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Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder characterized 
by abnormal protein deposition. With an alarming 30 million people affected 
worldwide, AD poses a significant public health concern. While inhibiting 
key enzymes such as β-site amyloid precursor protein-cleaving enzyme 1 
and γ-secretase or enhancing amyloid-β clearance, has been considered the 
reasonable strategy for AD treatment, their efficacy has been compromised by 
ineffectiveness. Furthermore, our understanding of AD pathogenesis remains 
incomplete. Normal aging is associated with a decline in glucose uptake in 
the brain, a process exacerbated in patients with AD, leading to significant 
impairment of a critical post-translational modification: glycosylation. 
Glycosylation, a finely regulated mechanism of intracellular secondary protein 
processing, plays a pivotal role in regulating essential functions such as 
synaptogenesis, neurogenesis, axon guidance, as well as learning and memory 
within the central nervous system. Advanced glycomic analysis has unveiled that 
abnormal glycosylation of key AD-related proteins closely correlates with the 
onset and progression of the disease. In this context, we aimed to delve into the 
intricate role and underlying mechanisms of glycosylation in the etiopathology 
and pathogenesis of AD. By highlighting the potential of targeting glycosylation 
as a promising and alternative therapeutic avenue for managing AD, we strive 
to contribute to the advancement of treatment strategies for this debilitating 
condition.
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1 Introduction

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder (NDD) characterized 
by abnormal accumulation of amyloid-β (Aβ) and neurofibrillary tangles resulting from 
excessive tau phosphorylation. It affects over 30 million individuals worldwide, predominantly 
seniors, leading to impaired memory, loss of independence, and in severe cases, death 
(Calsolaro and Edison, 2016). Despite the “amyloid cascade hypothesis” being widely accepted 
as the primary pathogenic mechanism of AD for decades, traditional anti-amyloid strategies 
have yielded disappointing results (Khan et al., 2020). Hence, there is an urgent need for novel 
disease-modifying treatments (Winblad et al., 2016).

Protein glycosylation is among the most abundant and complex types of post-translational 
modifications in eukaryotes (Ceroni et al., 2008). Glycoconjugates, which are formed by 
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covalent bonds between sugars, proteins, lipids, and other molecules 
including glycoproteins, proteoglycans, and glycolipids are widely 
distributed in mammalian cells. Glycans, including N-glycans and 
O-glycans, are carbohydrate sequences attached to the ends of proteins 
or lipids; they are present in the cells of all living organisms and 
represent the most structurally diverse class of molecules in nature 
(Chung et  al., 2017). Glycans are highly susceptible to diverse 
pathophysiological environments, and altered glycosylation can 
regulate signal transduction, thereby influencing disease pathogenesis 
(Mereiter et al., 2019). For instance, comprehensive glycomics analyses 
in rats and humans have revealed that significant fucosylation of 
N-glycans is strongly associated with the development of 
hepatocellular carcinoma, colorectal cancer, and lung cancer (Gao 
et al., 2015). Moreover, distinct alterations in sialylated and fucosylated 
N- and O-glycans in serum proteins have been identified as potential 
biomarkers for patients with cancer and healthy individuals (Gao 
et  al., 2015). Besides, RNAs can also be  included in the world of 
glycans (Chevet et al., 2021; Flynn et al., 2021; Li et al., 2023). For 
instance, Flynn et al. (2021) found that glycans exist on the surface 
RNA of cell membranes; some non-coding RNAs are glycosylated 
(called glycan-modified RNAs or glycoRNAs) and expressed on the 
surface of the plasma membrane. The authors proposed that 
glycoRNAs are potential ligands for the members of the Siglec receptor 
family and may be involved in the pathophysiological processes, such 
as serving as triggering factors and/or targets for autoantibodies in 
autoimmune diseases like systemic lupus erythematosus, where 
anti-RNA antibodies have been reported previously. Furthermore, the 
dysregulation of glycoRNAs in a disease may change the RNA 
functions. A recent study proposed a solid-phase chemoenzymatic 
method (SPCgRNA) for targeting glycosylated RNAs and found that 
miRNA, small nucleolar RNA (snoRNA), small nuclear RNA 
(snRNA), rRNA, and Y_RNA are all glycosylated RNA substrates (Li 
et  al., 2023). The authors also demonstrated differential 
N-glycosylation of small RNAs in hTERT-HPNE and MIA PaCa-2 
cancer cells using SPCgRNA. They found that differential miRNA 
glycosylation affected tumor cell proliferation and survival. 
Considering the importance of protein glycosylation and RNA 
glycosylation in biological processes and functions, monitoring altered 
glycosylation is crucial for disease prevention, diagnosis, 
and treatment.

In the human CNS, widely distributed N-glycans, O-glycans, and 
gangliosides (GGs) contribute to highly efficient learning, memory 
maintenance, and neurodevelopment (Iqbal et  al., 2019). As key 
mediators of cellular interaction, communication, molecular 
trafficking, and differentiation (Bukke et al., 2020), abnormal protein 
glycosylation levels have been closely associated with the development 
of diabetes, cancer, and several NDDs, including AD (Hung et al., 
1980; Videira and Castro-Caldas, 2018; Conroy et al., 2021). This 
review summarizes current findings on alterations in glycosylation 
and the molecular mechanisms involved in AD progression, aiming 
to enhance our understanding of AD pathogenesis and identify new 
therapeutic strategies for addressing this challenging condition.

2 Glycoconjugates in CNS

Glycosylation involves the covalent attachment of glycans to the 
polypeptide backbone, including the formation of N-glycans by 

N-linking to asparagine or O-glycans by O-linking to serine or 
threonine (Figures  1A,B). N-glycosylation involves the covalent 
attachment of various branched sugars in the endoplasmic reticulum 
and Golgi, while O-glycosylation involves the initial attachment of 
several monosaccharides like N-acetylgalactosamine (GALNAc), 
mannose, fucose, and galactose (GAL) (Gao et al., 2015). Another 
type of O-glycosylation is O-GlcNAcylation in the cytoplasm, 
involving the attachment of GALNAc to serine or threonine residues 
(Nie and Yi, 2019; Zhu and Hart, 2021). In the CNS, various 
glycoconjugates, including N-glycans, O-glycans, glycosaminoglycans, 
hyaluronic acid, glycosphingolipids, glycosylphosphatidylinositol 
anchors, and O-GlcNAc, are enriched. The CNS is one of the tissues 
with the highest lipid content and complexity in mammals 
(Svennerholm and Raal, 1956).

