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Introduction: The prediction of progression from mild cognitive impairment

(MCI) to Alzheimer’s disease (AD) is an important clinical challenge. This study

aimed to identify the independent risk factors and develop a nomogram model

that can predict progression from MCI to AD.

Methods: Data of 141 patients with MCI were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database. We set a follow-up time of 72

months and defined patients as stable MCI (sMCI) or progressive MCI (pMCI)

according to whether or not the progression of MCI to AD occurred. We

identified and screened independent risk factors by utilizing weighted gene

co-expression network analysis (WGCNA), where we obtained 14,893 genes

after data preprocessing and selected the soft threshold β = 7 at an R2 of

0.85 to achieve a scale-free network. A total of 14 modules were discovered,

with the midnightblue module having a strong association with the prognosis

of MCI. Using machine learning strategies, which included the least absolute

selection and shrinkage operator and support vector machine-recursive feature

elimination; and the Cox proportional-hazards model, which included univariate

and multivariable analyses, we identified and screened independent risk factors.

Subsequently, we developed a nomogram model for predicting the progression

from MCI to AD. The performance of our nomogram was evaluated by the

C-index, calibration curve, and decision curve analysis (DCA). Bioinformatics

analysis and immune infiltration analysis were conducted to clarify the function

of early B cell factor 1 (EBF1).

Results: First, the results showed that 40 di�erentially expressed genes

(DEGs) related to the prognosis of MCI were generated by weighted gene

co-expression network analysis. Second, five hub variables were obtained

through the abovementioned machine learning strategies. Third, a low Montreal

Cognitive Assessment (MoCA) score [hazard ratio (HR): 4.258, 95% confidence

interval (CI): 1.994–9.091] and low EBF1 expression (hazard ratio: 3.454, 95%

confidence interval: 1.813–6.579) were identified as the independent risk factors

through the Cox proportional-hazards regression analysis. Finally, we developed

a nomogrammodel including the MoCA score, EBF1, and potential confounders

(age and gender). By evaluating our nomogram model and validating it in both

internal and external validation sets, we demonstrated that our nomogrammodel

exhibits excellent predictive performance. Through the Gene Ontology (GO)
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enrichment analysis, Kyoto Encyclopedia of Genes Genomes (KEGG) functional

enrichment analysis, and immune infiltration analysis, we found that the role of

EBF1 in MCI was closely related to B cells.

Conclusion: EBF1, as a B cell-specific transcription factor, may be a key target

for predicting progression from MCI to AD. Our nomogram model was able

to provide personalized risk factors for the progression from MCI to AD after

evaluation and validation.
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mild cognitive impairment, Alzheimer’s disease, nomogram, EBF1, B cells

1 Introduction

Alzheimer’s disease (AD) is a severe neurodegenerative disease,

with symptoms of progressive cognitive dysfunction and behavioral

impairment. It can lead to diminished quality of life or disability

in patients. Due to the unclear cause of the disease and the

absence of therapy, early identification and appropriate preventive

measures are important. Mild cognitive impairment (MCI) is an

intermediate state between normal aging and dementia (Vega

and Newhouse, 2014). Due to the high risk of MCI progressing

to AD, patients with MCI will be a target for future disease

treatments. Therefore, it is necessary to have knowledge about

biomarkers and risk factors that can predict the progression from

MCI to AD. With the development of biomarkers, it is possible

to detect the core pathological changes, even in the preclinical

stage of AD. Therefore, there has been a shift in the focus of

diagnosis from clinical symptoms to the biomarker framework

(Jack et al., 2018). However, the whole spectrum of AD pathologies

is not covered by the amyloid-tau-neurodegeneration (A-T-

N) framework. Cerebrospinal fluid tests and positron emission

tomography (PET) examinations based on this framework have

become widely accepted; however, the application of these

diagnostic methods is limited due to invasiveness and high cost.

Therefore, researchers, including Guo, have proposed adding

an “X” to the A-T-N framework, which represents biomarkers

of neuroinflammation, neuroimmunity, systemic immunity, and

other pathologies, and have focused on peripheral biomarkers

(Huang et al., 2022).

A growing number of studies have demonstrated the

involvement of the immune system in the pathogenesis of AD

(Marsh et al., 2016; Song et al., 2022). Bulati et al. (2015) observed

a reduction in the number of B cells in the blood of AD patients,

which strongly correlated with patients’ Clinical Dementia

Rating scores. In APP/PS1 transgenic mice, early B cell depletion

significantly accelerated cognitive dysfunction and Aβ burden

(Xiong et al., 2021). Similarly, Feng et al. (2023) observed that B

cell depletion exacerbated spatial learning and memory deficits in 5

× FADmice, which was associated with increased Aβ load, reactive

gliosis, and synapse-associated protein loss. These data emphasize

the neuroprotective role of B cells in AD. Early B cell factor 1

(EBF1) is a B cell-specific transcription factor. It is also involved

in the differentiation of the cranial neural crest cells (El-Magd

et al., 2014a) and the promotion of neuronal differentiation (Faedo

et al., 2017). In our study, we found that EBF1 may be a potential

biomarker for predicting the progression from MCI to AD, which

provides powerful data for the involvement of B cells in the

development of AD.

An accurate prediction of the progression from MCI to AD

is crucial for early clinical identification of people at high risk of

AD and for effective interventions and treatment to delay its onset.

