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Objective: To examine the dose–response relationship between specific types 
of exercise for alleviating Timed up and Go (TUG) in Parkinson’s disease PD.

Design: Systematic review and Bayesian network meta-analysis.

Data sources: PubMed, Medline, Embase, PsycINFO, Cochrane Library, and Web 
of Science were searched from inception until February 5th, 2024.

Study analysis: Data analysis was conducted using R software with the MBNMA 
package. Effect sizes of outcome indicators were expressed as mean deviation 
(MD) and 95% confidence intervals (95% CrI). The risk of bias in the network was 
evaluated independently by two reviewers using ROB2.

Results: A total of 73 studies involving 3,354 PD patients. The text discusses dose–
response relationships in improving TUG performance among PD patients across 
various exercise types. Notably, Aquatic (AQE), Mix Exercise (Mul_C), Sensory 
Exercise (SE), and Resistance Training (RT) demonstrate effective dose ranges, with 
AQE optimal at 1500 METs-min/week (MD: −8.359, 95% CI: −1.398 to −2.648), 
Mul_C at 1000 METs-min/week (MD: −4.551, 95% CI: −8.083 to −0.946), SE at 1200 
METs-min/week (MD: −5.145, 95% CI: −9.643 to −0.472), and RT at 610 METs-min/
week (MD: −2.187, 95% CI: −3.161 to −1.278), respectively. However, no effective 
doses are found for Aerobic Exercise (AE), Balance Gait Training (BGT), Dance, and 
Treadmill Training (TT). Mind–body exercise (MBE) shows promise with an effective 
range of 130 to 750 METs-min/week and an optimal dose of 750 METs-min/week 
(MD: −2.822, 95% CI: −4.604 to −0.996). According to the GRADE system, the 
included studies’ overall quality of the evidence was identified moderate level.

Conclusion: This study identifies specific exercise modalities and dosages that 
significantly enhance TUG performance in PD patients. AQE emerges as the 
most effective modality, with an optimal dosage of 1,500 METs-min/week. 
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MBE shows significant benefits at lower dosages, catering to patients with 
varying exercise capacities. RT exhibits a nuanced “U-shaped” dose–response 
relationship, suggesting an optimal range balancing efficacy and the risk of 
overtraining. These findings advocate for tailored exercise programs in PD 
management, emphasizing personalized prescriptions to maximize outcomes.

Systematic Review Registration: International Prospective Register of 
Systematic Reviews (PROSPERO) (CRD42024506968).

KEYWORDS

Parkinson’s disease, exercise, Timed and up go, dose–response, RCTs, Bayesian 
network meta-analysis

Introduction

TUG (Timed up-and-go test) has been widely accepted as a standard 
assessment for measuring the basic motor symptoms of PD and has been 
widely accepted in clinical practices for over 20 years (Yoo et al., 2020). 
A cross-sectional cohort study demonstrated that the TUG is an accurate 
assessment tool for identifying those with PD who are at risk for falls 
(Nocera et al., 2013). In a TUG test several basic mobility sub-tasks 
included “Sit,” “Sit-to-Stand,” “Walk,” “Turn,” “Walk-Back,” and “Sit-
Back” (Li et al., 2018). Because the test has the advantages of being quick 
and does not require special equipment or training, it will be easier to 
perform as part of routine health management. In addition, a review 
study shows a significant correlation between TUG test results and a 
history of falls (Beauchet et al., 2011). On the other hand, in predicting 
PD risk, a cohort study involving 1,497,093 older adults over 3.5 years 
found that participants with slower TUG test results—defined as 20 s for 
abnormal outcomes—had a significantly increased risk of developing PD 
compared to those with normal TUG test results (Yoo et al., 2020).