One of the most abundantly distributed glycoconjugates in the 
CNS are glycosphingolipids, which are composed of sphingosine 
connecting a fatty acid chain and a hydrophilic monosaccharide or 
oligosaccharide and can be mainly classified as GM1, GD1a, GD1b, 
and GT1b (Klenk, 1942; Garcia-Ruiz et al., 2015). GGs, which are 
sialic acid-containing glycosphingolipids, play important roles in 
synaptic transmission, energy supply, cell–cell interactions, and 
neuronal differentiation. They are crucial for maintaining normal 
adult brain development (Schengrund, 1990; Haughey, 2010). For 
example, GD3, a key player in cellular signaling in the CNS, is highly 
expressed in neural stem cells and can serve as a biomarker for 
targeting these cells (Nakatani et al., 2010). Moreover, GM1 and GD1a 
are enriched on the neuronal membrane and play roles in maintaining 
neuronal function and transmitting signaling (Iqbal et al., 2019). Since 
GGs are highly expressed in the CNS, the brain is one of the most 
affected organs by lysosomal storage disorders, as it causes neurons to 
become distended and eventually die (Sandhoff and Harzer, 2013). 
This particular accumulation can trigger the onset of several NDDs, 
such as AD (Yanagisawa, 2007; Ariga et al., 2008; Oikawa et al., 2009).

As the brain develops, the GG expression and patterns change 
(Robert et  al., 2009, 2011; Kolter, 2012). It was found that the 
composition and quantity of GGs in the brain change with age (Kolter, 
2012). During brain growth and development, complex 
glycosphingolipids, such as GD1a and GT1b, dominate adult brains, 
while GD2 and GD3, which have simpler structures, predominate the 
embryonic brains (Nakatani et al., 2010). Sarbu et al. (2017) used 
Orbitrap MS optimized in the negative ion mode to screen four 
complex mixtures extracted and purified from the frontal and occipital 
lobes (FL, OL) of 20- and 82-year-old male brains. The authors 
revealed a decrease in the numbers of GG as well as in the degree of 
sialylation, fucosylation, and acetylation of GGs with aging. They also 
noted a high variability of sialylation within regions, which correlated 
with a high diversity of ceramide constitution for certain species. 
Another study focused on the comparative screening and structural 
analysis of GGs expressed in fetal and aged cerebellum using Orbitrap 
MS with nanoelectrospray ionization (nano-ESI) in the negative ion 
mode (Ica et al., 2020), considering that cerebellar dysfunctions are 
related to AD (Mavroudis, 2019). They found several GGs, particularly 
polysialylated ones belonging to the GT, GQ, GP, and GS classes, 
modified by O-fucosylation, O-acetylation, or CH3COO-; these were 
discovered for the first time in the human cerebellum. These 
components were differently expressed in fetal and aged tissues, 
indicating that the GG profile in the cerebellum is development stage- 
and age-specific, which are attributable to the neurodevelopmental 
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process and may be applied accordingly as markers of cerebellum 
aging. The sphingosine and fatty acid components of the GGs can 
induce a change in the developing human brain (Rosenberg and Stern, 
1966). The sphingosine portion of the brain GGs changes from almost 
exclusively C18 at birth to nearly equal quantities of C18 and C20 with 
organ maturation (Rosenberg and Stern, 1966). Kracun et al. (1991) 
investigated brain GGs in AD. The study found that all ganglio-series 
GGs (e.g., GM1, GD1a, GD1b, and GT1b) decreased in regions 
(temporal and frontal cortex and nucleus basalis of Meynert) involved 
in the disease pathogenesis. In addition, simple GGs (GN2, GM3) 
were elevated in the frontal and parietal cortex in AD, which may 
correlate with accelerated lysosomal degradation of GGs and/or 
astrogliosis occurring during neuronal death. All of these findings are 
of major value for correlating GGs with various CNS disorders, 

including AD, and for investigations related to the development of 
GG-based therapies.

Sialylation is one form of glycosylation modification (Lee and 
Wang, 2020). Sialic acids (SA) possess a nine-carbon skeletal structure 
with a negative charge and high hydrophilicity, making them the most 
enriched sugar residues found at the terminals of polysaccharides 
(Liao et al., 2020). There are three forms of SAs: N-acetylneuraminic 
acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and 
ketodeoxynonulosonic acid. Mixed Neu5Gc and Neu5Ac exist in rats, 
swine, and tree shrews, while Neu5Ac exists solely in humans due to 
the lack of cytidine monophosph O-N-acetylneuraminic acid 
hydroxylase (Bern et al., 2013; Walther et al., 2013). SAs have various 
biological functions, including regulating the immune system, 
maintaining neural tissues, and influencing cancer malignancy 

FIGURE 1

(A) Common types of glycoconjugates in human cells and (B) N-glycans are classified based on high mannose/hybrid/complex structure, the numbers 
of antennary, fucose, and SAs.
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(Wielgat and Braszko, 2012; Schauer and Kamerling, 2018). Abnormal 
sialylation levels have been associated with cancer, inflammatory 
diseases, and NDDs (van Kamp et  al., 1995; Munkley, 2022). 
Imbalances in liver metabolic pathways and inflammatory homeostasis 
can lead to excessive sialylation of liver cells (Lau et  al., 2007). 
Sialylated modifications are essential for maintaining the homeostasis 
of intestinal mucus, providing necessary nutritional support for 
intestinal microflora. Desialylation of intestinal mucin damages the 
intestinal mucosal barrier, contributing to the onset of inflammatory 
bowel disease (Yao et al., 2022). For instance, in the CNS, activated 
microglia increase sialidase activity, reducing cell surface sialylation 
and stimulating microglial phagocytosis of neurons (Rutishauser, 
2008). Understanding the interactions between sialylation and disease 
pathology and elucidating the underlying mechanisms of abnormal 
glycan sialylation levels in pathological environments can lead to the 
identification of novel molecular targets for treating complex diseases.

There are approximately 20 times more SAs in the human CNS 
than in other tissues, with the majority present in GGs, highlighting 
the critical role of SAs in maintaining normal nerve structure and 
function. SAs play a key role in regulating various processes in the 
CNS, including synaptogenesis, neurogenesis, cell proliferation and 
migration, axon guidance, muscle bundle tremor, learning, memory, 
and cell adhesion. Additionally, the widespread distribution of 
negatively charged SAs is involved in capturing neurotrophic factors, 
growth factors, neurotransmitters, ions, cytokines, chemokines, and 
transcription factors. Sialylated nerve cells can act as receptors or 
ligands in cell–cell interactions, while free SAs contribute to 
scavenging reactive oxygen species (ROS) (Figure 2A).