Obtaining reliable biomarkers through simple, effective, low-cost,

and non-invasive screening methods has become a hot research

topic. In addition to β-amyloid deposition, pathologic tau, and

neurodegeneration, we should also focus on the “X.” Currently,

studies on EBF1 involve central nervous system disorders, such as

multiple sclerosis (Martínez et al., 2005) and Parkinson’s disease

(Yin et al., 2009). Although it has been shown that EBF1 expression

is decreased in the brain with AD, which affects the transcriptional

level of FAM3C and promotes Aβ deposition (Watanabe et al.,

2021), there are very few studies on the association of EBF1 with

AD. In addition, with the popularity of transcriptomics, the amount

of biological data has increased exponentially. Bioinformatics

methods have been developed rapidly to fully exploit the potential

value of these high-throughput data, while machine learning

strategies have been widely used in identifying important genes.

Based on the above research background, we comprehensively

analyzed RNA microarrays through bioinformatics methods,

combined with machine learning strategies, to identify the feature

gene for progression fromMCI to AD. In addition, we developed a

nomogram prognostic model to assist physicians in predicting the

regression of patients with MCI and to help patients visualize their

likelihood of disease development.

2 Materials and methods

2.1 Participants

The data utilized for our study were acquired from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(https://adni.loni.usc.edu/). The ADNI was established in 2003 as

a collaboration between public and private entities, with approval

from the institutional review boards at all ADNI sites. The complete

list can be found at http://adni.loni.usc.edu. The primary aim of

the ADNI was to test whether it is possible to combine different

indicators for predicting the progression of MCI to AD. All

participants provided explicit consent before taking part in the

study. All procedures were carried out in accordance with the

applicable rules and regulations. The Publication Committee of the

ADNI approved this study.
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According to the ADNI protocol, in the study, MCI was

identified when a patient or caregiver reported cognitive decline,

if the participant showed indications of impairment in the logical

memory II subtest of theWechsler Memory Scale, if the participant

achieved a Mini-Mental State Examination (MMSE) score of 24 or

higher, and if the participant had a clinical dementia rating of 0.5.

Participants with MCI who met the dementia diagnostic criteria

were excluded. AD was diagnosed using the National Institute of

Neurological and Communicative Disorders and Stroke (NINCDS)

and the Alzheimer’s Disease and Related Disorders Association

(ADRDA) criteria for probable AD (see http://adni.loni.usc.edu/

methods/documents for detailed inclusion and exclusion criteria).

We downloaded 744 participants’ peripheral blood RNA

microarrays (normalized by the robust multi-chip average method)

from the ADNI database. The source of the microarray was

GPL13667 (Affymetrix GPL platform), Human Genome U219

Array (see https://ida.loni.usc.edu/pages/access/studyData.jsp for

details on RNA microarrays and data preprocessing). Among

the744 participants, 383 were patients with MCI.

We set a follow-up time of 72 months, with AD conversion

as the endpoint event. We defined the occurrence of the endpoint

events as the follow-up endpoint and had the follow-up deadline as

the endpoint for those who did not experience the endpoint event.

A total of 82 patients with MCI had the endpoint events during the

follow-up period and were included in the progressiveMCI (pMCI)

group, and 59 patients with MCI had no endpoint events within 6

years and were included in the stable MCI (sMCI) group. These

patients were included in two cohort studies, ADNI 2 and ADNI

GO, with the follow-up period ranging from 6 to 72 months.

In our study, the ADNI 2 dataset (51 cases of pMCI and 29

cases of sMCI) was used for the identification of feature genes,

the development of a nomogram prognostic model, and internal

validation, whereas the ADNI GO dataset (31 cases of pMCI and

30 cases of sMCI) was used for external validation. According to

the study protocol, the remaining patients with MCI were excluded

for the following reasons: 11 patients with MCI had outlier RNA

microarray samples at the time of weighted gene co-expression

network analysis (WGCNA), 29 patients with MCI were converted

to cognitively normal cohort (CN) at the follow-up endpoint, 169

patients with MCI were followed-up for <6 years and no endpoint

events occurred, and 33 patients with MCI had no follow-up

information. Our study flowchart is presented in Figure 1.

2.2 Participant characteristics

2.2.1 Neuropsychological assessment
Neuropsychological scales were used to assess global cognition.

Relevant data for theMontreal Cognitive Assessment (MoCA) were

extracted from the ADNI database (see https://ida.loni.usc.edu/

pages/access/studyData.jsp for details).

2.2.2 18F-AV-45 PET
We utilized 18F-AV-45 PET data from a dataset of standardized

uptake value ratios (SUVRs) of Aβ deposition rates in different

brain regions obtained from the analysis of raw images (using the

cerebellum as the reference region) at the University of California,

Berkeley and Lawrence Berkeley National Laboratory (for details,

see https://ida.loni.usc.edu/pages/access/studyData.jsp).

2.2.3 Potential confounders
Older age is the biggest risk factor for AD (Hebert et al., 2010;

2023 Alzheimer’s disease facts and figures, 2023). AD is more

prevalent among women (20%) than men (10%) (Chêne et al.,

2015), and there may be differences in the reasons they develop

dementia, such as innate immune responses (Mangold et al., 2017;

Roberts et al., 2022). Therefore, we assessed age and gender as

confounders that may influence the progression fromMCI to AD.

2.2.4 Statistical analysis
All calculations were performed utilizing the IBM SPSS

Statistics 26. Normally distributed data were expressed as mean

(standard deviation), and non-normally distributed data were

expressed as median (interquartile range) for continuous variables.

Categorical variables were expressed as frequency (percentage, %).