Exercise has been shown to improve TUG in PD (Gobbi et al., 
2009). However, the effect of different forms of exercise on 
improving TUG in PD patients remains controversial. For example, 
a recent meta-analysis result by Zhen et al. (2022) found aerobic 
exercise can improve TUG in PD patients. But, Sousa et al. (2017) 
showed that mixed exercise can improve TUG in PD patients more 
effectively than aerobic exercise. Not only that, in terms of anaerobic 
resistance training the systematic review results of Lima et  al. 
confirmed resistance exercise as a more effective modality to 
improve TUG in PD (Lima et al., 2013). Meanwhile, it is worth 
exploring Meng et  al.’s study which found that both resistance 
exercise and mind–body exercise can improve identically TUG in 
PD (Ni et al., 2016). Interestingly, the RCTs of Palamara et al. (2017) 
found that aquatic exercise was more effective than land exercise in 
improving TUG in PD. In addition, sensory training has been 
gaining popularity in recent years, in a network meta-analysis, the 

study results found that sensory training had a superior effect on 
improving TUG in PD patients (Qian et al., 2023).

The reason for the different effects of different exercise types to 
improve TUG may be due to differences in exercise dosage. And, the 
amount of exercise dosage is strongly associated with sustained 
improvement in health (Foulds et al., 2014). In addition, the result of 
Gallardo et al. showed a nonlinear dose–response relationship between 
exercise and cognitive improvement in old adults, and their studies, it is 
also the first time determining the exercise dose by task metabolic 
equivalents (Gallardo-Gómez et al., 2022, 2023). At the same time, a 
recent meta-analysis study results found that exercise interventions 
recommended by the American College of Sports Medicine (ACSM), 
which include elements of flexibility, cardiovascular endurance, muscle 
strength, functional training, and motor control, can significantly 
enhance motor function, activity ability in PD when adhered to with 
high compliance (Cui et al., 2023). However, the optimal exercise form 
and exercise dose to improve TUG in PD patients has not been clearly 
defined in previous studies. In our study, we continue to put the exercise 
dose as calculated as task metabolic equivalents for an intervention 
(Willis et al., 2024). To determine the relationship between exercise dose 
and TUG improvement.

We utilize advanced techniques in this systematic review and 
network meta-analysis, including model-based dose–response network 
meta-analysis within a Bayesian framework (Pedder, 2021) to investigate 
the relationship between various exercise interventions and TUG in PD 
patients. We acknowledge that statistically significant improvements in 
TUG may not always reflect clinically meaningful changes. Hence, our 
analysis emphasizes assessing clinical relevance alongside statistical 
significance. Additionally, we aim to determine the minimum clinically 
important difference (MCID) for TUG and identify optimal exercise 
dosages for clinically meaningful improvements. Our research will 
contribute significantly to evidence-based exercise guidelines for 
managing motor symptoms in PD, aiding healthcare professionals in 
decision-making.

Method

This systematic review and network meta-analysis (NMA) were 
registered with the International Prospective Register of Systematic 
Reviews (PROSPERO) (CRD42024506968) and This NMA was 
reported by the preferred Reporting Items for Systematic Review and 
Meta-analysis Protocols statement extension for PRISMA-NMA 
checklist (Page et al., 2021).

Abbreviations: RCT, Randomized controlled trials; SMD, Standardized mean 

difference; SD, Standardized Deviation; SE, Standard errors; AE, Aerobic exercise; 

AQE, Aquatic exercise; BGT, Balance and Gait Training; CON, control group; MBE, 

Mind–body exercise; MulC, Mixed training; RT, Resistance training; SE, Sensory 

Exercise; TT, Treadmill virtual Realty; DIC, Eviance information Criterion; UME, 

Uncorrelated mean-effects model; MCMC, Markov Chain Monte Carlo; TUG, 

Timed and up Go.
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Search strategy

Literature was systematically retrieved through comprehensive 
searches conducted in PubMed, Medline, Embase, PsycINFO, 
Cochrane Central Register of Controlled Trials, and Web of Science, 
from the inception of each database to February 5th, 2024. The 
following subject heading and keyword were used for electronic 
searching: (“Parkinson Disease” or “Parkinson” or “Parkinson’s 
Disease”) AND (“exercise” or “Exercises” or “Physical Activity” or 
“Training” or “endurance training” or “Tai Chi” or “yoga” or “Balance” 
or “Resistance” or “Walking” or “Dance” or “Aerobic”) AND (“TUG” 
or “Timed up and Go”) AND (“Randomized controlled trial” or 
“controlled clinical trial” or “randomized”). Detailed search strategies 
for each database and platform can be found in Supplementary File 1.