The SAs on glycoconjugates also regulate neuroinflammation 
(Liao et  al., 2020). Activated microglia exhibit increased sialidase 
activity, leading to decreased sialylation levels, including the enzymes 
Neu1, Neu2, Neu3, and Neu4  in nerve cells like microglia and 
astrocytes, particularly under acute stress conditions (Abe et al., 2019). 
Knockdown of Neu4 in the hippocampus prolongs escape latency in 
the Morris water maze experiment, indicating that sialidase regulation 
of SA signaling can affect hippocampal memory processes (Minami 
et  al., 2016). Therefore, neuroinflammation may be  related to the 
transfer of sialidases to the cell surface, leading to changes in 
sialylation. Mice with reduced SAs display microglia activation and 
neuronal synaptic loss, combined with complement-dependent 
neuronal loss, suggesting that SAs are essential for maintaining 
microglial phagocytosis and normal brain physiological functions 
(Klaus et al., 2020). Polysialic acids (polySia), enriched in the CNS, 
contain α2,8-linked Neu5Ac with a degree of polymerization (DP) 
between 8 and 100 (Lünemann et al., 2021). The negatively charged 
polySia promotes neuronal regeneration and regulates plasticity and 
repair-related responses in the brain. PolySia can also be recognized 
by SA-binding immunoglobulin-type lectins. Abundant SAs present 
in polySia on neural cell adhesion molecules regulate neurite 
outgrowth and synaptogenesis (Becker et al., 1996).

In AD, the complement-dependent pathway is abnormally 
activated, leading to synapse loss (Hong et al., 2016). However, the 
mechanism by which complements bind to synapses during AD 
development remains unclear. One explanation is that activated 
microglia increase sialidase activity, leading to the desialylation of 
microglia and neurons. This desialylation allows released C1q and 
C3b to firmly bind to glycan chains on neurons, which are then 
detected by complement receptor 3 (CR3), promoting microglial 

phagocytosis (Figure  2B) (Puigdellívol et  al., 2020). Another 
proposed mechanism suggests that under inflammatory 
conditions, activated and desialylated microglia and surrounding 
neurons reduce the binding of cis and trans-SA-binding 
immunoglobulin-type lectins. Simultaneously, activated microglia 
release galectiN-3 (GAL-3), which binds to exposed GAL on 
glycan chains, increasing microglial phagocytosis of neurons 
through Mer tyrosine kinase (MerTK) (Figure 2C). These findings 
highlight the importance of sialylation in neuroinflammation and 
the progression of neurodegenerative diseases (NDDs). However, 
the reasons behind activated microglia causing cell surface 
desialylation, the direct mediation of microglial phagocytosis by 
desialylation, and whether inhibiting sialidase activity would 
prevent NDDs are still unknown.

3 Glycosylation is involved in the 
pathogenesis and etiology of AD

In the brains of patients with AD, amyloid precursor protein 
(APP) is initially cleaved by β-site APP-cleaving enzyme 1 (BACE1) 
to generate a soluble -NH2 terminal fragment and a -COOH terminal 
fragment (C99). Subsequently, γ-secretase cleaves C99 to produce Aβ 
peptides, which are known to be neurotoxic and contribute to the 
progression of AD (Association As, 2016). Due to the inaccurate 
cleavage position of γ-secretase, various lengths of Aβ peptides, 
including Aβ42, Aβ40, and other oligomers, can be produced. Aβ42 
peptides are widely distributed in the cerebrospinal fluid (CSF) of 
patients with AD and are considered potential biomarkers for the 
disease. The Aβ42/Aβ40 ratio is more efficient than measuring Aβ42 
alone in predicting AD pathology (Baiardi et  al., 2019). Current 
treatment strategies for AD focus on inhibiting BACE1 and γ-secretase 
activity or increasing Aβ clearance. However, these strategies have 
shown limited efficacy, and irregular phenotypes, such as 
schizophrenia and retinal pathology, have been reported in BACE1-
deficient mice (Cai et al., 2012). The development of effective drugs 
has been challenging, and some studies suggest that targeting Aβ may 
not be the most appropriate approach for managing AD. Therefore, 
there is an urgent need to expand our understanding of AD 
pathogenesis to develop complementary or alternative treatment 
strategies (Schedin-Weiss et al., 2014).

In 2016, the first detailed and systematic report on CSF N-glycome 
profiling in potential patients with AD identified over 90 N-glycans, 
some of which were significantly altered and served as potential 
biomarkers for early AD diagnosis. This finding strongly suggests that 
monitoring glycosylation alterations could be  a promising and 
accurate tool for AD detection (Palmigiano et al., 2016). Additionally, 
N-glycome analysis of the cortex and hippocampus from five patients 
with AD revealed that over 70% of N-glycans were complex type 
N-glycans decorated with fucose and SAs, while high-mannose type 
N-glycans accounted for approximately 20% (Gaunitz et al., 2021a). 
Recently, unbiased, large-scale qualitative and quantitative 
N-glycoproteome profiling using high-resolution mass spectrometry 
(Zhang et  al., 2020) detected 1,333 N-glycosylation sites in both 
patients with AD and control groups. Of these, 698 and 263 
N-glycosylation sites were characteristic of patients with AD and 
controls, respectively. Notably, 118 N-glycopeptides were significantly 
altered in patients with AD compared to controls, with 20 specific 
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N-glycopeptides/glycosites identified as attractive targets for AD 
identification (Zhang et al., 2020).

N-glycans and O-glycans play crucial roles in the function of 
proteins involved in AD, such as APP, BACE1, and γ-secretase. The 
glycosylation of APP in Chinese hamster ovary cells is characterized 

by complex, fucosylated, and non-fucosylated N-glycans with bi- or 
tri-antennary structures (Sato et al., 1999). A systematic mapping of 
N-glycoproteins and N-glycosylation sites on AD-related proteins 
(including APP, tau, nicastrin, BACE1) and genes associated with AD 
was thoroughly performed in genome-wide association studies. The 

