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Objectives: The altered neuromelanin in substantia nigra pars compacta (SNpc) 
is a valuable biomarker in the detection of early-stage Parkinson’s disease (EPD). 
Diagnosis via visual inspection or single radiomics based method is challenging. 
Thus, we proposed a novel hybrid model that integrates radiomics and deep 
learning methodologies to automatically detect EPD based on neuromelanin-
sensitive MRI, namely short-echo-time Magnitude (setMag) reconstructed from 
quantitative susceptibility mapping (QSM).

Methods: In our study, we  collected QSM images including 73 EPD patients 
and 65 healthy controls, which were stratified into training-validation and 
independent test sets with an 8:2 ratio. Twenty-four participants from another 
center were included as the external validation set. Our framework began with 
the detection of the brainstem utilizing YOLO-v5. Subsequently, a modified 
LeNet was applied to obtain deep learning features. Meanwhile, 1781 radiomics 
features were extracted, and 10 features were retained after filtering. Finally, 
the classified models based on radiomics features, deep learning features, and 
the hybrid of both were established through machine learning algorithms, 
respectively. The performance was mainly evaluated using accuracy, net 
reclassification improvement (NRI), and integrated discrimination improvement 
(IDI). The saliency map was used to visualize the model.

Results: The hybrid feature-based support vector machine (SVM) model showed 
the best performance, achieving ACC of 96.3 and 95.8% in the independent test 
set and external validation set, respectively. The model established by hybrid 
features outperformed the one radiomics feature-based (NRI: 0.245, IDI: 0.112). 
Furthermore, the saliency map showed that the bilateral “swallow tail” sign 
region was significant for classification.

Conclusion: The integration of deep learning and radiomic features presents 
a potent strategy for the computer-aided diagnosis of EPD. This study not 
only validates the accuracy of our proposed model but also underscores its 
interpretability, evidenced by differential significance across various anatomical 
sites.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease 
characterized by bradykinesia, rest tremor, and rigidity. The 
pathological changes of PD are characterized by a progressive loss 
of neuromelanin containing dopaminergic neurons and an increase 
in iron deposition in substantia nigra pars compacta (SNpc) 
(Damier et al., 1999; Ward et al., 2014). At present, neuromelanin-
sensitive magnetic resonance imaging (NM-MRI) can be used to 
identify the reduction of neuromelanin (Taniguchi et  al., 2018; 
Gaurav et al., 2021) and the quantitative susceptibility mapping 
(QSM) could reflect the iron deposition of PD patients in SNpc 
(Guan et al., 2017). Furthermore, the short-echo-time magnitude 
(setMag) images, reconstructed using the shortest three TEs image 
from quantitative susceptibility mapping (QSM), are capable of 
indicating the decrease of neuromelanin in SNpc. This technique 
offers considerable promise for the diagnosis of PD (Liu 
et al., 2020).

However, detecting PD at an early-stage is challenging in clinical 
practice based on magnetic resonance imaging (MRI) images, since 
alterations in brain structure are particularly subtle. Takahashi et al. 
(2018) evaluated NM-MRI and QSM modalities to distinguish PD 
with AUC values of 0.86 and 0.68, respectively. Ogisu et al. (2013) 
achieved an AUC of 0.90 for differentiating early-stage PD from 
healthy controls(HCs) based on signal threshold measurements of SN 
volume, but sensitivity and specificity could not be well balanced. 
Pyatigorskaya et  al. (2017) discriminated idiopathic rapid-eye-
movement sleep behavior disorder (iRBD) based on NM-MRI images 
using SNpc volume and signal intensity with an accuracy of 0.86 and 
0.79, respectively. Compared to that, the doctor’s visual accuracy was 
0.81. Up to now, neither visual recognition nor semi-automatic 
analysis is fully satisfied. Therefore, we  need to develop a more 
accurate and efficient diagnostic approach to identify and monitor 
patients with early-stage PD.