The categorical factors were examined using the chi-square test,

while the continuous factors were evaluated by conducting the

t-test or Wilcoxon rank-sum test in the univariate analysis.

2.3 WGCNA

WGCNA can be utilized to detect sets of genes with

comparable expression patterns (Langfelder and Horvath, 2008).

We constructed a WGCNA network for the progression from MCI

to AD with all genes from the ADNI 2 dataset using the “WGCNA”

R package.

2.3.1 Data preprocessing
For duplicate genes, we retained the row with the highest

average expression among all samples. The top 75% of median

absolute deviation was screened among 19,888 genes, and a total

of 14,893 genes were obtained. The “goodSamplesGenes” function

was applied to detect missing values. The “hclust” function was

applied to detect the outlier samples. Hierarchical clustering

analysis showed that RID501, RID566, RID1406, RID4160,

RID4170, RID4203, RIxD4240, RID4299, RID4426, RID4432, and

RID4473 samples were the outlier samples, which were clipped and

reclustered to avoid their confounding effects.

2.3.2 Determine the soft threshold β

The “pickSoftThreshold” function was used to calculate

different soft thresholds β for the scale-free network and the

corresponding fitting exponent R2. The closer R2 is to 1, the more

the fitted network conforms to the scale-free distribution, but the

larger the threshold, the smaller the average connectivity of all the

nodes in the network. Therefore, we determined the optimal soft

threshold β to fit the optimal scale-free network based on the value

of R2 and the average gene connectivity. In our study, the soft

threshold β was determined to be 7 at an R2 of 0.85.
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FIGURE 1

Study flowchart.

2.3.3 Test whether the network constructed
under the selected soft threshold β was close to
the scale-free network distribution

The “scaleFreePlot” function was used to test the scale-

free network.

2.3.4 Obtain adjacency matrix and topological
overlap matrix according to the soft threshold β

We selected β = 7 in this study, and we set the minimum

number of genes contained in the module to 100. The

“adjacency” function was used to obtain an adjacency matrix.

The “TOMsimilarity” function was used to obtain a topological

overlap matrix (TOM), and the 1-TOM was used to calculate the

dissimilarity of the TOM (dissTOM). The “TOMplot” function was

used to plot the correlation between the genes, and the darker the

color, the stronger the interaction between the genes.

2.3.5 Co-expression module identification
The dissTOM was used to construct a hierarchical clustering

tree through the “hclust” function. The clustering tree was

cut into different modules by the “cutreeDynamic” function.

To quantify the co-expression similarity of each module, the

“moduleEigengenes” function was used for calculating the module

eigengene of the identified modules and the correlation of the

module eigengene. We merged the modules with correlation

coefficients >0.75 into one module. The “plotDendroAndColors”

function was used to visualize the corresponding modules of the

clustering tree.

2.3.6 Correlation between modules and the
prognosis of MCI

The Spearman correlation analysis was conducted; a p-value of

<0.05 as the correlation was statistically significant. The module

with the large correlation coefficient (midnightblue module) was

selected for further analysis.

2.3.7 Analyze the relationship between genes and
the prognosis of MCI

The midnightblue module contained many genes. For the

midnightblue module, we defined module membership (MM) as

the correlation of the module eigengene and the gene expression

and gene significance (GS) as (the absolute value of) the

correlation between the gene and the prognosis of MCI. The

“plotModuleSignificance” function was used to plot the GS of

the midnightblue module, and the “verboseScatterplot” function

was used to plot the correlation coefficients of the MM and GS.

The higher the correlation coefficient, the better. The genes that

were highly correlated with the prognosis of MCI were also the

core genes that were associated with the prognosis of MCI in the

midnightblue module.

2.3.8 Screening of key genes: in the midnightblue
module

The key genes were screened according to MM > 0.8 and GS >

0.3 of the genes.

Frontiers in AgingNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1397696
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Ju et al. 10.3389/fnagi.2024.1397696

2.3.9 Visualization of gene co-expression
networks

The “exportNetworkToCytoscape” function was used to export

the functional network information between the genes in the

midnightblue module, and Cytoscape (version 3.10.0) was used to

visualize the gene co-expression network.

2.4 Identification of di�erentially expressed
genes

The “limma” R package was used to identify differentially

expressed genes (DEGs), with the following screening criteria: a

|log2fold change (FC)| of >0.263 and a p-value of <0.05, where a

log2FC of >0.263 and a p-value of <0.05 was considered Up and

a log2FC of <-0.263 and a p-value of <0.05 was considered Down.

The “pheatmap” and “ggplot2” R packages were used to plot the

volcano and heatmap of the DEGs.

Subsequently, the obtained DEGs were intersected with the

genes in the midnightblue module using WGCNA to obtain DEGs

related to the prognosis of MCI.

2.5 Screening hub variables by machine
learning

The least absolute selection and shrinkage operator (LASSO)

is a data mining method that achieves an equilibrium between the

model variance (the variance of regression coefficients) and the bias

(the difference between the predicted value and the true value)

by adjusting the parameter lambda (λ). The value of λ with the

smallest error was selected as the optimal value using the 10-fold

cross-validation method, and the variables included in the model

corresponding to this value of λ were significant variables. The

“glmnet” R packages were used for the LASSO.

The support vector machine-recursive feature elimination

(SVM-RFE) constructs variable ranking coefficients based on the

weight vector ω generated by an SVM during training, retains the

variables with significant effects, and finally obtains the decreasing

ranking of all variable attributes. In the 10-fold cross-validation

method, the variables with the minimum root mean square error

and the maximum accuracy were considered significant variables.