In addition, to ensure no relevant studies were overlooked, 
we meticulously reviewed the reference lists of all selected articles and 
the bibliographies of systematic reviews published within the past 
5 years. The screening process for titles/abstracts and full texts were 
rigorously carried out by two independent investigators (JYW and 
LZ), with any discrepancies resolved through discussion or, if 
necessary, by consulting a third author (YY) for adjudication.

Eligibility criteria and study selection

Studies were selected based on specific inclusion criteria: (1) 
Participants had to be diagnosed with Parkinson’s Disease (PD), with 
a mean age of 50 years or older, and at Hoehn and Yahr stages below 
4; (2) The intervention involved any type of exercise, encompassing 9 
distinct exercise modalities as detailed in Supplementary File 2; (3) 
Comparators included those receiving no intervention, standard care, 
educational sessions on the disease, or active control, which could 
involve a different exercise type from the intervention group or the 
same exercise type but at a varied dosage; (4) Outcomes had to include 
Timed up and go test (TUG) (Podsiadlo and Richardson, 1991); (5) 
The study design must be  a randomized controlled trial (RCT). 
Exclusion criteria were applied to studies that: (1) focused solely on 
the acute effects of exercise; (2) incorporated mixed interventions 
from different disciplines (e.g., combining exercise with repetitive 
transcranial magnetic stimulation); (3) lacked clear descriptions of 
exercise types or sufficient details to calculate exercise dosage; (4) did 
not provide mean values and standard deviations in their results, or 
failed to respond to our data requests. Following these criteria, two 
independent reviewers (JYW and LZ) meticulously screened the titles, 
abstracts, and full texts of potentially relevant studies to determine 
their suitability for inclusion.

Data extraction

Two reviewers (JYW and LZ) meticulously extracted critical 
information from each publication, including authorship, title, 
publication year, and journal name, along with specific data on 
the study population such as the number of participants, and their 
demographic details (age and sex). The nature of the interventions 
and the outcome measures employed were also cataloged (detailed 
in Supplementary File 3). To calculate effect sizes, data on the 
change scores (difference between endpoint and baseline scores), 

standard deviations, and the number of participants in each group 
were collected. In instances where the mean changes and standard 
deviations were not directly reported, they were estimated by the 
guidelines provided in the Cochrane Handbook (Higgins et al., 
2019). To meet the data analysis requirements of the Dose–
Response Network meta-analysis package in the R program, 
we also converted the standard errors [SE = SD /SQRT (Sample 
size)] (Watt et  al., 2022). Should the required data not 
be obtainable through these methods, we committed to contacting 
the original authors up to four times over 6 weeks to request the 
necessary information.

Data setting and management

First, we assigned specific codes to interventions based on the 
type of exercise performed. These codes included: “Aerobic exercise 
(AE),” “Aquatic exercise (AQE),” “Balance and gait training (BGT),” 
“Resistance Training (RT),” “Dance,” “Mixed exercise (Mix, 
combination of 2 or more special exercise types),” “Sensory Exercise 
(SE),” Treadmill Training (TT), “Mind Body Exercise (MBE: 
including “Qigong,” “Tai Chi,” and “Yoga”). Next, interventions were 
further categorized based on their specific type and dose 
combinations, expressed in terms of METs-min/week (Metabolic 
Equivalent of Task (METs)). Not only, by calculating METs-min 
consumed per week, our study took into account not only the 
duration and frequency of exercise (METs-min/week = duration 
minute × times - pre-week × MET value) but also the intensity of 
exercise, which is critical to assess its impact on health outcomes 
(Ainsworth et al., 2011; Ferguson, 2014; Wasfy and Baggish, 2016). 
To facilitate network analysis and ensure connectivity, we applied 
approximate values of 250, 500, 750, 1,000, or 1,200 MET-min/week 
for exercise dosages, as previously employed in similar studies 
(Gallardo-Gómez et  al., 2022). This step was essential for 
conducting the network meta-analysis as outlined by J.P.T. Higgins 
et al. (2012). We provided a detailed inclusion of study-specific data 
information about different exercise METs and approximate values 
in Supplementary Table 2.