FIGURE 2

Schematic graph depicting the molecular mechanisms of SAs in CNS. (A) The effect of SAs in CNS. (B) CR3-dependent phagocytosis of microglia. 
Activated microglia increased the sialidase activity and desialylated microglia and neurons, making the released C1q and C3b firmly bind to glycans 
chains on neurons and allow detection by CR3, thereby promoting microglia phagocytosis of synapse and neurons. (C) Desialylated microglia and 
surrounding neurons reduced the binding of cis- and trans-SIGLECs, released GAL-3, and bound to GAL on the glycan chains, thereby increasing 
microglia phagocytosis of neurons through MerTK.
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number of N-glycosylation sites of these proteins (except tau) was 
increased in AD patients relative to those in controls because they can 
reach N-glycosylation enzymes (OST complexes) that reside in the ER 
lumen, which alters the activity of corresponding enzymes. These 
results together strongly support the role of abnormal N-glycosylation 
in AD pathogenesis (Zhang et  al., 2020). These alterations in 
N-glycosylation sites in AD may lead to genetic variations, 
transcriptional disorders, protein expression imbalances, and 
disturbances in post-translational modifications. Additionally, a 
significant correlation between confirmed N-glycopeptide/N-
glycoprotein co-regulatory modules and neurofibrillary tangle 
pathology, as well as endoplasmic reticulum stress induced by tau 
deposition, has been proposed (Zhang et  al., 2020). Dysregulated 
N-glycosylation in AD brains affects various processes, including 
synaptic dysfunction, neuroinflammation, lysosomal dysfunction, 
changes in cell adhesion, endoplasmic reticulum dysfunction, 
extracellular matrix dysfunction, endocytic transport disorders, and 
cellular signaling disorders (Zhang et al., 2020).

The APP is reported to have two potential N-glycosylation sites, 
located at Asn467 and Asn496, respectively. Loss of these glycosylation 
sites leads to reduced secretion and microsomal localization of APP 
(Table  1) (Yazaki et  al., 1996). APP has both high-mannose and 
complex N-glycan structures (Kizuka et al., 2017). Tunicamycin, an 
N-glycosylation inhibitor, can accelerate the mis-sorting of wild-type 
APP (Tienari et al., 1996). Additionally, some O-glycosylation and 
O-GlcNAcylation sites of APP, such as Ser597, Ser606, and Ser662, 
have been identified in human CSF (Perdivara et al., 2009). Both N- 
and O-glycosylated APP can regulate Aβ secretion. Other proteins 
involved in AD pathology, such as tau and nicastrin (a component of 
γ-secretase), are also O-GlcNAcylated. Tau, a phosphoprotein, has 47 
potential N-glycosylation sites and is responsible for microtubule 
assembly and disassembly (Gao et  al., 2018). High-mannose and 
complex sialylated N-glycans have been identified in paired helical 
filament-tau, while nicastrin contains a mixture of high-mannose, 
hybrid, and complex N-glycans. Phosphorylated tau has bisecting 
GlcNAc N-glycan structures (Wang et al., 1996; Ciurea et al., 2023). 
Glycosylated tau has only been observed in the brains of patients with 
AD, and the reasons for this observation remain unknown (Sato et al., 
2001). Patients with AD exhibit low O-GlcNAc levels and tau 
hyperphosphorylation, accompanied by impaired glucose metabolism 
(Liu et al., 2004). O-GlcNAcylation affects APP processing to some 
degree, but its exact functions are still poorly understood (Griffith 
et al., 1995).

BACE1 is a type 1 transmembrane protein that forms a subfamily 
of membrane-anchored aspartate proteases with BACE2 (Yan, 2017). 
As a rate-limiting enzyme in Aβ generation, BACE1 undergoes post-
translational or co-translational modifications, including 
N-glycosylation. BACE1 has four potential N-glycosylation sites and 
no O-glycosylation site (Gaunitz et al., 2021b). Tomita et al. (1998) 
revealed that the activity of BACE1 was affected by its glycosylation 
pattern, and, after APP was modified by O-glycosylation in the Golgi 
apparatus, the cleavage of APP by α-secretase, β-secretase, and 
γ-secretase begins, indicating that the pathways by which APP is 
processed and hydrolyzed is influenced by its glycosylation pattern. 
Moreover, further research proved that different APP cleavage patterns 
have distinct lectin-binding patterns that determine the processing 
and hydrolysis modes of APP (Boix et al., 2020). In addition to the 
sequential cleavage of APP, β-secretase and γ-secretase can affect the 

glycosylation and complex N-glycosylation of APP by other 
mechanisms; these processes play important roles in AD pathogenesis, 
implying the numerous worthwhile inter-regulatory relationships 
between APP and various secretory enzymes that need to be further 
explored (Schedin-Weiss et al., 2014). Current strategies regarding the 
inhibition of APP processing by altering glycosylation have focused 
on the regulation of hydrolases, such as the curcumin derivative 
GT863. In addition, considering that previous inhibitors designed for 
BACE1 have been reported to generate serious side effects, a selective 
modulation of the cleavage activity of BACE1 by altering the 
glycosylation pattern (such as modulating galactosyltransferases and 
mannosidases) to regulate the effects of glycosylases is being 
considered as a promising and novel therapeutic modality for AD 
(Nahálková, 2022).

Among the four protein components of γ-secretase, only nicastrin 
is glycosylated and has 16 potential N-glycosylation sites. The 
physiological effects of glycosylated nicastrin may affect recognition 
and interactions with ligands, substrates, and other molecules, but 
other physiological roles need further exploration. Deficiency of 
O-GlcNAcylated nicastrin decreases Aβ generation (Moniruzzaman 
et  al., 2018; Gaunitz et  al., 2021b). The complex glycosylation of 
nicastrin is not essential for γ-secretase activity but depends on 
presenilin (PS), a transmembrane protein that forms a complex with 
APP and participates in the transport and post-synthesis processing 
of APP (Herreman et al., 2003). A significant decrease in nicastrin was 
observed in cells lacking PS1, while a slight decline in the amount of 
nicastrin was found in PS2-deficient cells (Herreman et al., 2003). 
Additionally, altered glycosylation of acetylcholinesterase and 
mannan-binding lectin has been observed in the frontal cortex, 
serum, and CSF of severe AD cases (Saez-Valero et al., 2000). Mannan-
binding lectin can activate the classical complement pathway, and 
proteins in this signaling pathway have been found in patients with 
AD; these alterations typically occur in the late stages of AD 
progression and are not suitable as biomarkers for early AD diagnosis. 
PS1 reportedly affects the N-glycosylation process directly or 
indirectly, thereby altering the subcellular location of proteins; this 
effect on glycosylation alters the subcellular distribution and turnover 
of telencephalin, APP, and APP-like protein 1 (Annaert et al., 2001), 
and the underlying mechanisms remain to be clarified.

Therefore, considering the other physiological functions of 
AD-related proteins and the importance of protein glycosylation in 
AD progression, an in-depth investigation of altered glycosylation of 
AD-related proteins instead of directly targeting them may be safer 
and could provide novel ideas for the diagnosis, treatment, and 
prevention of AD.