The “e1072” R package was used for the SVM-RFE.

Subsequently, the significant variables obtained by the LASSO

were intersected with the significant variables obtained by the

SVM-RFE to obtain hub variables related to the prognosis of MCI.

2.6 Nomogram construction and validation

A receiver operating characteristic (ROC) curve was used

to evaluate the hub variables and find the optimal cut-off

value. The Kaplan–Meier analysis was conducted to compare

the predicted individual risk and observe the non-progression

proportion. A univariate Cox proportional-hazards regression

analysis was conducted to preliminarily assess the impact of the hub

variables related to the prognosis of MCI. The multivariable Cox

proportional-hazards model was used to screen the independent

risk factors. Hazard ratio (HR), 95% confidence interval (CI), and

p-values were taken into account.

Based on the results of the above analysis, we found that a low

MoCA score and low EBF1 expression are independent risk factors

for predicting the progression of MCI to AD; meanwhile, age and

gender may influence the reliability of the findings. Consequently,

these independent risk factors and potential confounders (age

and gender) were applied to construct the nomogram model (Li

et al., 2022). The empirical samples of the ADNI 2 dataset, which

were obtained by bootstrap resampling, were used as an internal

validation set. External validation of nomograms is required

to ensure accuracy outside the original patient data (Cote and

Grassbaugh, 2024). The ADNI GO dataset was used as an external

validation set. The performance of the nomogram was evaluated

using the C-index and calibration curve in the training set, the

internal validation set, and the external validation set. Decision

curve analysis (DCA) was conducted to evaluate the clinical value

of the nomogram (Zhang et al., 2018). The “autoReg,” “rms,”

“bootstrap,” “pROC,” “survival,” “ggDCA,” and “rmda” R packages

were used in our study.

2.7 Gene ontology and kyoto encyclopedia
of genes genomes functional enrichment
analysis

The gene ontology (GO) analysis mainly includes three parts:

biological process, molecular function, and cellular component

(Ashburner et al., 2000). The Kyoto Encyclopedia of Genes

Genomes (KEGG) analysis provides information on gene-

related signaling pathways (Kanehisa, 2002). In our study, the

“clusterProfiler” R package was used for GO and KEGG functional

enrichment analyses. The p-value was set at <0.05, and the false

discovery rate was set at <0.25.

2.8 Analysis of immune cell infiltrations

We used the Cell-type Identification By Estimating Relative

Subsets Of RNA Transcripts (CIBERSORT) algorithm to analyze

the correlation between the EBF1 (early B cell factor 1) expression

and the immune cell infiltration levels. The “CIBERSORT” R

package was used in our study. The differences in immune cell

abundances between the high EBF1 expression and low EBF1

expression groups were estimated using the Wilcoxon rank-

sum test. The correlation between the EBF1 expression and

the differential immune cells was analyzed using the Spearman

correlation analysis.

3 Results

3.1 Participant characteristics

A total of 51 pMCI and 29 sMCI cases were included in the

training set (ADNI 2 dataset) and 31 pMCI and 30 sMCI cases were

included in the external validation set (ADNI GO dataset). The
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demographic characteristics, results of the MoCA, and 18F-AV-45

PET of the two sets are shown in Table 1. In the two sets, there was

a statistically significant difference between the patients with pMCI

and those with sMCI in the MoCA score (p < 0.001); therefore, the

MoCA score as a variable was included in the subsequent analysis.

3.2 WGCNA

After data preprocessing, we obtained the gene expression

matrix of 80 samples of the ADNI 2 dataset (14,893 genes).

A sample clustering tree, as shown in Figure 2A, was obtained

through the clustering of the samples.

Choosing the ideal soft threshold β can enhance the robust

connection and diminish the feeble connection among genes,

resulting in a constructed network that closely resembles a scale-

free network and is more similar to the gene regulatory network in

actual biology. Therefore, we selected the soft threshold of β = 7

(using the scale-free topology criterion with R2 = 0.85) to achieve a

scale-free network (Figures 2B, C).

According to the soft threshold β of 7, the histogram of the

distribution of gene connectivity was plotted (Figure 2D). The

scale-free network distribution was examined, which showed the

number of nodes (k) corresponding to the gene connectivity and

was negatively correlated with the probability of node occurrence

(p (k)) (correlation coefficient 0.82, slope −1.8), suggesting that

the network constructed by the selected soft threshold tended to

converge to the scale-free network (Figure 2E).

Subsequently, we created the adjacency matrix and formed a

TOM and dissTOM. The correlation heatmap between the genes

in the ADNI2 dataset was plotted according to the dissTOM

(Figure 2F), and hierarchical clustering was performed to merge

the modules with higher similarity (Figure 2G). In the end, a

total of 14 modules were discovered and the genes within each

module exhibited higher similarity. The smallest module was the

midnightblue module, which contained 210 genes. The largest

module was the turquoise module, which contained 3,642 genes.

The gray module contained all genes that could not be clustered

into other modules.

The midnightblue module had a strong association with the

prognosis of MCI; therefore, it was chosen as a module of

clinical significance for further analysis (Figures 3A, B). Notably,

a significant correlation was observed between the MM and GS

of the midnightblue module (Figure 3C). By applying MM > 0.8

and GS > 0.3, we identified nine key genes (FCRLA, P2RX5,

CD72, MS4A1, EBF1, BLNK, CR2, ABCB4, and FCRL2) in the

midnightblue module (Figure 3D).