Data synthesis

In our analysis, we utilized the R statistical environment (Version 
4.3.0)1 and employed the ‘MBNMAdose’ package (Pedder, 2021) for 
conducting Model-Based Network Meta-Analysis (MBNMA). 
We specifically implemented a random-effects Bayesian MBNMA 
approach to synthesize data and assess the dose–response relationship 
between exercise dosage and TUG. Our assessment involved several 
key components, including an evaluation of network connectivity 
following the method described by Donegan et al. (2013), a model 
assessment using the approach outlined by Wheeler et al. (2010), and 
an examination of data consistency as per White et al. (2012) (details 
provided in Supplementary Files 4, 5). All effect sizes were reported as 
mean differences (MD), with 95% credible intervals (CrI) used to 

1 www.r-project.org
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assess the credibility of our estimates. In the process of selecting an 
appropriate dose–response model, we compared fit indices, including 
the Deviance Information Criterion (DIC), between-study standard 
deviation, number of parameters in the model, and residual values, as 
suggested by Evans (2019). Ultimately, we opted for restricted cubic 
splines to evaluate the non-linear dose–response association, as 
detailed in Supplementary File 6.

To further enhance the clinical relevance of our findings, 
we conducted an estimation of the exercise dosage or range of dosages 
required to achieve the Minimum Clinically Important Difference 
(MCID), as recommended by Bernstein and Mauger (2016). In our 
analysis, we  applied a distribution-based method to establish a 
consolidated MCID value for the TUG test, following the approach 
outlined by Watt et al. (2021). Our results indicated that the MCID for 
the TUG test could be  estimated as a reduction of −2.7 s when 
considering a 0.4 standard deviation (SD) threshold, or a reduction of 
−3.4 s at a 0.5 SD level. However, to provide clinicians with more 
robust and clinically meaningful guidance, we ultimately selected an 
MCID of −3.4 s at the 0.5 SD threshold. This choice reflects our 
commitment to delivering rigorous and valuable recommendations 
for clinical practice, ensuring that our findings can be  effectively 
applied to benefit patients.

Risk of bias and quality of evidence

Two reviewers (HYZ and XYF), meticulously evaluated and rated 
the included studies by the Cochrane Risk of Bias 2.0 criteria, the 
study-assessment items included randomized sequence generation, 
bias due to deviation from the intended intervention, incomplete data, 
measurement bias, selective bias in reporting results, which as detailed 
by Sterne et al. (2019). In instances where discrepancies arose, they 
were resolved through thorough discussion or by seeking the input of 
a third reviewer, YY, to reach a consensus.

Results

Characteristics of included studies

A total of 5,258 articles were retrieved from the databases and 
through hand-searching. After removing duplicates, we screened the 
citations by title and abstract, considering 771 potentially eligible 
articles, and subsequently searched for their full texts. After excluding 
studies that did not meet the inclusion criteria, 73 studies were 
included in our analysis (Figure  1). These studies involved 3,354 

FIGURE 1

PRISMA flow diagram of the search process for studies. RCT randomized controlled trials.
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participants (1,963 males), all of whom had PD and were aged 
between 51.6 to 72 years, with a mean disease duration of 6.34 years 
(SD = 2.34) and a mean Hoehn and Yahr stage of 3.25 (SD = 0.35). The 
exercise period ranged from 2 to 48 weeks (mean = 9.3 weeks, 
SD = 6.1), the frequency of exercise training per week ranged from 1 
to 7 sessions (mean = 2.89 sessions, SD = 1.22), and the duration of 
each session ranged from 15 to 90 min (mean = 49.0 min, SD = 12.6). 
The characteristics of all included populations are detailed in 
Supplementary Table 1.

Network connectivity

Whether or not connectivity is met determines the basis of 
NMA. When direct comparison is not possible, lack of connectivity 
can lead to low statistical power and misleading results (Rouse et al., 
2017). The results showed that there was no connectivity deficit in the 
two networks, thus ensuring the accuracy of the analysis (Figures 2, 3).

Dose–response relationships

Figure  3 shows the dose–response relationship of different 
exercise types improving TUG performance. We described in detail 
the different exercise types and doses to improve the TUG 
performance in patients with PD. In 7 studies involving 99 patients 
with PD in AQE, the graphical results showed a nonlinear 
improvement in the mean value of TUG performance changes in PD 
patients with increasing doses of AQE. The effective dose of AQE 
ranges from 790 to 1,500 METs-min/week for improving TUG 
performance, and the optimal AQE dose is estimated at 1500 

METs-min/week (MD: −8.359, 95Crl: −1.398 to −2.648). Significantly, 
we identified the MCID among the exercise doses for AQE, in which 
AQE exceeding 970 METs-min/week was found to be a significant 
clinical effect for improving the TUG performance.