Recent studies (Salvatore et al., 2021) have demonstrated that 
radiomics analysis is an efficient method to help the diagnosis of 
neurodegenerative disorders like Parkinson’s disease. This method can 
offer large amounts of quantitative features indicating tissue 
heterogeneity and other information related to pathologic changes. 
Radiomics features are filtered to build machine learning models. In 
the study by Ren et al. (2021), radiomics features extracted from 95 
PDs and 95 HCs were filtered by least absolute shrinkage and selection 
operator (LASSO) and achieved a predictive effect of AUC = 0.81 
based on susceptibility-weighted imaging(SWI). Cao et al. (2020) used 
the least absolute shrinkage and LASSO to select radiomics features of 
rs-fMRI from 50 HCs and 70 PDs, and the trained support vector 
machine (SVM) achieved 85% accuracy. However, radiomics features 
are mainly extracted based on expert knowledge or certain rules, 
which makes the method challenging to 人incorporate new features 
or unusual data. Therefore, the radiomics approach lacks 
generalization and robustness.

Besides, deep learning (DL) is becoming increasingly 
important in medical image analysis. Compared with other 
methods, DL models can learn more complex and deeper features 
from raw data without additional processing (Anwar et al., 2018). 
Convolutional neural networks (CNNs), which come in a variety 
of models, are one of the most effective DL tools. Sivaranjini and 
Sujatha (2020) obtained an AlexNet whole brain model with 88.9% 
accuracy based on T2-weighted MRI using a transfer learning 
strategy. However, as a black box, CNN models can hardly 
comprehend the diagnosis they make. To solve this issue Le Berre 
et al. (2019) attempted to segment the SNpc region automatically 
and calculated its reduced volume directly. In the external 
validation set, the Dice coefficient for the SNpc segmentation 
reached 0.79 and the AUC for the diagnosis of PD reached 0.944. 
In the previous work, the CNN model was mainly trained with 
images of the entire head. Since the pathological changes of PD 
mainly occur in the brainstem, focusing the CNN model on the 
brainstem was thought to help diagnose (Bhan et al., 2021). Shin 
et al. (2021) used the YOLO v3 model to automatically detect and 
diagnose brainstem SNpc on susceptibility map-weighted MRI 
with an AUC of 0.94.

In this work, we  endeavored to develop an automated hybrid 
model based on setMag images to detect early-stage PD, with 
radiomics and deep learning methodologies. First, radiomics features 
were extracted from the SNpc. Then, we  obtained the brainstem 
region via the YOLO v5 detection model. Deep learning features of 
the brainstem region were extracted by a modified LeNet. Finally, 
we  combined radiomics and deep learning features to develop a 
hybrid classification model for aided diagnosis of early-stage PD.

2 Methods and materials

2.1 Patients

A total of 65 healthy controls (HC) between 43 and 69 years old 
and 73 PD patients between 37 and 79 years old were recruited in this 
study. The HC sample had no history of neuropsychiatric or 
neurological diseases. Diagnosis of Parkinson’s disease was performed 
by movement disorder specialists in accordance with Movement 
Disorder Society (MDS) clinical diagnostic criteria (Postuma et al., 
2015) for PD by a senior neurology specialist. The detailed inclusion 
criteria are provided in Supplementary material S1. It’s worth noting 
that the include PD patients were at early-stage with a oehn and Yahr 
stage (H-Y) ≤ 2 (Goetz et al., 2004). This study was approved by the 
Ethics Committee of Huashan Hospital (Center 1), Fudan University 
(approval No. KY 2016–214). The participants with QSM images in 
the Weifang Traditional Chinese Hospital (Center 2) were collected as 
the external validation. All patients or their guardians gave their 
informed consent to the utilization of their anonymized MRI images 
and clinical data for research purposes. MRI scanning parameters and 
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detailed descriptions of the datasets are presented in 
Supplementary material S2.

2.2 Image post-processing and ROI 
delineation

SetMag images were reconstructed from QSM data. Within its 
multi-echo sequence, the first shortest echo time (TE) magnitude 
image has minimal T2*-weighted contrast and maximal T1-weighted 
contrast. As the echo time increases, the contribution of T2*-weighted 
contrast gradually increases (Liu et al., 2015). Therefore, we combined 
the magnitude images with the shortest three TEs and enhanced 
T1-weighted contrast, then acquired the setMag images, which was 
sensitive to neuromelanin. The detailed procession was followed our 
previous study (Liu et al., 2020).

