

0 385 (72.1) 152 (12.8) 385 (72.1) 51 (9.6)

1 132 (24.7) 631 (53.3) 132 (24.7) 202 (37.8)

2 17 (3.2) 247 (20.9) 17 (3.2) 150 (28.1)

3 0 (0.0) 122 (10.3) 0 (0.0) 99 (18.5)

4 0 (0.0) 32 (10.3) 0 (0.0) 32 (6.0)

WMH, white matter hyperintensity; PSM, propensity score matching; SD, standard deviation; NIHSS, National Institute of Health Stroke Scale; IQR, interquartile range; IVT, intravenous

thrombolysis; SVD, small vessel disease; MBs, microbleeds; ePVS, extensive perivascular space; PWMH, periventricular WMH; DWMH, deep WMH.
∗Calculated using the chi-square test.
†Calculated using the Student’s t-test.
‡Calculated using the Mann–Whitney U-test.

WMH group. Compared to the normal-to-mild WMH group,

the quantitative total WMM, DWMH, and PWMH volumes were

higher in the severe WMH group (Table 1). The mean quantitative

WMH volume was likely to be increased with categories of Fazekas

scales (PWMH volume: mean± SD, 8.49± 5.97 in Fazekas scale 0–

1; mean± SD, 15.63± 10.59 in Fazekas scale 2; mean± SD, 22.08±

11.10 in Fazekas scale 3; DWMH volume: mean ± SD, 3.30 ± 3.90

in Fazekas scale 0–1; mean ± SD, 10.99 ± 12.28 in Fazekas scale 2;

mean± SD, 15.57± 18.51 in Fazekas scale 3, Figure 1). After PSM,

534 patients with a normal-to-mild WMH burden were matched

in a 1:1 ratio with those with a severe WMH burden. In the PSM

cohort, the baseline characteristics of the two groups were similar

and balanced (Table 1).

In the entire cohort, the occurrence of END was higher in

the severe WMH group than in the normal-to-mild WMH group

(14.0 vs. 6.0%, p < 0.001); this effect remains significant in the

PSM cohort (13.5 vs. 6.9%, p < 0.001; Figure 2). The proportion

of patients with poor functional outcomes (mRS > 2) at 3 months

was higher in the severe WMH group than in the normal-to-mild

WMH group in the total cohort (23.1 vs. 9.7%, p < 0.001), as well

as in the PSM cohort (24.7 vs. 11.4%, p < 0.001, Figure 3).

In this study, the covariates were imbalanced between the

two groups, despite PSM. Therefore, we conducted a Hosmer-

Lemeshow test to assess the goodness of fit of the logistic regression

model in the PSM cohort. A logistic regression analysis in the PSM

cohort showed that the total quantitative WMH volume increased

the risk of END (OR, 1.01; 95% CI, 1.00–1.02; p = 0.048) and

3-month mRS > 2 (OR, 1.02; 95% CI, 1.01–1.03; p < 0.001).

Furthermore, in logistic regression analysis in the PSM cohort, the

quantitative DWMH volume was found to be associated with an

Frontiers in AgingNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1399457
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Lee et al. 10.3389/fnagi.2024.1399457

FIGURE 1

Distribution of quantitative WMH volume according to the Fazekas scale in the PSM cohort. WMH, white matter hyperintensity; PSM, propensity score

matching; P-Fazekas, periventricular Fazekas scale; D-Fazekas, Deep Fazekas scale. *Using the linear contrast test.

FIGURE 2

Distribution of END according to WMH burden in the total and PSM cohorts. END, early neurologic deterioration; WMH, white matter hyperintensity;

PSM, propensity score matching. *Using the chi-square test.

increased risk of both END and 3-month mRS > 2 (END: OR,

1.02; 95% CI, 1.01–1.04; p = 0.01; 3-month mRS > 2: OR, 1.04;

95% CI, 1.02–1.06; p < 0.001, Table 2, Supplementary Tables 2, 3).

In addition, quantitative PWMH was associated with 3-month

mRS > 2 in the logistic regression analysis (OR, 1.03; 95% CI,

1.01–1.05; p= 0.01), but not with END in the PSM cohort (Table 2,

Supplementary Tables 2, 3). The logistic regression analysis of the

total cohort further revealed that the effect of the WMH volume on

stroke outcomes remained unchanged (Supplementary Tables 4, 5).