3.3 Identification of DEGs

A total of 178 DEGs were acquired from the ADNI2 dataset,

which included 114 downregulated and 37 upregulated genes. The

volcano plot and heatmap of the DEGs are shown in Figures 4A,

B. A total of 40 DEGs related to the prognosis of MCI were

identified by taking the intersection of the DEGs and genes in the

midnightblue module using WGCNA (Figure 4C).

3.4 Identification of hub variables by
machine learning

The LASSO was performed with the MoCA score and 40 DEGs

related to the prognosis of MCI, and eight significant variables were

extracted, including the MoCA score, ARHGAP32, P2RX5, EBF1,

FCRL2, FCRL5, CELSR1, and SOBP (Figures 4D, E).

In the optimal parameters (minimum root mean square

error = 0.2875 and maximum accuracy = 0.7125), the SVM-

RFE identified seven significant variables, including the MoCA

score, ARHGAP32, P2RX5, EBF1, FCRLA, CELSR1, and CR2

(Figures 4F–H).

The results of the LASSO and SVM-RFE were overlapped by

the Venn diagram, and finally, five hub variables were obtained,

namely the MoCA score, ARHGAP32, P2RX5, EBF1, and CELSR1

(Figure 4I).

3.5 Independent risk factors of the
prognosis of MCI

To determine the ability of the MoCA score, ARHGAP32,

P2RX5, EBF1, and CELSR1 to distinguish between the sMCI and

pMCI and to find the optimal cut-off value, we plotted an ROC

curve. The area under the ROC curve (AUC) of the MoCA score,

ARHGAP32, P2RX5, EBF1, and CELSR1 were 0.791 (95% CI

0.692–0.891), 0.684 (95% CI 0.551–0.818), 0.688 (95% CI 0.570–

0.807), 0.699 (95% CI 0.581–0.817), and 0.691 (95% CI 0.561–

0.821) (Figure 5A). The optimal cut-off sensitivity, specificity,

Youden index, positive predictive value, and negative predictive

values are listed in Table 2.

To assess whether theMoCA score, ARHGAP32, P2RX5, EBF1,

and CELSR1 can predict AD dementia in patients with MCI, based

on their optimal cut-off value, we divided the patients into the high

MoCA score (≥22.5) and lowMoCA score (<22.5) groups, the high

ARHGAP32 expression (≥4.565) and low ARHGAP32 expression

(<4.565) groups, the high P2RX5 expression (≥8.577) and low

P2RX5 expression (<8.577) groups, the high EBF1 expression

(≥5.845) and low EBF1 expression (<5.845) groups, and the

high CELSR1 expression (≥4.631) and low CELSR1 expression

(<4.631) groups.

The Kaplan–Meier survival curves of the MoCA score,

ARHGAP32, P2RX5, EBF1, and CELSR1 showed that the non-

progression proportion of the patients in the low groups in the

follow-up period was much lower than that of the patients in the

high groups (p < 0.001, p = 0.001, p = 0.004, p < 0.001, and p <

0.001, Figures 5B–F).

The results of the univariate Cox proportional-hazards

regression analysis showed that a low MoCA score, low

ARHGAP32 expression, low P2RX5 expression, low EBF1

expression, and low CELSR1 expression increased the risk of AD

dementia in patients with MCI. After the univariable analysis,

the five hub variables were entered into the multivariable Cox

proportional-hazards model, using stepwise backward selection,

and the results demonstrated that the prognosis of MCI was

significantly correlated with a low MoCA score (p < 0.001) and

low EBF1 expression (p < 0.001) (Table 3). To reduce the impact
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TABLE 1 Participant characteristics.

ADNI 2 ADNI GO

pMCI (n = 51) sMCI (n = 29) p-value pMCI (n = 31) sMCI (n = 30) p-value

Age 73.43± 7.17 70.17± 7.28 0.056 78.23± 6.99 70.30± 7.46 <0.001

Women (%) 28 (54.90) 12 (41.40) 0.245 8 (25.80) 18 (60.00) 0.07

MoCA 20.27± 3.68 23.34± 2.08 <0.001 20.84± 2.75 24.50± 2.95 <0.001

18F-AV-45 PET (SUVR) 1.40 (0.24) 1.05 (0.26) <0.001 1.36 (0.23) 1.02 (0.67) <0.001

FIGURE 2

Analyzing the modules of co-expression. (A) Clustering dendrogram of 80 samples. (B) Analysis of the scale-free index for the various soft threshold

powers. (C) The relationship between the mean connectivity and various soft threshold powers. (D, E) Examining the scale-free networks with the soft

threshold β = 7. (F) The correlation heatmap between the genes in the ADNI2 dataset based on the dissTOM. (G) Clustering dendrogram of the genes.

of potential confounders, age and gender were also included in the

final multivariable Cox proportional-hazards model (Figure 5G).

3.6 Development of a nomogram
prognostic model

Using the final multivariable model, a nomogram was

constructed to predict the progression from MCI to AD

(Figure 6A). The nomogram considered two independent risk

factors (MoCA score and EBF1 expression), along with two

potential confounders (age and gender). A score was assigned to

each of the four variables on the point scale axis, and the scores

of the variables were used to calculate a cumulative score. By

projecting the total score to the total point scale, we were able to

estimate the probability of patients with MCI who will progress

to AD.

3.7 Evaluation and validation of the
nomogram model

A variety of metrics, including the C-index, calibration, and

DCA, were used to evaluate the performance of the nomogram.