Bilateral hyperintensity regions of interest (ROIs) in SNpc were 
manually depicted on four contiguous axial slices of setMag images 
using ITK-SNAP software1 (Yushkevich et  al., 2006) by a 
neuroradiologist1 (XL) with 10 years of experience. Meanwhile, 30 
of all subjects were blind selected for secondary delineation by 
another neuroradiologist2 (NW) with 8 years of experience. The 
spatial overlap of each pair of ROIs segmented by two different 
raters (XL and NW) was compared using the Dice similarity 
coefficient (DSC) (Zou et al., 2004). Finally, a senior radiologist 
(YL) with 25 years of experience thoroughly reviewed and refined 
the delineated regions from neuroradiologist1, which were then 
used as the final ROIs for the following analysis. The most superior 
layer was in the axial section of the mammillary body, while the 
inferior section was positioned just above the pons where the inter-
peduncular fossa opens up to the inter-peduncular cistern (Eapen 
et al., 2011; Figure 1).

In this study, the included 138 cases were divided into training-
validation and test sets roughly by the ratio of 8:2. Specifically, the 
training-validation set contained 111 cases, while the test set included 
27 cases. Since each case contained 4 images with ROIs, the training-
validation set and the test set contain 444 and 108 images, respectively. 
We collected 12 healthy controls and 12 EPD from Weifang Traditional 
Chinese Hospital as an external validation dataset. The external 
validation set was used to evaluate the robustness of the 
established models.

2.3 Classification with radiomics feature

Following feature extraction from MRI images and subsequent 
selection, six machine learning models were trained: k-nearest 
neighbor (KNN), Random forests (RF), Logistic regression (LR), 
Support vector machine (SVM), Multilayer perceptron (MLP), and 
Adaptive Boosting (AdaBoost). The part of the radiomics model in 
Figure 2 depicts the processing flowchart. The model was first trained 
on the training-validation set with five-fold cross-validation and 
subsequently, the performance of the model was tested on the test set 
and the external validation set.

1 www.itksnap.org

2.3.1 Image preprocessing and feature extraction
To ensure consistency across MRI images’ ROIs for all patients, 

images were resampled and aligned to the same spacing, resolution, and 
alignment using nearest-neighbor resampling. Specifically, images were 
resampled to 0.5 × 0.5 × 1 mm3 voxels using the Analysis of Functional 
NeuroImages (AFNI) package.2 Radiomics features, compliant with the 
International Biomarker Standardization Initiative (IBSI), were then 
extracted using Pyradiomics.3 These features include six basic 
categories: (1) First-order statistics features; (2) Gray level 
co-occurrence matrix (GLCM); (3) Gray level dependency matrix 
(GLDM); (4) Gray level run length matrix (GLRLM); (5) Gray level size 
zone matrix (GLSZM); and (6) Neighboring gray-tone difference 
matrix (NGTDM). Additionally, each original image underwent seven 
transformations: wavelet, LoG, Square, SquareRoot, Logarithm, 
Exponential, and Gradient. All extracted radiomics features were 
normalized using the StandardScaler function in Scikit-Learn (Python).

2.3.2 Feature selection, radiomics signature 
building, and validation

To address challenges arising from an excessive number of 
features, we employed the intraclass correlation coefficient (ICC) to 
filter out features with poor reproducibility. Specifically, features with 
an ICC greater than 0.8 were selected for subsequent analysis (Loeve 
et  al., 2012). Moreover, we  used the least absolute shrinkage and 
selection operator (LASSO) to keep the most crucial features.

Then, using six algorithms, we established prediction models based 
on the remaining features. Evaluation of model performance was 
conducted using various metrics, accuracy (ACC), sensitivity (SEN), 
specificity (SPE), positive predictive value (PPV), negative predictive 
value (NPV), F1-score, and the area under the curve (AUC) of 
Receiver-Operating-Characteristic (ROC) curve. Notably, the 
evaluation metrics were applied on a patient-wise basis, with the 
principle that a patient is diagnosed with EPD if three out of four 
images are classified as PD. Net reclassification improvement (NRI) and 
integrated discrimination improvement (IDI) were calculated to assess 
the enhancement of hybrid features for diagnosis. The relevant formulas 
can be  found in Supplementary material S3. Finally, the Shapley 
Additive Explanation (SHAP) (Lundberg and Lee, 2017) approach was 

2 https://afni.nimh.nih.gov/

3 v. 3.0.1; http://www.radiomics.io/pyradiomics.html

FIGURE 1

Bilateral segmentation of hyperintensity regions of interest (ROIs) on 
setMag images in SNc.
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used to analyze the best model, providing insights into the role played 
by each clinical and radiomics feature in outcome prediction.