At the same time, in 12 studies involving 237 patients with PD in 
Mul_C, Where the effective range of Mul_C was estimated at 570 
METs-min/week to 1,000 METs-min/week, and the optimal Mul_C 
dose was estimated at 1000 METs-min/week (MD: −4.551, 95%Crl: 
−8.083 to −0.946), For MCID, when the Mul_C dose exceeding 870 
METs-min/week was found to be  a significant clinical effect for 
improving the TUG performance. On the other hand, in 25 studies 
involving 570 PD patients with PD in SE, the effective range of SE was 
estimated at 350 ~ 1,200 METs-min/week, and the optimal SE dose 
was estimated at 1200 METs-min/week (MD: −5.145, 95Crl: −9.643 
to −0.472), For MCID, when the SE dose exceeding 910 METs-min/
week was found to be a significant clinical effect.

In 18 studies involving 396 patients with PD in RT, we found that 
RT dose–response results showed an inverted U shape and had optimal 
doses for improving the TUG performance. In this result, the effective 
dose of RT ranges from 85 to 980 METs-min/week for improving TUG 
performance, and the optimal RT dose was estimated at 610 
METs-min/week (MD: −2.187, 95Crl: −3.161 to −1.278) at the same 
time, we also did not find significant clinical effects in the RT dose.

In 11 studies involving 169 patients with PD participated in AE, 
16 studies involving 236 patients with PD participated in BGT, 6 
studies involving 95 patients with PD participated in Dance, 14 studies 
involving 348 patients with PD participated in MBE, and 12 studies 
involving 227 patients with PD participated in TT. These studies were 
worth attention that none of the exercise doses for AE, BGT, Dance, 
MBE, and TT exceeded 750 METs-min/week (Figure 3 Shades of 
green represent the sample size for distributing exercise doses, with 
larger sample sizes being darker and vice versa). At the same time, 
we  also found that AE, BGT, Dance, and TT did not effectively 
improve the TUG performance at any dose. However, it is interesting 
to note that MBE the effective dose of MBE ranges from 130 to 750 
METs-min/week for improving TUG performance and 750 
METs-min/week (MD: −2.822, 95%Crl: −4.604 to −0.996) appears to 
be the optimal MBE dose for improving the TUG performance in PD 
patients. In addition, For MCID, it is worth exploring a point in which 
we did not find significant clinical effects in the MBE dose (Figure 4).

Risk of bias and quality of evidence

Overall, 22 studies (40%) were classified a low risk of bias,20 
studies (38%) were classified unclear risk of bias, and 12 studies (23%) 
were classified high risk of bias, Figure 5 shows the result of Cochrane 
Risk of Bias Tool and Study-level risk of bias assessments are presented 
in Supplementary File 7. According to the GRADE system, the overall 
quality of the evidence was moderate.

Discussion

Main finding

In this dose–response study, which incorporated 73 studies 
involving 3,354 patients with PD, we  uncovered a nonlinear 

FIGURE 2

Treatment-level and agent-level network plot. The first value 
indicates the specific intervention and the second one is the 
corresponding dose of that intervention. AE Aerobic Exercise, AQE 
Aquatic Exercise, BGT Balance and Gait Training, Dance, MBE Mind–
body Exercise, CON Control group, MulC Multicomponent Exercise 
Program, RT Resistance Training, TT Treadmill Training, SE Sensory 
Exercise.
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dose–response relationship between various exercise modalities and 
improvements in TUG performance. Among the nine types of 
exercises evaluated, AQE, Mul_C, SE, RT, and MBE demonstrated 
significant improvements in TUG function in PD patients. Notably, 
AQE emerged as the most effective modality, with an optimal dosage 
identified at 1500 METs-min/week. Further analysis into the dosage 
range necessary to achieve the Minimum Clinically Important 
Difference (MCID) in PD patients revealed that AQE, Mul_C, and SE 
all significantly enhanced TUG performance, with respective MCID 
dosages of 970, 870, and 910 METs-min/week. Additionally, RT 
exhibited an inverted U-shaped dose–response curve, indicating an 
effective dosage range from 85 to 980 METs-min/week for improving 
TUG performance. Moreover, MBE was effective within a dosage range 
of 130 to 750 METs-min/week, suggesting its potential to significantly 
enhance TUG performance at lower dosages in PD patients.