The Hosmer-Lemeshow test indicated a good logistic model fit for
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FIGURE 3

Distribution of 3-month mRS > 2 according to WMH burden in the total and PSM cohorts. mRS, modified Rankin Scale; WMH, white matter

hyperintensity; PSM, propensity score matching. *Using the chi-square test.

this study. For END, the total WMH volume had a chi-square test

value of 3.06 with a significance level of p = 0.93, and the PWMH

volume had a chi-square test value of 7.28 with a significance level

of p = 0.51. The chi-square test result for the DWMH volume was

5.31 with a significance level of p= 0.72, while that for total WMH

volume with a 3-month mRS > 2 was 5.19 with a significance

level of p = 0.74. Meanwhile, the chi-square test result for PWMH

volume was 4.39 with a significance level of p = 0.82 and that for

DWMH volume was 4.41 with a significance level of p= 0.82.

Discussion

The purpose of this study was to investigate the impact

of WMH burden, as quantified using a deep-learning-based

automated segmentation algorithm, on stroke outcomes in patients

with acute SVO stroke. This study revealed several important

findings that contribute to our understanding of the relationship

between WMH burden and stroke outcomes.

Overall, the results of this study provide compelling evidence

that an increased WMH burden is associated with worse stroke

outcomes in patients with acute SVO stroke. The primary outcome

measure, END, was consistently more common in patients with

a high WMH burden, both in the overall cohort and after

adjusting for potential confounders by PSM. This finding is

consistent with previous studies, which showed an association

between WMH and worse outcomes in various stroke subtypes

(Rost et al., 2010a,b). However, one previous study did not

identify a significant correlation between WMH and END in

patients with SVO stroke (Ryu et al., 2017). Overall, our findings

suggest a more differentiated role for WMHs: DWMHs are

more closely associated with END, whereas PWMHs appear

to influence long-term functional outcomes. This distinction is

critical, as it highlights the importance of considering the spatial

distribution of WMHs when assessing their potential impact on

stroke recovery. By incorporating the results of a previous study

into our discussion, we acknowledge the broader consensus on the

significance of WMH volume while providing additional insights

into the regional effects that may guide more targeted interventions

in the management of SVO stroke. As such, this study extends

this knowledge to SVO stroke and highlights the importance of

WMH burden as a predictor of END. The secondary outcome

measure, poor functional outcomes at 3 months, showed a similar

pattern. Patients with severeWMHburden had a higher proportion

of poor functional outcomes, highlighting the potential long-term

implications of WMH burden in SVO stroke. This finding is

consistent with those of previous studies, which have shown an

association between WMH burden and poor functional outcomes

and increased disability after stroke. Thus, the current study further

supports the notion that the WMH burden has a broad impact on

post-stroke recovery and overall quality of life.

In light of these findings, several mechanisms underlying the

association between the WMH burden and stroke outcomes in

patients with SVO stroke warrant further discussion. WMH and

SVO strokes share common vascular risk factors and underlying

pathophysiological mechanisms, including endothelial dysfunction

and microvascular impairment (Wen and Sachdev, 2004; Wardlaw

et al., 2013a). The presence of extensive WMH may reflect a more

widespread disruption of the microvascular network, which could

lead to impaired perfusion, compromised tissue integrity, and

limited potential for neurovascular recovery following an ischemic

insult (Fernando et al., 2006; Chen et al., 2021). Furthermore,

WMH burden may indicate a higher susceptibility to subsequent

ischemic events, leading to a compounding effect on stroke severity

and recovery.

Interestingly, the present study revealed different associations

between DWMH and PWMH and different stroke outcomes,

providing valuable insights into the nuanced effects of white matter

pathology on post-stroke recovery. The observed association

between quantitative DWMHvolume and an increased risk of END

is a significant finding. DWMH represents white matter changes

that occur deeper in the brain, often reflecting chronic ischemic

damage to the small penetrating arteries supplying this region

(Cai et al., 2022). This result suggests that structural integrity and
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TABLE 2 E�ect of WMH burden volumes per 1ml on stroke outcomes in SVO stroke using the PSM cohort.

END 3-month mRS > 2

OR 95% CI p-value OR 95% CI p-value

Total WMH volume 1.01 1.00–1.02 0.048 1.02 1.01–1.03 <0.001

PWMH volume 1.01 0.99–1.03 0.43 1.03 1.01–1.05 0.01

DWMH volume 1.02 1.01–1.04 0.008 1.04 1.02–1.06 <0.001

WMH, white matter hyperintensity; SVO, small vessel occlusion; PSM, propensity score matching; END, early neurologic deterioration; mRS, modified Rankin Scale; PWMH, periventricular

WMH; DWMH, deep WMH.