2.4 Classification with convolutional neural 
network

In contrast to the radiomics-based approach, we  proposed a 
convolutional neural network (CNN) to distinguish PD patients from 
healthy controls. It can be assumed that, compared to radiomics fixed 
feature extraction approaches, features generated by CNN provide 
superior issue solutions from a data-driven perspective because they 
are continuously optimized based on the classification accuracy of the 
training-validation set. At the same time, CNNs eliminate the arduous 
process of human annotation and have the ability to automatically 
extract brainstem areas and features. Our CNN-based flowchart is 
shown in Figure 3. The development of the CNN classification model 
consisted of two parts: (1) data augmentation and brainstem detection, 
and (2) construction and training of CNN.

2.4.1 Data augmentation and brainstem detection
In light of previous research indicating the efficacy of data 

augmentation in enhancing model robustness, we  applied data 
augmentation to all training data. Patch images were randomly scaled 
and rotated randomly within a small range, facilitating a tripling of the 
training image dataset to encompass a total of 1,176 images. Scaling 
factors were randomly generated between 0.95 and 1.05, while 
rotation angles were randomly generated from −5° to +5°. The YOLO 
v5 model was used to extract brainstem regions from the augmented 
dataset, with an extracted region size of 40 × 40 × 4.

As the pathological features in the brainstem images obtained 
were not readily discernible, we further enhanced the images through 

greyscale inversion and greyscale equalization, as shown in the 
Brainstem Image Obtaining section of Figure 3. Gray scale inversion 
is achieved by determining the maximum greyscale value in each 
image and subtracting this value from the greyscale value of each 
pixel. This inversion process prominently broadened the greyscale 
distribution in the image, thereby enhancing the image contrast to a 
certain extent. Subsequently, a greyscale equalization strategy was 
employed to improve the image contrast further.

2.4.2 Construction and training of the CNN
Building upon LeNet architecture, we introduced enhancements 

to the network, as outlined in the Parkinson’s Disease Classification 
section (Figure 3). In this architecture, a greyscale image with a size of 
40 × 40 served as input, sequentially traversing two sets of 
convolutional and max-pooling layers. Subsequently, it is flattened 
into a 1 × 200 feature vector in the final fully-connected layer, followed 
by a softmax operation to obtain the predicted class of the input image. 
The structural details are described in Supplementary material S4.

The training-validation set underwent training using a five-fold 
cross-validation approach, with evaluation conducted on the test set. 
Details of model parameter settings were provided in 
Supplementary material S5. An evaluation function for model 
performance was established in each epoch to assess the accuracy of 
the model on the validation subset, and the training model with the 
highest metrics during the training process was recorded and saved.

2.5 Hybrid features for diagnosis of PD

Radiomics features primarily encompass greyscale statistics and 
texture features, while deep learning features extracted via CNNs 
emphasize specific higher-order semantic information. Recognizing 

FIGURE 2

Flowchart of classification based on radiomics. Part I includes the preprocessing of the input setMag images with operations including intensity 
normalization, brainstem detection via YOLOv5, grayscale inversion, and grayscale histogram equalization. Part II indicates the establishment process 
of the radiomics feature-based model, the image-based CNN model, and the hybrid feature-based model. Part III displays model evaluation.
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this, we hypothesized that the two approaches may be complementary 
for the classification task. Hybrid features contained both radiomics 
lower-order features and deep learning higher-order features. The flow 
chart is shown in Figure 2 Hybrid model. To reduce the dimensionality 
of features extracted at the fully connected layer of the CNN model, 
feature filtering was necessary. We quantified feature importance using 
the Mean Decrease in Impurity (MDI) evaluation method 
(Supplementary material S6) based on the random forest classifier. 
This involved running the random forest algorithm 100 times and 
ranking feature importance after averaging. The top 10 features were 
selected and combined with the radiomics features extracted in section 
3.2 to form a new feature vector. Finally, this new feature vector was 
utilized to model the classifiers using the same methodologies as 
outlined in Section 3.2, employing six machine learning methods.

2.6 Statistical analysis

The statistical analysis was performed using Stata/SE software,4 and 
Python5 environment. In Stata/SE software, appropriate statistical tests 
were applied to demographical characteristics. Numerical variables 
were analyzed using the Mann–Whitney U-test, while categorical 
variables were assessed using the Pearson’s χ2-test. A two-sided p-value 
less than 0.05 was considered to indicate statistical significance. 