The C-index of the nomogram was 0.736 in the training set. The

empirical samples of the ADNI 2 dataset, which were obtained by

bootstrap resampling, were used as an internal validation set, and

the C-index was 0.824 in the internal validation set. In the external

validation set, the C-index was 0.751. The calibration measured

how well the probabilities predicted by our nomogram model

compared with the reality. Figures 6B–D present the calibration

curves of the nomogram predicting a progression probability

of 6 years, which demonstrated a strong agreement between

the predicted probabilities by the nomogram and the actual

probabilities in the training set, the internal validation set, and the

external validation set. Based on the results of the DCA curves,
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FIGURE 3

Identification of the module and genes related to the prognosis of MCI. (A) Heatmap illustrating the relationship between the module eigengenes and

clinical status. (B) The correlation between the genes and the prognosis of MCI in the modules. (C) The correlation between the MM and GS. (D)

Gene co-expression network and nine key genes in the midnightblue module.

we should avoid using our nomogram when the risk threshold is

less than 13% and greater than 96% in the training set and when

the risk threshold is less than 11% in the internal and external

validation sets. Thus, except for a small range of risk thresholds,

the net benefit of predicting progression from MCI to Alzheimer’s

disease in 6 years using our nomogram is greater than assuming

that all patients with MCI will progress to AD or that none will

progress to AD (Figure 6E). Therefore, it would be appropriate

to use this nomogram in our study to predict progression from

MCI to AD in 6 years. The results showed a broad spectrum

of alternative threshold probabilities in the nomogram prediction

model, demonstrating that our nomogram model worked well as a

prediction tool.

3.8 EBF1 expression and function

The results above showed that, in addition to the MoCA score,

EBF1 is valuable in predicting progression fromMCI to AD. In the

ADNI 2 dataset and ADNI GO dataset, the difference in EBF1 was

statistically significant between patients with pMCI and patients

with sMCI (p = 0.002 and p = 0.006), and the EBF1 expression

level was lower in patients with pMCI than in patients with sMCI

(Figures 7A, B).

We divided the patients with pMCI of the ADNI2 dataset

into the high EBF1 expression and low EBF1 expression groups.

Based on the screening criteria, with a |log2fold change (FC)| of

>0.263, a p-value of <0.05, and a false discovery rate of <0.05, a

total of 276 DEGs related to EBF1 were acquired from the ADNI2

dataset, which included 217 downregulated and 59 upregulated

genes (Figures 7C, D).

The KEGG analysis showed that the genes were

concentrated in the B cell receptor signaling pathway,

primary immunodeficiency, and cellular senescence signaling

pathway (Figure 7E).

GO analysis includes three parts: biological process,

cellular component, and molecular function. The biological

process was enriched in the B cell activation, B cell receptor

Frontiers in AgingNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1397696
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Ju et al. 10.3389/fnagi.2024.1397696

FIGURE 4

Identification of the DEGs and hub variables. (A) A volcano plot of the DEGs in the ADNI 2 dataset. (B) Heatmap of the DEGs in the ADNI 2 dataset. (C)

Venn diagrams illustrating the DEGs related to the prognosis of MCI. (D) Graph showing the profiles of the LASSO coe�cient. (E) The 10-fold

cross-validation plot of the LASSO regression algorithm. (F) The genetic importance ranking plot by SVM-RFE. (G) The svm-accuracy plot of the

SVM-RFE. (H) The svm-error plot of the SVM-RFE. (I) Venn diagrams of the hub variables related to the prognosis of MCI.

signaling pathway, B cell proliferation, lymphocyte activation,

lymphocyte proliferation, the regulation of the nucleobase-

containing compound metabolic process, and intracellular

signal transduction (Figure 7F). The cellular component

was enriched in the nuclear part, cell surface, biogenesis of

lysosome-related organelles (BLOC) complex, chromatin, nuclear

chromatin, side of the membrane, cytosol, immunoglobulin

complex, chromosomal part, and nuclear chromosome part

(Figure 7G). The molecular function was concentrated in

the protein homodimerization activity, HMG box domain

binding, protein dimerization activity, interleukin-6 receptor

binding, DNA binding, lipid binding, and enhancer binding

(Figure 7H).

3.9 Correlation between EBF1 expression
and immune infiltration in MCI

According to the findings of the analysis of the immune cell

infiltration, the level of the expression of EBF1 was found to have

a positive association with the expression patterns of B cells naïve
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FIGURE 5

Independent risk factors of the prognosis of MCI. (A) The ROC curves of the five hub variables (MoCA score, ARHGAP32, P2RX5, EBF1, and CELSR1).

(B–F) The Kaplan–Meier survival curves of the five hub variables. (G) Forest plot of the multivariable Cox proportional-hazards model.

(r = 0.583, p < 0.001) and mast cells resting (r = 0.234, p = 0.037)

and a negative association with the expression patterns of NK cells

resting (r =−0.345, p= 0.002) (Figure 8).

4 Discussion

AD is the most common type of dementia and the fifth

leading cause of death in the elderly, which not only brings

great pain to patients but also imposes a heavy burden on

families and society. Currently, AD has a low rate of early

recognition, a low rate of diagnosis, a high rate of missed diagnosis,

and a high rate of misdiagnosis, and there is no treatment

to reverse the disease process. The biomarkers of AD are of

great significance in improving diagnostic rates and evaluating

treatment, and theymainly include cerebrospinal fluid and imaging

biomarkers. Currently, researchers are focused more on blood-

based biomarkers that may enable earlier and faster diagnoses

(Hampel et al., 2023). In addition to the plasma Aβ42/40 ratio and

plasma concentrations of several pTau isoforms, new blood-based

biomarkers are constantly being discovered, such as inflammation-

associated glial fibrillary acidic protein and neuronal damages-

associated neurofilament light chain (Cronjé et al., 2023; Jung

and Damoiseaux, 2024). Meanwhile, the discovery of genetic risk
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TABLE 2 Classification accuracy for the prediction at the optimal risk cut-o� value for the MoCA score, ARHGAP32, P2RX5, EBF1, and CELSR1.