Strengths

This study reinforces that AQE is the optimal exercise modality 
for improving TUG performance in PD patients, with an 
established effective dosage of 1,500 METs-min per week. 
Consistent with prior research (Volpe et  al., 2014; Qian et  al., 

2023), our findings highlight AQE’s significant benefits in 
enhancing posture stability and motor symptoms, thus improving 
balance capabilities in PD patients. The TUG test, a standard tool 
for assessing functional balance in daily activities, reflects balance 
and posture control. We propose that the therapeutic benefits of 
AQE, derived from the buoyancy, resistance, and warmth of water, 
create an advantageous environment for PD patients. Water 
buoyancy alleviates the effect of gravity, easing the load on weight-
bearing joints, reducing pain, and enhancing mobility 
(Al-Qubaeissy et  al., 2013), while also diminishing fall anxiety 
(Gomes Neto et  al., 2020), which encourages safer, larger 
movements. The resistance of water increases the effort required 
for movement, engaging multiple muscle groups crucial for motor 
function and stability. Additionally, the warmth of water relaxes 
muscles, reduces spasticity, and promotes circulation, aiding 
flexibility and mobility, particularly beneficial for those with 
muscle rigidity and bradykinesia (Malanga et al., 2015; An et al., 
2019). Consequently, AQE’s multifaceted therapeutic effects render 
it superior to other exercise forms in enhancing TUG performance.

Despite AQE’s effectiveness, its implementation faces challenges 
such as site restrictions and high costs, limiting accessibility for PD 
patients. This study explored the impacts of Mul_C and SE as viable 
alternatives, achieving the MCID at dosages of 870 and 910 METs-min/

FIGURE 3

Dose–response association between agent-level dose and change in TUG in Parkinson’s disease patients, the exercise dose distribution is represented 
by the green part in our study.
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week, respectively. Mul_C integrates diverse exercise elements—such 
as aerobic and strength training, balance, and flexibility exercises—and 
promotes neuroplasticity, enhancing both motor and non-motor 
symptoms (Zhen et al., 2022). SE, through targeted sensory inputs like 
visual, auditory, and proprioceptive cues, significantly improves motor 
control and postural stability, optimizing movement strategies and 
reducing fall risk (Abbruzzese et al., 2016; Carpinella et al., 2017; Beck 
et al., 2020). Given the challenges associated with AQE, Mul_C, and 
SE present effective, lower-cost alternatives that improve motor 
function and quality of life in PD patients. Future research should 
investigate these modalities across diverse PD populations to develop 
optimal, comprehensive rehabilitation strategies.

This study found that increased doses of AQE, Mul_C, and SE led 
to nonlinear improvements in TUG test scores for PD patients, 
suggesting that appropriate exercise dosage can enhance motor 

functions. However, an optimal balance in exercise dosage is essential 
to avoid overtraining risks, such as increased fatigue or adverse 
reactions, which can impair rehabilitation (Smith, 2000; da Rocha 
et al., 2019). The limited data available restricted our ability to pinpoint 
the optimal exercise dosage for balancing efficacy and safety, 
underscoring the need for further research into various exercise 
dosages and their impacts on motor function in PD patients.

The study also revealed a “U-shaped” relationship between RT 
dosage and TUG performance improvements, with 610 METs-min/
week identified as optimal. Research supports that RT enhances muscle 
strength and motor coordination, which are crucial for PD patients at 
risk of gait instability and falls due to muscle rigidity and bradykinesia 
(Brienesse and Emerson, 2013; Chung et al., 2016; Li et al., 2020). 
However, excessive RT can cause muscle over-fatigue and damage, 
particularly in PD patients with compromised recovery capabilities due 

FIGURE 4

Dose–response association between treatment-level dose and change in motor symptoms in Parkinson’s disease patients.
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to neurodegenerative changes, highlighting the importance of 
optimizing RT dosage for safety and effectiveness (Siciliano et al., 2018).