4 Version 16.0, http://www.stata.com

5 Version 3.8.0, https://www.python.org

Radiomics feature extraction, feature selection, model training and 
testing were performed in Python environment. The training of the 
CNN model was implemented on a Windows 10 platform equipped 
with a GeForce RTX 3080 GPU based on Tensorflow.

3 Results

3.1 Clinical characteristic of the patients

In Center 1, a total of 65 cases of HC and 73 cases of PD were 
included in this study. There were no significant differences in age and 
sex between the patient and healthy control groups. 30 male and 35 
female individuals were in the HC group, with the mean age of 
57.82 ± 6.26 years ranging from 43 to 69. And 40 male and 33 female 
patients were in the PD group, with the mean age of 59.11 ± 8.78 years 
ranging from 37 to 78. The mean Hoehn-Yahr stage in the PD group 
was 1.72, with a variance of 0.45. As for Center 2, the images of 24 
participants were collected as an external validation set, including 12 
HCs and 12 PDs. The detailed information of demographic and 
clinical information were summarized in Table 1.

3.2 The performance of radiomics 
classification

The DSC of the ROIs segmented by two different radiologists was 
excellent (DSC = 0.925 ± 0.019). In total, 1781 radiomics features were 
taken into consideration. After ICC and LASSO filtering and 

FIGURE 3

Flowchart of classification with convolutional neural network. Firstly, the brainstem image is obtained via YOLO v5 and preprocessed to enhance 
contrast. Secondly, the brainstem image was input in Lenet for classification.
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selection, 10 crucial radiomics features remained 
(Supplementary Table S1). Six machine learning (ML) models were 
trained and tested using these features. The results of the test set are 
shown in Table  2, and the overall classification performance is 
relatively average. The best-performing model is SVM: ACC = 0.889, 
SEN = 0.923, SPE = 0.857, PPV = 0.857, NPV = 0.923, F1-score = 0.889, 
AUC = 0.95 (0.88–1.00) The parameter settings for the six ML models 
and results of the five-fold cross training-validation were shown in 
Supplementary materials S5, S7. As shown in Figure 4, the conclusion 
of the shap analysis performed on the SVM model is consistent with 
the feature screening process, which means that the 10 features 
selected have a large contribution to Parkinson’s classification. In 
addition, we plotted and calculated the ROC curves and AUC for 
each machine learning method (Figure 5).

3.3 The performance of CNN classification

We improved the LeNet model for classification. The model was 
trained and tested using the image data of the brainstem extracted 
by the YOLO v5 model. The performance of the YOLO v5 model is 

shown in Supplementary material S8; Supplementary Figure S1. 
When the test output was stable, the following results were obtained: 
Loss = 0.297 and Accuracy = 0.995. As shown in Table  2, the 
classification performance of the CNN compared well with the 
machine learning algorithm trained on the radiomics features, and 
accuracy has reached above 0.9.

3.4 The performance of feature fusion and 
classification

In order to further enhance classification performance, the 
features of both radiomics and CNN approaches were then filtered 
and fused. We input 4 images of each case into the CNN model and 
extract features in the final fully-connected layer to obtain vector 
features of size 4 × 200 corresponding to each case. To fuse with 
radiomics features, we calculated and ranked the importance of the 
features using the random forest algorithm, as shown in Figure 6, and 
selected the top 20 features for fusion with the radiomics features 
according to the ranking. Finally, we obtained a total of 138 cases with 
a feature vector of size 1 × 30 for each case.

TABLE 1 Demographic and clinical information of HC and PD.

Variables HC (n  =  65) PD (n  =  73) p-value HC_E (n  =  12) PD_E (n  =  12) p-value

Gender(male/female) 30:35 40:33 0.39 6:6 7:5 >0.99

Age 57.82 ± 6.26 59.11 ± 8.78 0.33 53.58 ± 4.64 56.92 ± 13.19 0.42

Hoehn-Yahr stage – 1.72 ± 0.45 – – 1.92 ± 0.29 –

DD(months) – 24.11 ± 20.22 – – 35.88 ± 16.52 –

UPDRS-III – 21.49 ± 11.73 – – 37.13 ± 8.95 –

tremor – 3.46 ± 3.60 – – 5.00 ± 6.80 –

rigid – 3.09 ± 2.62 – – 8.88 ± 3.40 –

bradykinesia – 11.38 ± 6.96 – – 19.38 ± 4.81 –

DD, disease duration; UPDRSIII, Unified Parkinson’s Disease Rating Scale part III. Results are expressed as mean ± standard deviation; HC_E, healthy controls in external validation set; PD_E, 
Parkinson’s disease patients in external validation set.