4 Sialyltransferases and AD

α2,3- and α2,6-linkages are two major linkages between SAs and 
the penultimate galactose residue, formed by sialyltransferases (STs). 
The human genome encodes over 20 different STs, all of which use 
cytidine monophosphate N-acetylneuraminic acid (CMP-Neu5Ac) as 
activated sugar donors to transfer SAs to the terminal of glycoproteins 
or glycolipids. The ST family is divided into four major groups based 
on the linkage type: GAL α2,3-STs, GAL α2,6-STs, GALNAc α2,6-STs, 
and α2,8-STs GAL α2,6-STs and GALNAc α2,6-STs are responsible for 
synthesizing the α2,6 configuration, while GAL α2,3-STs are 
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responsible for synthesizing the α2,3 configuration in mammalian 
cells (Figure 3A).

ST6GAL1 and ST3GAL4 are highly expressed in human 
respiratory tract tissues. Their abnormal expression levels lead to an 
imbalance in cell sialylation, affecting the process of disease 
development by regulating the transcriptional activity of HIF-1α, Spil, 
and NF-κB, among others. This imbalance promotes the development 
of inflammation or the transformation of inflammation and cancer, 
making them potential targets for the prevention and treatment of 
cancer and several inflammatory diseases. The mutation of the 
GG-specific ST gene ST3GAL5 leads to severe infantile seizures, 
developmental retardation, and blindness (Boccuto et  al., 2014). 
ST3GAL3 mutation is characterized by intellectual disorder and 
infantile epilepsy (Edvardson et al., 2013); a deficiency of ST3GAL2 
results in dysmyelination characterized by a dramatic decline in 
myelin proteins and myelin thickness (Yoo et al., 2015).

In the CNS, the polymorphism of ST6GAL1 is related to the 
deterioration of mild cognitive impairment to AD (Lee et al., 2017). 
The activity of STs responsible for α2,6- and α2,3-sialylation is 
significantly decreased in patients with AD compared to healthy 
individuals, and the degree of CSF protein sialylation in patients with 
AD is remarkably lower than that in those without AD (Gaunitz et al., 
2021b). Loss of sialylation is a signal of protein aging and can lead to 
the removal of synapses and neurons, thus, sialylation and STs act as 
a checkpoint in the CNS (Klaus et al., 2021). In fact, ST6GAL1 is one 
of the substrates of BACE1, and several reports have demonstrated 
that BACE1-driven ST6GAL1 processing is necessary for the 
production of a soluble form of STs (Kitazume et  al., 2001). The 
plasma ST6GAL1 levels in BACE1-knockout mice are only one-third 
of those in control mice. ST6GAL1 is markedly downregulated when 
co-expressed with APP, and its secretion significantly increases in 
BACE1-overexpressed cells, indicating that BACE1 is not only 
responsible for the cleavage and secretion of APP but also ST6GAL1 
(Figure  3B); APP cleavage competes with ST6GAL1 processing 
(Ciurea et al., 2023). Co-overexpression of BACE1 and ST6GAL1 
increases the degree of soluble secretory glycoprotein rather than cell 
surface sialylation (Sato et al., 2001). Interestingly, a high level of APP 
sialylation driven by overexpressed ST6GAL1 promotes APP 
secretion, leading to a 2-fold increase in Aβ, 3-fold increase in soluble 
APPβ (sAPPβ), and 2.5-fold increase in sAPPα in the extracellular 
level of its metabolites; sialylation-deficient mutant CHO cells secreted 
half the amount of Aβ as the wild-type cells (Nakagawa et al., 2006). 
These results together suggest that the cleavage of ST6GAL1 by 
BACE1 promotes APP metabolic turnover and can regulate the 
pathological development of AD (Nakagawa et al., 2006). Although 
BACE-1 affects the glycosylation of secreted proteins, it does not have 
any effect on the glycoproteins on the cell surface, possibly because 
soluble ST6GAL1 possesses the ability to move more freely due to the 
loss of its membrane-anchoring region, which may improve the 
catalytic response of soluble glycoproteins in the trans-Golgi network 
or secretory vesicles (Sugimoto et  al., 2007). In response to α2,3-
sialylation, although the altered cleavage of ST3GAL1, ST3GAL2, 
ST3GAL3, and ST3GAL4 could not be  detected in vitro, the 
overexpression of BACE-1 in COS cells enhanced the secretion of 
these substances; one of the explanations for this observation is that 
BACE-1 can activate several proteases responsible for the processing 
of ST3GAL family or that BACE-1 inactivates the retention 
mechanism of ST3GAL proteins in the Golgi apparatus (Kitazume T
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et al., 2006). Presently, other studies have also confirmed that Tyr10 
glycosylated Aβ peptides were remarkably increased in the CSF of AD 
patients, which implies that sialylated O-glycans influence APP 
processing (Halim et al., 2011).

Unlike ST6GAL1, which is commonly expressed in all tissues, 
ST6GAL2 was only detected in the brain and embryonic tissues, 
and its expression level was much lower than that of ST6GAL1 
(Ohmi et  al., 2021). While the ST6GAL1 gene was detected in 

FIGURE 3

The model of Aβ secretion regulated by STs. (A) The role of STs in mammalian N-glycosylation modification. (B) The overexpression of APP α2,6-
sialylation driven by ST6GAL1 promoted BACE1-led cleavage of ST6GAL1 and APP, resulting in the accumulation of Aβ peptides and acceleration of AD 
progression.
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different types of nerve cells, including microglia, astrocytes, and 
neurons, ST6GAL2 was primarily found in astrocytes and neurons 
(Ohmi et al., 2021). ST6GAL2 was the last member of the ST family 
to be discovered due to its low enzyme activity. It appears to exhibit 
narrower enzyme substrate specificity compared to ST6GAL1 
(Makarava et  al., 2022). Although it has been reported that 
ST6GAL2 can respond to a proinflammatory environment in the 
brain, its physiological function remains largely unknown (Lehoux 
et al., 2010).

One of the neurodevelopment-related genes, polysialyltransferase 
ST8SIA2, is responsible for the synthesis of polySia. The loss of 
ST8SIA2 has been associated with the occurrence of several major 
psychiatric conditions (McAuley et al., 2012). Functional impairment 
of ST8SIA2 affects disease progression in some mental disorders, such 
as schizophrenia-like behavioral abnormalities (Isomura et al., 2011). 
Since the etiopathogenesis of AD involves neurodevelopmental 
processes, ST8SIA2 variants have been associated with the occurrence 
of mental illness and inflammatory responses. ST8SIA2 may regulate 
specific symptoms of AD by modulating inflammatory systems 
(Stefano et al., 2016).