AUC Cut-o� Sen (%) Spe (%) Youden index PPV (%) NPV (%)

MoCA 0.791 22.5 69.0 80.4 0.494 66.7 82.0

ARHGAP32 0.684 4.565 55.2 84.3 0.385 66.7 76.8

P2RX5 0.688 8.577 72.4 64.7 0.371 53.8 80.5

EBF1 0.699 5.845 69.0 68.6 0.376 55.6 79.5

CELSR1 0.691 4.631 75.9 64.7 0.406 55.0 82.5

Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value.

TABLE 3 Univariable Cox proportional-hazards regression analysis and multivariable Cox proportional-hazards model (stepwise backward selection) of

the risk of the prognosis of MCI.

Univariable Multivariable (backward)

HR (95%CI) p-value HR (95%CI) p-value

MoCA score

High MoCA 0.253 (0.126–0.510) <0.001 0.226 (0.111–0.459) <0.001

Low MoCA 3.950 (1.963–7.949) <0.001 4.425 (2.177–8.994) <0.001

ARHGAP32 level

High ARHGAP32 0.362 (0.169–0.774) 0.009

Low ARHGAP32 2.763 (1.291–5.912) 0.009

P2RX5 level

High P2RX5 0.443 (0.248–0.790) 0.006

Low P2RX5 2.255 (1.265–4.021) 0.006

EBF1 level

High EBF1 0.359 (0.198–0.654) <0.001 0.317 (0.173–0.583) <0.001

Low EBF1 2.783 (1.530–5.061) <0.001 3.154 (1.716–5.798) <0.001

CELSR1 level

High CELSR1 0.380 (0.212–0.680) 0.001

Low CELSR1 2.631 (1.470–4.711) 0.001

factors provides a unique opportunity for a better understanding

of the associated pathophysiological processes of AD (Bellenguez

et al., 2022). Furthermore, Escott-Price et al. have shown that the

combination of genetics and biomarkers can provide an accurate

analysis in predicting the progression of AD (Stevenson-Hoare

et al., 2023). However, the application of biomarkers needs to

depend on the specific context-of-use, such as in low-resource

and non-specialized settings, blood-based biomarkers may be more

accessible, and for patients with a very likely diagnosis of AD, a

cerebrospinal fluid test or a PET examination is a more appropriate

choice (Parra et al., 2023). The age of the intended-use population

is a critical consideration.

Machine learning algorithms could integrate multiple

biomarkers for the prediction of AD. Blanco et al. (2023) found

that algorithms using only fluid biomarkers have reported very

good performances. As WGCNA can help researchers reveal

gene co-expression patterns, discover key regulatory genes, and

understand the function of gene regulatory networks, it is widely

used in many areas of biological research (Gong et al., 2024;

Johnson et al., 2024). For a nomogram, an externally validated

and well-maintained model can be a valuable tool for predicting

progression (Cote and Grassbaugh, 2024). MCI is the earliest stage

of AD and is the most important target for the early diagnosis and

prevention of AD. Intervention for MCI due to AD may be the

most effective strategy to slow down the disease process of AD.

However, the prediction of MCI to AD progression is an important

clinical challenge. In our study, we applied WGCNA and machine

learning strategies to hub variables related to the prognosis of

MCI. Subsequently, we developed and validated a nomogram for

predicting progression from MCI to AD, which provided a reliable

tool for physicians for predicting the regression of patients with

MCI. The nomogram consisted of two independent predictors:

the MoCA score and the EBF1 gene, and it included potential

confounders (age and gender). The evaluation and validation

results demonstrated that the nomogram had adequate measurable

power to predict the outcome of MCI.

The MoCA is an uncomplicated, independent cognitive

assessment tool that demonstrates superior sensitivity. The

assessment encompasses significant cognitive areas, such as

immediate memory recall, delayed recall, spatial visualization
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FIGURE 6

Nomogram and evaluation of the nomogram. (A) Nomogram was constructed for predicting the progression from MCI to AD. Calibration curves of

the nomogram for the training set (B), the internal validation set (C), and the external validation set (D). (E) Decision curve analysis for the training set,

the internal validation set, and the external validation set.

skills, executive functions, verbal, abstraction, attention, numeracy,

and orientation, with a total score of 30 (Nasreddine et al.,

2005). Compared with the MMSE, the MoCA has a higher

sensitivity for recognizing MCI and mild AD and a higher

specificity for recognizing MCI (Nasreddine et al., 2005; Pinto

et al., 2019; Jia et al., 2021). Our study indicated that the

MoCA score has the potential to forecast progression from MCI

to AD.