TABLE 2 The performance of each method on the test set.

Feature Model ACC SEN SPE PPV NPV F1-score NRI IDI

Radiomics 

features

KNN 0.852 0.929 0.769 0.813 0.909 0.833

–

SVM 0.889 0.923 0.857 0.857 0.923 0.889

RF 0.852 0.769 0.929 0.909 0.813 0.833

LR 0.815 0.769 0.857 0.833 0.800 0.800

AdaBoost 0.852 0.769 0.929 0.909 0.813 0.833

MLP 0.778 0.846 0.7714 0.7733 0.8333 0.788

Deep features CNN 0.926 0.923 0.929 0.923 0.929 0.923 –

Hybrid features

KNN 0.926 0.923 0.929 0.923 0.929 0.923 0.192 (p = 0.583) 0.541 (p = 0.020)

SVM 0.963 0.923 1.000 1.000 0.9333 0.960
0.218 

(p = 0.245)

0.153 

(p = 0.112)

RF 0.889 0.923 0.857 0.857 0.923 0.889 0.126 (p = 0.685) 0.175 (p = 0.048)

LR 0.852 0.846 0.857 0.846 0.857 0.846 0.092 (p = 0.436) 0.184 (p = 0.047)

AdaBoost 0.926 0.923 0.929 0.923 0.929 0.923 0.284 (p = 0.069) 0.127 (p = 0.162)

MLP 0.926 0.846 0.857 0.846 0.857 0.846 0.084 (p = 0.699) 0.178 (p = 0.203)

Bold values highlight the models with the highest ACC.
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The classification performance based on hybrid features is show 
in Table  2 and Figure  5, and the overall metric level is improved 
compared with the radiomics features alone. Basically, every model 
achieved an accuracy of around 90%, with the SVM model improving 
the most: ACC = 0.963, SEN = 0.923, SPE = 1.000, PPV = 1.000, 
NPV = 0.933, F1-score = 0.960, AUC = 0.96 (95% CI: 0.89–1.00). 
Moreover, NRI and IDI showed that the classification ability of the 
model constructed based on hybrid features has been improved. 
Among these, NRI and IDI indicated that the SVM model with the 
improvement by 0.245 and 0.112, respectively.

3.5 The performance of the external 
validation set

To demonstrate the generalization ability of the proposed 
model, we  applied the radiomics feature-based support vector 
machine (SVM) model, the image-based deep learning model, and 
the hybrid feature-based SVM model on the external validation set. 
The detailed results are shown in Table 3. The performance of the 
hybrid feature-based SVM is satisfactory, with ACC = 0.958, 
SEN = 1.000, SPE = 0.933, PPV = 0.900, NPV = 1.000, and 
F1-score = 0.947.

3.6 Feature statistics and visualization

The accuracy of our model was further improved by fusing deep 
learning features. To explain the role of deep learning features, 
we  visualized regions that influence classification decisions via a 
saliency map [23], which principles are explained in 
Supplementary material S9. As shown in Figure 7, the focus of the 
saliency map was on the bilateral “swallow tail” sign, a characteristic 
of PD, which was consistent with the regions of pathological change, 
greatly enhancing the interpretability of our CNN model.

FIGURE 4

SHAP value-based interpretation of the model, showing the importance of contributing features. The blue and red points in each row represent 
participants with low to high values for each specific variable.

FIGURE 5

The ROC curve of machine learning algorithms in the test set. 
(A) Using radiomics features alone. (B) Using hybrid features.
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4 Discussion

We proposed a novel hybrid model utilizing combined features 
from both deep learning and radiomics to identify early-stage 
PD. Utilizing the setMag images reconstructed from QSM images, 
we  can synchronously extract information such as neuromelanin 
(NM) and iron deposition without increasing scan time. This approach 
can provide valuable insights for future research on the pathological 
changes associated with PD. In this study, the YOLO v5 model was 
used to segment the brainstem automatically. Then an improved 
lightweight LeNet model was used to diagnose the brainstem and 
provide deep learning features. The combination of radiomics features 
and deep learning features improved the accuracy of machine learning 
models. This integrative image analysis strategy is more sensitive to 
the initial changes in neuromelanin density and volume, providing 
distinct radiomics information and deep features hidden within 
setMag images. The proposed approach would be helpful in improving 
the diagnostic accuracy for EPD and increasing the confidence of 
clinicians in the diagnosis, especially when supplemented with 
clinical information.