5 GnT-III and AD

Bisecting GlcNAc is a special type of N-glycan synthesized by 
N-acetylglucosaminyltransferase-III (GnT-III) and is highly expressed 
in the CNS (Figure 4A). Unlike other GlcNAc branches in N-glycans, 
bisecting GlcNAc cannot be further elongated by adding other sugar 
residues, and the presence of GnT-III affects the activity of other 
branching enzymes (Schachter, 1986). Overexpression of GnT-III 
inhibits tumor invasion and metastasis in mice (Yoshimura et al., 
1995), while GnT-III-deficient mice decrease the viability of liver 
cancer cells (Song et al., 2010).

The high expression of GnT-III detected in the temporal cortex 
of the brains of patients with AD indicates that GnT-III and its 
synthesized bisecting GlcNAc play an important role in the process 
of AD, and their abnormal expression is considered a sign of early 
onset of AD (Kizuka et al., 2015). Glycomic analysis revealed that 
BACE1 is modified by bisecting GlcNAc in the brains of patients with 
AD. Loss of GnT-III significantly impairs the cleavage activity of APP 
by BACE1, contributing to Aβ clearance and remodeling of cognitive 
function (Kizuka et  al., 2015). Further research showed that 
deficiency of bisecting GlcNAc modification induces early entry of 
BACE1 into late endosomes/lysosomes, where lysosomal degradation 
of BACE1 occurs, resulting in less co-localization with APP. However, 
other BACE1 substrates, such as CHL1 and contact protein-2, are 
normally cleaved in GnT-III-deficient mice, indicating that bisecting 
GlcNAc-modified BACE1 selectively cleaves APP (Kizuka et  al., 
2015). The mechanisms underlying the high level of GnT-III in 
patients with AD might be related to oxidative stress. Oxidative stress 
in the brain is toxic to cell growth, and over-generated ROS can 
promote the activity and transcription of BACE1. Oxidative damage 
found in AD model mice induces the production of BACE1 protein 
and bisecting GlcNAc (Chami and Checler, 2012). BACE1 is the 
targeted protein of GnT-III, and the BACE1 level triggered by 
oxidative stress in GnT-III-deficient cells was lower. Furthermore, 
BACE1 degradation in lysosomes appears to be  faster in 

GnT-III-deficient cells than in normal cells, suggesting that the 
increase in bisecting GlcNAc levels induced by oxidative stress is 
involved in BACE1 upregulation by protecting it from lysosomal 
degradation (Takahashi et al., 2016). Lack of GnT-III induces altered 
positioning of BACE1 from early endosomes to lysosomes. Bisecting 
GlcNAc is a hallmark for modified protein transport to the endosomal 
compartment, and an advanced high-throughput screening method 
has been developed to seek GnT-III inhibitors (Kizuka and Taniguchi, 
2018). We proposed that bisecting GlcNAc plays a vital role in a 
vicious cycle in which Aβ accumulation in patients with AD causes 
excessive ROS. Oxidative stress upregulates bisecting GlcNAc-
modified BACE1, helping BACE1 escape from lysosomal degradation 
and eventually leading to more Aβ generation in the brain 
(Figure  4B). Currently, there are no effective GnT-III inhibitors 
available clinically due to the lack of high-throughput measurement 
systems to detect GnT-III enzyme structure and activity. However, 
several small molecular inhibitors, such as microRNA-23b (miR-
23b), which targets GnT-III, efficiently interrupt AD pathogenesis by 
restraining oxidative stress and inhibiting tau-lesion (Pan et  al., 
2021). Glucagon-like peptide-1 (GLP-1) and its mimetics significantly 
suppress GnT-III by regulating the Akt/GSK-3β/β-catenin signaling 
pathway in neurons (Kim et al., 2015). Targeting GnT-III appears to 
be  a safe and promising strategy for AD therapeutics, given that 
GnT-III deficiency shows a slight phenotype and does not cause fatal 
damage in vivo. Further clarification is needed on how GnT-III is 
affected by oxidative stress and which other proteins are targets of 
GnT-III.

6 Fucosyltransferase and AD

Compared with healthy individuals, four glycans in the 
hippocampus and two glycans in the cortex show marked expression 
changes in AD. Besides the bisecting GlcNAc and SA-linked structures 
mentioned above, all of these glycans possess a core fucose 
configuration, suggesting that fucosyltransferases (FUT) might 
be involved in AD pathogenesis (Gaunitz et al., 2021a). Deactivation 
of antioxidant enzymes induced oxidative stress, which is proposed to 
be an important factor promoting Aβ deposition and contributing to 
AD progression. GlycoMaple is a novel technology that helps profile 
glycan structures based on the detection of glycan biosynthesis-related 
enzymes. Glycans with a core fucose structure and its synthetase 
FUT8 are upregulated after the antioxidant response. This is mainly 
due to its location and activity alteration after a change in redox status. 
Therefore, core fucose may serve as a novel biomarker for oxidative 
stress. Upstream transcription factors of FUT8 upon oxidative stress 
are poorly understood. The upregulation of FUT8 expression may 
be  independent of the antioxidative response, and the resulting 
increase in core fucose may be protective for cells under excessive ROS 
conditions (Kyunai et  al., 2023). However, FUT8-deficient mice 
exhibit serious delayed growth and postpartum death (Taniguchi 
et al., 2022).

Aβ alters the expression of FUT9, which is distributed in neural 
stem cells and is responsible for Lewis X carbohydrate epitope 
synthesis. Aβ can promote neural stem cell proliferation by 
upregulating FUT9, which is involved in classical Notch signaling 
(Itokazu and Yu, 2014). Contrary to the above research, 
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bi-antennary SA-linked glycans lacking core fucose were 
overexpressed in the CSF of patients with AD using MALDI-TOF 
mass spectrometry (Florentinus-Mefailoski et al., 2021). Little is 
known about the role and significance of core fucose and FUT in 
the brains of patients with AD and whether regulating their 
expression can affect the progression of AD, which warrants 
further investigation.