Furthermore, our findings indicate that MBE, even at a low dosage 
of 130 MET-min/week, significantly benefits PD patients, making it a 
viable option for those less active or non-adherent to exercise regimes. 
MBE practices like Tai Chi, Qigong, and Yoga focus on balance and 
coordination, integrating mind and body through movement and 
deep breathing, and potentially improving neuroplasticity and 
alleviating symptoms (Benke et al., 1998; Tessitore et al., 2002; Shen 
et al., 2016; Kwok et al., 2019). This suggests that MBE’s accessible 
approach could significantly enhance the quality of life for PD 
patients, warranting further promotion and research.

Limitations

While this NMA incorporated high-quality randomized controlled 
trials, several limitations warrant consideration. Firstly, the study is 
subject to the inherent limitations of the included studies in the meta-
analysis, such as variability within the PD patient cohorts, the types 
and dosages of exercise interventions employed, and the outcomes 
assessed. Additionally, this study only included published randomized 
controlled trials, which may introduce publication bias, as studies 

yielding significant results are more likely to be published. Moreover, 
the methodology used to determine the optimal exercise dosage relied 
on approximations (e.g., 250, 500, 750, 1,000, or 1500MET-min/week), 
which might oversimplify the situation and affect the accuracy of the 
results. Lastly, the study did not evaluate the impact of individual 
patient characteristics (such as age, ethnic background, etc.) on the 
efficacy of exercise interventions, nor did it conduct subgroup analyses, 
which could limit the applicability of the study findings to individual 
patients. Future research should build on the results of this study to 
determine personalized exercise programs for PD patients with 
different individual characteristics, aiming to maximize the 
improvement of TUG function and enhance their quality of life.

Clinical implications and directions for 
future research

The clinical significance of our study was to systematically 
evaluate the impact of different exercise interventions on TUG test 
performance in PD patients, use task metabolic equivalents as the 
benchmark for exercise intensity assessment, determine the optimal 
exercise form and dosage, and provide evidence-based exercise 
prescriptions for clinical practice.

FIGURE 5

Cochrane risk of tool.

https://doi.org/10.3389/fnagi.2024.1399175
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Yuan et al. 10.3389/fnagi.2024.1399175

Frontiers in Aging Neuroscience 09 frontiersin.org

Our study outlines new directions for future research. We propose 
that long-term studies be designed and implemented to evaluate the 
sustained effects of various types and doses of exercise interventions 
on TUG performance in patients with PD. Such studies will help 
ascertain the long-term benefits of these interventions on daily 
functioning and quality of life. Additionally, personalized exercise 
programs should be  developed and validated for PD patients at 
different stages of the disease, of varying ages, and with diverse 
physical conditions. Customized exercise programs can more 
effectively meet individual patient needs and maximize the benefits of 
exercise. Furthermore, future studies should include subgroup 
analyses to explore how factors such as gender, race, and disease 
severity affect the efficacy of exercise interventions. This will enhance 
the precision of exercise recommendations and ensure that all PD 
patients can derive benefits from exercise. In terms of exercise dose, it 
is crucial to employ more sophisticated dose–response models to 
accurately determine the relationship between exercise dose and TUG 
performance. This approach will provide more precise and practical 
exercise dosing recommendations for clinical practice. It is also 
important to rigorously assess the potential adverse effects of exercise 
interventions to ensure the safety of exercise regimens. Detailed 
recording and analysis of adverse events are essential to provide 
scientifically sound and safe exercise prescriptions for PD patients.

Conclusion

This study has identified specific exercise modalities and dosages that 
significantly improve TUG performance in PD patients. AQE emerged as 
the most effective modality with an optimal dosage of 1,500 METs-min/
week, while MBE demonstrated significant benefits at lower dosages, 
offering a practical option for patients with varying exercise capacities. The 
study also highlighted a nuanced “U-shaped” dose–response relationship 
for RT, pinpointing an optimal range that balances efficacy with the risk of 
overtraining. These findings advocate for the integration of tailored exercise 
programs into PD management strategies, emphasizing the need for 
personalized prescriptions to maximize patient outcomes.
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