Adjusted for age, sex, initial NIHSS, prior stroke, hypertension (HTN), hyperlipidemia (HL), current smoking, prior antithrombotic use, and total SVD score.

connectivity within critical neural networks may be compromised

in patients with a higher DWMHburden (Moody et al., 2004; Porcu

et al., 2020). The disrupted white matter tracts may contribute to

the END and delayed functional status observed in these patients,

potentially by amplifying the effects of the initial ischemic insult

and impairing neural compensation mechanisms. In contrast, the

association between the quantitative PWMH volume and delayed

functional outcomes, as opposed to END, highlights a different

aspect of white matter pathology. PWMH is typically associated

with small-vessel disease in superficial white matter regions close

to the ventricles. This area is vulnerable to changes in the blood-

brain barrier permeability and cerebral fluid dynamics (van den

Heuvel et al., 2006; Iliff et al., 2012). The correlation between

PWMH and 3-monthmRS score suggests that these periventricular

changes may influence the long-term recovery trajectories rather

than immediate neurological deterioration. It is plausible that

the impact of PWMH on functional outcomes may be related

to its disruptive effects on neural networks, which are critical

for higher-order cognitive and motor functions (Goulay et al.,

2020). These differential associations between DWMH, PWMH,

and stroke outcomes highlight the need for tailored approaches to

stroke management and prognosis. END is a critical event that can

significantly influence patient management decisions, warranting

vigilant monitoring and early intervention in patients with a higher

DWMH burden. In contrast, the delayed functional outcomes

associated with PWMH highlight the importance of addressing

white matter pathology to optimize long-term recovery. Identifying

patients with a substantial PWMH burden could help design

strategies to support cognitive rehabilitation and address potential

cognitive impairments that may develop over time.

In the present study, we performed a quantitative analysis

of WMH volume using a deep-learning-based segmentation

algorithm, which provided a more accurate and objective

assessment than traditional visual grading scales, such as the

Fazekas scale. We further proposed the mean quantitative volume

as PWMH and DWMH using deep learning, in accordance

with the categories of the Fazekas scale. Previous studies using

automatic segmentation showed the cutoff values of theWMH total

quantitative volume and Fazekas scale scores (Andere et al., 2022;

Joo et al., 2022). This methodological advancement is significant

because the WMH burden is known to exhibit considerable

variability in terms of size, shape, and location. The automated

segmentation model used in this study, which was based on the

UNet architecture with a ResNet34 encoder, adds to the growing

body of literature using deep-learning techniques to address these

challenges in a reliable and reproducible manner.

Nevertheless, this study has several limitations that should be

considered when interpreting the results. First, despite the use of

PSM to control for potential confounders, residual confounding

variables may have influenced the observed associations. Second,

this study focused on a specific stroke subtype (SVO), and the

results may therefore not be directly applicable to other stroke

subtypes. Third, although the deep learning-based segmentation

algorithm represents a more advanced approach for quantifying the

WMHburden, validation of the accuracy and generalizability of the

algorithm is essential. Fourth, the study was conducted exclusively

on Korean individuals, thus precluding any generalizations

regarding the impact of WMH volume on the study outcome based

on race. Nevertheless, a recent study demonstrated no differences in

WMH injury after adjusting for various cardiovascular risk factors,

even in the presence of racial differences (Austin et al., 2022).

Future studies should investigate the effects of the WMH volume

on stroke outcomes in other ethnic groups. Finally, the rationale

behind the omission of WMHs/intracranial volumes (ICVs) in our

study was that the objective of intracranial volume segmentation

was to facilitate skull stripping, which in turn would allow for skull

artifact correction. In the future, it may be desirable to perform ICV

correction on the data from this part of the study.

Conclusion

In conclusion, this study highlights the detrimental

impact of WMH burden on stroke outcomes in patients

with acute SVO. These results provide valuable insights into

the prognostic significance of WMH burden and further

suggest that incorporating quantitative measures of WMH

volume into clinical practice could improve risk stratification

and guide treatment decisions. However, further research in

larger and more diverse cohorts is needed to validate these

findings and explore the underlying mechanisms linking WMH

burden to stroke outcomes. Eventually, a better understanding

of the relationship between WMH and stroke may lead to

more targeted interventions to optimize patient management

and improve the long-term prognosis in individuals with

SVO stroke.
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