7 O-GlcNAcylation and AD

Opposite to the synthesis of N- or O-linked glycosylation, which 
involves several enzymes, O-GlcNAcylation is a unique process 
occurring in the brain. It is catalyzed positively by glycosyltransferases 
like O-GlcNAc transferase (OGT) and epidermal growth factor 
domain-specific O-GlcNAc transferase while being negatively 

FIGURE 4

An overview of BACE1 transport regulated by bisecting GlcNAc modification. (A) N-glycan core modification by different glycosyltransferases. GnT-III is 
the sole enzyme responsible for synthesizing bisecting GlcNAc. (B) Oxidative stress-induced increase in the bisecting GlcNAc levels was involved in 
BACE1 upregulation by protecting BACE1 from lysosomal degradation, which, in turn, accelerated Aβ generation.
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regulated by O-linked β-N-acetylglucosaminidase (OGA). 
Interestingly, the highest expression of OGT and OGA is found in the 
human pancreas and brain, indicating their critical roles in these 
organs (Okuyama and Marshall, 2003; Bukke et  al., 2020). This 
catalytic interplay maintains a dynamic equilibrium, where preserving 
optimal O-GlcNAc levels protects tissues and cells from damage, 
thereby reducing stress-induced apoptosis (Park et al., 2020). Glucose 
is the main energy source for the maintenance of normal physiological 
functions of the adult brains; it is transported from the periphery via 
the blood–brain barrier to the hippocampus and cortex, where it is 
utilized for ATP generation to meet the demands of life (Tang, 2020). 
O-GlcNAcylation primarily relies on uridine diphosphate 
N-acetylglucosamine (UDP-GlcNAc) as a donor and is closely 
associated with glucose availability (Hardivillé and Hart, 2014). This 
crucial substrate, derived from the hexosamine biosynthetic pathway, 
is finely tuned by glucose concentration (Figure 5A). Hyperglycemic 
conditions often elevate O-GlcNAc levels, while decreased glucose 
concentrations lead to a decline in O-GlcNAc levels (Clark et al., 2003; 
Li et al., 2006).

The pathophysiology of various NDDs, including Parkinson’s 
disease, Huntington’s disease, and AD, has been closely associated 
with nerve cell aging and impaired glucose metabolism (Park et al., 
2020). Notably, alterations in glucose metabolism often precede 
pathological changes in AD, further exacerbating Aβ accumulation 
and abnormal tau hyperphosphorylation (An et al., 2018). In AD, 
decreased expression of glucose transporters such as GLUT1 and 
GLUT3 results in low glucose levels and diminished O-GlcNAcylation 
(Pinho et  al., 2019). Paradoxically, studies have reported elevated 
O-GlcNAc levels in the brains of patients with AD, indicating complex 
regulatory mechanisms (Förster et al., 2014). Moreover, proteomic 
analyses have identified several proteins with reduced 
O-GlcNAcylation levels in AD brains, implicating their involvement 
in key pathways of AD progression (Tramutola et  al., 2018). This 
highlights the intricate interplay between O-GlcNAcylation and AD 
pathology, suggesting the need for comprehensive analyses across 
different brain regions to elucidate their relationship further.

The APP and tau undergo O-GlcNAcylation modifications in AD, 
and increasing O-GlcNAc levels ameliorate AD symptoms. However, 
the underlying mechanisms are not yet fully understood (Park et al., 
2020). O-GlcNAcylated APP is thought to activate the 
non-amyloidogenic pathway instead of the amyloidogenic pathway by 
suppressing the basic stages of endocytosis. This inhibition of 
endocytosis reduces Aβ secretion (Chun et al., 2015). Mutation of 
O-GlcNAcylation sites on APP can lead to its escape from endocytosis, 
further decreasing Aβ generation (Figure  5B). Interestingly, Aβ 
generation can also affect O-GlcNAc levels, as long-term exposure to 
Aβ reduces OGT activity, resulting in an overall reduction in 
O-GlcNAc levels (Ryu et al., 2016). Moreover, some phosphorylated 
tau residues undergo O-GlcNAcylation modifications, which inhibit 
tau accumulation by reducing its phosphorylated form (Acosta-Baena 
et al., 2011), thereby improving AD symptoms. O-GlcNAcylated tau 
levels are negatively correlated with phosphorylated tau levels in 
patients with AD due to impaired glucose metabolism (Lefebvre et al., 
2003; Liu et al., 2004). In fasting mice, decreasing glucose levels are 
accompanied by a decrease in O-GlcNAcylated tau and an increase in 
phosphorylated tau, indicating a delicate balance between these two 
modifications (Lefebvre et al., 2003). Several reports suggest that using 
OGA inhibitors such as Thiamet G, NAG-T, or PUGNAc is a 

promising treatment approach for tau-related NDDs. Long-term 
treatment with Thiamet G in mice resulted in a remarkable decrease 
in several tau protein abnormalities (Hastings et al., 2017), although 
no significant effects were observed following 4 weeks of treatment. 
Additionally, alterations in O-GlcNAcylation affect β-amyloid protein 
pathology in the presence of tau (Gatta et al., 2016).

Necroptosis and programmed necrosis have been reported to 
be closely related to neuronal death or neuroinflammation associated 
with AD (Caccamo et al., 2017). Inhibiting necroptosis can efficiently 
alleviate neuroinflammation. Reduced O-GlcNAcylation levels in 
mouse brains induce inflammatory responses and neurodegeneration 
(Wang et al., 2016). Insufficient expression of OGA, responsible for 
removing O-GlcNAc from proteins, suppressed necroptosis in mouse 
brains, resulting in reduced Aβ accumulation, cognitive recovery, 
decreased neuroinflammation, and normal mitochondrial function 
(Park et  al., 2021). This suppression occurred through 
O-GlcNAcylation of receptor-interacting serine/threonine protein 
kinase 3 (RIPK3), which blocked its self-phosphorylation and the 
interaction between RIPK1 and RIPK3, thereby transforming 
proinflammatory microglia (M1) into an anti-inflammatory 
phenotype (M2). These findings suggest that O-GlcNAcylation may 
serve as a major mediator of RIPK3 to hinder necroptosis and 
ameliorate AD pathology, offering a novel treatment approach for AD.

The brains of patients with AD exhibit a global decrease in 
O-GlcNAcylation, which is closely related to impaired mitochondrial 
bioenergetic function, mitochondrial network, and cell viability. 
Restoring O-GlcNAcylation levels reactivates cell viability and 
physiological functions, suggesting that O-GlcNAcylation may serve 
as a potential link between mitochondrial energy crisis and synaptic 
and neuronal degeneration in AD pathology (Schachter, 1986). 
Additionally, O-GlcNAcylation has been reported to affect 
mitochondrial transport by targeting the movement regulator Milton, 
which is responsible for binding mitochondria to motor proteins 
(Schachter, 1986). Overall, targeting O-GlcNAcylation represents a 
promising therapeutic option for AD.