EBF1 is a transcription factor that regulates the differentiation

of B cells, neurons, and fat cells. As a transcription factor, EBF1

was initially shown to be an essential factor for the maturation of

early B cells and a key regulator of B cell gene networks (Gisler

et al., 2000; Treiber et al., 2010). Studies have shown that EBF1

could regulate the development of several other cells, one of which

is neurons. The EBF1 gene may be a major controller of neuronal

differentiation and migration (Garcia-Dominguez et al., 2003). The

findings of the current studies have qualified EBF1 as a marker gene

for striatal projection neuron and early neuronal differentiation

(Garel et al., 1999; Onorati et al., 2014; Mannens et al., 2024). In

addition, EBF1 is a positive regulator of myelination in Schwann

cells (Moruzzo et al., 2017). It was shown that etinoic acid signals

could affect the migration of EBF1-expressing cells (El-Magd et al.,

2014b), and the EBF1 expression could be regulated by the Shh

signaling in the notochord (El-Magd et al., 2015). Although EBF1

plays an essential role in neural differentiation, its physiological

function in the mature brain has not yet been identified (Lobo et al.,

2006; Garel et al., 1997). The EBF1 expression was downregulated

by 2-fold in the common lymphoid progenitor cells of aged mice
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FIGURE 7

EBF1 expression and function. (A, B) EBF1 expression level in patients with sMCI and those with pMCI. (C) Volcano plot of the DEGs related to EBF1 in

the ADNI 2 dataset. (D) Heatmap of the DEGs related to EBF1. (E) The results of the KEGG analysis. (F–H) The results of the GO analysis.

compared to young mice (Lescale et al., 2010). EBF1 is also known

to be downregulated in the Caenorhabditis elegans model by the

co-expression of Aβ and tau in pan-neuronal cells (Wang et al.,

2018).

The findings of the single-cell RNA sequencing analysis

demonstrated a significant decrease in B cells in the blood of

patients with AD, with the changes of the specific genes expression

in B cells. The study by Xiong et al. (2021) revealed that the

inactivation of B cells in the early stage significantly aggravated the

AD-induced cognitive barriers with an elevated number and area

of Aβ plaques in mice with AD. Recently, B cell-related processes

in AD have been the subject of many studies, some of which

have consistently shown that immunoglobulins produced by B

cells may reduce Aβ plaques (Marsh et al., 2016) and attenuate

neuroinflammation (Baulch et al., 2020). However, in a previous

study, as the disease progressed in AD, B cells in mice with AD

appeared to lose their anti-inflammatory activity and exhibit a pro-

inflammatory phenotype, as evidenced by the upregulation of pro-

inflammatory cytokine expression and the co-localization of B cells,

Aβ plaques, and activated microglia (Kim et al., 2021). In summary,

B cells contribute to the pathogenesis of AD and appear to play a

double-edged role.
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FIGURE 8

Analysis of the immune cell infiltrations. (A–D) The correlation between the EBF1 expression and di�erential immune cells. (E) Percentage

abundance of the immune cells for each sample. (F) The immune cell infiltration between the high EBF1 expression and low EBF1 expression groups.
*p < 0.05, ***p < 0.001.
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EBF1 plays a central role as a B cell-specific transcription factor

in the development andmaturation of B cells; thus, EBF1 is likely to

be involved in AD pathogenesis. Currently, the role andmechanism

of EBF1 in cognitive disorders and AD are unclear, and more

experiments are needed to clarify the role of EBF1 in the future.

In our study, using WGCNA and machine learning, we found

that EBF1 is the hub gene related to the prognosis of MCI and

is an independent risk factor for the prognosis of MCI. To clarify

the role of EBF1 in MCI, our study demonstrated that EBF1 was

closely associated with B cells, and an analysis of the immune

cell infiltrations showed that EBF1 was most associated with B

cells naïve.

By combining the EBF1 and MoCA score, we developed

a nomogram, which showed an excellent ability to predict

progression from MCI to AD. Our findings are meaningful for

the identification of MCI due to AD and ultra-early intervention

in AD. Furthermore, our predictive model is likely to be widely

used because of the simplicity of the MoCA, the easy collection

of blood specimens, and the low cost of these tests. However,

there are some limitations to our study. First, the nomogram,

and any predictive model, needs to be maintained over time,

and external validation is important to improve the accuracy of

the nomogram if a model truly becomes the patient counseling

and decision-making tool that we want it to be (Cote and

Grassbaugh, 2024). As our study is still in the preliminary

exploratory stage, we need to validate the model further in

multiple geographical regions, populations, and disease states for

potential clinical application. Second, this was a retrospective

study, so some bias was inevitable. Hence, to validate the clinical

benefits, a future multicenter randomized controlled clinical study

with a larger sample size may need to be carried out. Third,

the prediction model was based on known risk factors, but

some factors that affect MCI progress have not been studied

and proven to be valid. Therefore, relevant indicators should be

continuously improved in the future, which can further enhance

the diagnostic accuracy of the dynamic online nomogram. Finally,

our study is currently limited to in silico analysis. While we

focus on the accuracy of our model in the clinic, we also need

to clarify the role and mechanism of EBF1 in the pathogenesis

of AD, which is imperative for us to explore through cell and

animal experiments. This is an important direction for our

future research.

5 Conclusion

We found abnormalities in the B-cell receptor signaling

pathway by conducting bioinformatics analysis in patients with

MCI who will progress to AD in the future and identified

EBF1 as a potential biomarker for predicting progression from

MCI to AD through machine learning algorithms and others.

The analysis of the immune infiltrations showed that EBF1 was

most associated with B cells naïve. Furthermore, we constructed

a nomogram model (including the MoCA score, EBF1 gene,

age, and gender) that was able to provide personalized risk

factors for the progression from MCI to AD after evaluation

and validation. We believe that our predictive models are

likely to be widely used, but we still need to keep exploring

and updating.
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