In our opinion, this study had three improvements over similar 
studies to date. Firstly, we focused on the features of the brainstem, 
where the pathological changes in PD mainly occurred. Although 
using the whole-brain textural features has been the main focus of 
previous studies to classify PD patients and healthy people (Wu et al., 
2019; Shi et  al., 2022), the development of models based on the 
brainstem is showing significant diagnostic potential. For instance 
Haq et al. (2020) produced positive results, and Huddleston et al. 

(2018) achieved an accuracy of 86% in the machine learning model 
using features from the SNpc of the brainstem. In our study, 
segmenting brainstem areas and training the model with hybrid 
features led to a discriminative diagnosis of early-stage PD with 
accuracy of 96.3% in the test set and 95.8% in the external 
validation set.

Secondly, we used a new imaging MRI modality, a simple CNN 
model, and a visualization technique to complete the classified 
diagnosis. To the best of our knowledge, modalities such as NM-MRI 
(Le Berre et al., 2019), QSM (Xiao et al., 2019), and SPECT (Pahuja 
and Prasad, 2022) have provided major information for deep learning 
methods in PD. Large and complicated deep learning models were 
typically used to extract higher-order semantic features from images. 
To ensure classification accuracy, manual annotation, data 
augmentation, and transfer learning were all frequently used. 
We obtained neuromelanin content based on setMag images, which 
had been reported for its extension value of QSM in our previous 
study (Liu et al., 2020). We also confirmed the efficacy of this imaging 
technique in detecting early-stage Parkinson’s disease. In addition, 
we employed an improved LeNet model, which not only requires less 
computation and training data but also effectively avoids gradient 
disappearance problems and local optimal solutions. In the 
visualization result of the saliency map, the highlighted parts are 
positively correlated with the classification decision of the model. 
We found the highlighted regions were primarily within the bilateral 
SNpc, which was in line with the findings of other researchers 
(Blazejewska et al., 2013; Gao et al., 2016; Schwarz et al., 2017). As a 
result, the features extracted by the CNN appear to reflect some of the 

FIGURE 6

The average importance of the features in the random forest.

TABLE 3 The performance of optimal models on the external validation set.

Feature Model ACC SEN SPE PPV NPV F1-score

Radiomics features SVM 0.875 0.889 0.867 0.800 0.929 0.842

Deep features CNN 0.917 0.929 0.900 0.929 0.900 0.900

Hybrid features SVM 0.958 1.000 0.933 0.900 1.000 0.947
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pathological changes caused by PD, improving the interpretability and 
diagnostic value of the model.

Finally, in comparison to the research employing only deep 
learning methods, the combination of radiomics features and deep 
learning features improved the diagnosis of PD. In a recent study Sun 
et al. (2022) achieved 85.58% accuracy using the ResNet34 model for 
image coding and SVM to classify early-stage PD. In another attempt 
Xiao et  al. (2019) obtained a 90% classification accuracy using a 
network structure with only three convolutional layers. Since deep 
learning approaches can extract higher-order semantic information, 
while radiomics approaches can provide information on gray-scale 
statistics and texture features, combining both can increase diagnostic 
accuracy and outperform similar recent research (Sun et al., 2022) in 
diagnostic value.

There were several limitations in this study. Firstly, the proposed 
CNN model used a single slice of a 2D brainstem region, which lost 
the spatial information of the original image. It would be better to 
develop models that can input 3D images to exploit spatial contextual 
information. Second, our training data was only from one clinical 
center. Unicentric studies could be biased with the population of the 
study. Besides, the sample size is still relatively small for machine 
learning. Although we evaluated the model in an external validation 
set, the model still requires more available external validation to 
further verify the generalizability and robustness of the diagnostic 
model, as well as its interpretability.

In conclusion, we proposed a hybrid machine learning model with 
deep learning features and radiomics features, improved the diagnostic 

ability for detecting early PD, and demonstrated the interpretability by 
different locations of the brainstem showing different levels of 
significance. Our results suggest that the use of the hybrid model can 
identify Parkinson’s disease with high accuracy. The hybrid approach 
may provide a reliable suggestion for the early detection of Parkinson’s 
disease to help clinicians make accurate decisions.
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