8 Glycation in AD

Reducing sugars can react non-enzymatically with lysine or 
arginine side chain amino groups of proteins and form advanced 
glycation end-products (AGEs), this complex reaction is called the 
Maillard reaction (Reddy et  al., 2022). In the first stage of AGE 
synthesis, a non-enzymatic condensation reaction occurs between the 
α-amino or N-terminal group of a protein, lipid, or nucleic acid and 
the carbonyl group of a reducing sugar (Forbes et al., 2003). Schiff base 
is formed by a highly reversible nucleophilic addition reaction, 
followed by a very slow chemical rearrangement of Schiff base, 
resulting in reversible ketoamine synthesis. Finally, protein aggregates 
or AGEs are formed after dehydration and rearrangements of this 
ketoamine (Baynes and Thorpe, 1999; Chellan and Nagaraj, 2001).

The formation of AGEs occurs mainly in the presence of 
hyperglycemia, hyperlipidemia, and oxidative stress conditions. For 
instance, AGEs can induce oxidative stress, which increases the 
intracellular free radical production and incurs damage to cell 
membranes and organelles; AGEs can activate NF-κB, initiate 
inflammatory response pathways, and promote the release of 
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inflammatory factors, leading to the persistence and exacerbation of 
inflammatory responses. AGEs can also induce apoptosis, which 
increases cell death and thereby affects the functions of tissues and 
organs. AGEs can cross-link with proteins in the extracellular matrix, 

affect the protein structure and function, induce stiffness, and impair 
the functions of tissues (Reddy et al., 2022).

The degree of AGE accumulation is usually closely correlated with 
the related disease progression, such as diabetes, cardiovascular 

FIGURE 5

The roles of O-GlcNAcylation modification in AD. (A) O-GlcNAcylation utilizes UDP-GlcNAc as donors produced by the HBP pathway; OGA and OGT 
regulated the O-GlcNAc level, while kinase and phosphatase modulated the protein phosphorylation level; elevated O-GlcNAc level is conducive to 
ameliorating AD symptoms. (B) Increased O-GlcNAcylation activated the non-amyloidogenic pathway and facilitated endocytosis evasion of APP, 
thereby reducing Aβ generation.
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diseases, and NDDs. In diabetes mellitus and AD, the rate of AGE 
formation is accelerated; consequently, they have been considered as 
potentially useful biomarkers for monitoring the treatment of 
NDD. Glycation induces the formation of β-amyloid protein, 
α-synuclein, transthyretin, copper-zinc superoxide dismutase 1 (Cu, 
Zn-SOD-1), and prion protein into β-sheet structure—this structural 
aggregation can cause AD, Parkinson’s disease, amyotrophic lateral 
sclerosis, familial amyloid polyneuropathy, and prion disease, 
respectively (Horie et al., 1997; Castellani et al., 2001). AGEs usually 
exist in β-amyloid protein and NFTs (Wong et al., 2001), and it has 
been reported that plaque portions of AD brains contain higher levels 
of AGEs compared to age-matched control samples and they actively 
participate in the progression of AD (Vitek et al., 1994).

In AD brains, the receptors for AGEs (RAGE) are highly expressed 
on neurons, the attachment of AGEs and RAGE initiate downstream 
NF-κB, SAPK/JNK/p38 signaling pathways, and induces neuronal cell 
death (Teismann et al., 2012). Diabetes mellitus may be closely related 
to AD occurrence considering that there are more AGEs and RAGE 
deposits in the brain of patients with diabetes, which may induce 
neuroinflammation through the abovementioned signaling pathway 
(Coker and Wagenknecht, 2011). Nowadays, the AGE-RAGE axis 
regulation has been considered a promising treatment option for AD.

Li et  al. (2013) reported that Aβ is one of the substrates for 
glycation and produces AGEs, and the formation of Aβ-AGE may 
exacerbate neurotoxicity by increasing RAGE and glycogen synthase 
kinase-3 (GSK-3). Meanwhile, the concomitant application of RAGE 
antibodies or GSK-3 inhibitors reversed the neuronal damage 
exacerbated by glycated Aβ. Furthermore, a subcutaneous injection of 
aminoguanidine to inhibit Aβ-AGE could significantly alleviate early 
cognitive deficits in mice, for example, Li et al. (2013) revealed that 
glycated Aβ is more toxic and that glycated Aβ may be a promising 
target for AD treatment for the first time. Similarly, glyceraldehyde, 
the AGE-derived product, was detected in the hippocampus and 
parahippocampal gyrus, where it triggers carbonyl stress by 
suppressing the catalytic activity of GAPDH, leading to the 
accumulation of glyceraldehyde and methylglyoxal in the brain and 
the occurrence of AD, which indicates that glycation plays a vital role 
in AD progression (Butterfield et al., 2010).

9 Conclusion

In summary, we  have presented evidence of the molecular 
mechanisms of glycosylation, including sialylation, bisecting GlcNAc, 
fucosylation, and O-GlcNAcylation, in the pathogenesis and etiology 

of AD. The alteration of protein glycosylation may pave the way for 
novel therapeutic strategies for AD. However, the underlying 
mechanisms of glycosylation in AD remain unclear, underscoring the 
need for further exploration to advance the development of new 
treatment strategies for AD.
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Glossary

AD Alzheimer’s disease

APP Amyloid precursor protein

Aβ Amyloid-β

AChE Acetylcholinesterase

BACE1 β-site APP-cleaving enzyme 1

CSF Cerebrospinal fluid

CNS Central nervous system

CR3 Complement receptor 3

ER Endoplasmic reticulum

EOGT Epidermal growth factor domain-specific O-GlcNAc transferase

FUT Fucosyltransferases

GAL Galactose

GWAS Genome-wide association studies

GLUT Glucose transporter

GPI Glycosylphosphatidylinositol

HBP Hexosamine biosynthetic pathway

MerTK Mer tyrosine kinase

GALNAc N-acetylgalactosamine

GnT-III N-acetylglucosaminyltransferase-III

Neu5Ac N-acetylneuraminic acid

CMAH N-acetylneuraminic acid hydroxylase

NCAM Neural cell adhesion molecule

NDD Neurodegenerative disease

NFTs Neurofibrillary tangles

NDD Neurodegenerative disorder

Neu5Gc N-glycolylneuraminic acid

NSC Neural stem cells

OGA O-linked β-N-acetylglucosaminidase

OGT O-GlcNAc transferase

P-tau Phosphorylated tau

DP Polymerization

PolySia Polysialic acids

PS Presenilin

RIPK3 Receptor-interacting serine/threonine protein kinase 3

SA Sialic acid

SIGLECs Sialic acid-binding immunoglobulin-like receptors

ST Sialyltransferase

UDP-GlcNAc Uridine diphosphate N-acetylglucosamine
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