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As the most common cause of dementia, Alzheimer’s disease (AD) is 
characterized by neurodegeneration and synaptic loss with an increasing 
prevalence in the elderly. Increased inflammatory responses triggers brain cells 
to produce pro-inflammatory cytokines and accelerates the Aβ accumulation, 
tau protein hyper-phosphorylation leading to neurodegeneration. Therefore, in 
this paper, we discuss the current understanding of how inflammation affects 
brain activity to induce AD pathology, the inflammatory biomarkers and possible 
therapies that combat inflammation for AD.
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Background

Dementia is a noxious neurodegenerative disorder, and Alzheimer’s disease (AD), is 
the most common cause of dementia with increasing prevalence among the elderly 
(Aarsland, 2020). According to the World Health Organization (WHO), by 2050 the 
number of people with dementia will reach 132 million in the world (Porsteinsson et al., 
2021; Ren et al., 2022).

AD is characterized by progressive neuropathological processes including cognitive function 
impairment and memory loss principally caused by increased accumulation of amyloid-β (Aβ) 
plaques, and hyperphosphorylated tau protein (Nakamura et al., 2018; Silva et al., 2019).

Different risk factors have been detected for AD development such as age, cardiovascular 
changes, metabolic disorders, increased metal ions accumulation, and brain injury (Baltes 
et al., 2011; Silva et al., 2019). Despite the vicious role of amyloid plaques and neurofibrillary 
tangles in the brain, the significant role of abnormal inflammation in inducing the 
inflammatory mediators release from brain cells, neurodegeneration, and loss of neuronal 
synapses is considered as the new hallmarks of AD pathology (Gouras et al., 2015; Newcombe 
et al., 2018; Muralidar et al., 2020).

Currently, nonsteroidal anti-inflammatory drugs (NSAIDs) and cholinesterase inhibitors 
are approved drugs to delay AD but none of them could cure the disease (Moride et al., 2003; 
Long and Holtzman, 2019). Therefore, identification of core pathologies mechanism 
responsible for AD, different proteins and genes associating with neuroinflammation and 
potential therapeutic targets is essential (Weggen et al., 2003; Benito-León et al., 2019).

In this review, we focused on an in-depth evaluation of the Blood–Brain Barrier (BBB), 
the brain cells especially the microglia modification in inducing the inflammatory responses 
as a new interest target of AD pathogenesis research. In addition, we highlighted all the 
inflammatory biomarkers with the potential to be used for targeted therapy.
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Brain cells connection with AD 
pathology

Microglia and astrocytes are the two main neuroglial cells, playing 
critical functions in Homeostasis, neuron development, differentiation, 
survival, synaptic plasticity, and neuronal metabolism (Zhang et al., 2021; 
McKee et al., 2023). The activation process of microglia and astrocytes is 
followed by a series of morphological and biological functions leading to 
the release of pro-inflammatory mediators and phagocytic activity 
(Weggen et al., 2003; Zhou and Hu, 2013; Greten and Grivennikov, 2019).

Microglia are one of macrophagic immune cells that reside in the 
central nervous system (CNS) and play important roles in surveillance 
and phagocytosis (Sheng et  al., 2019). by recruiting other innate 
immune cells like neutrophils, dendritic cells, monocytes, invasive 
macrophages, and natural killer (NK) cells, Microglia are considered 
as important modulators of the innate immune response in the brain.

In response to infection, the inflammatory response activates 
resting microglia and encourages the release of free radicals (NO), 
reactive oxygen species (ROS), and pro-inflammatory cytokines (e.g., 
IL-1β, IL6, TNF). There are two types of activated microglia states: 
pro-inflammatory (M1-like; neurotoxic) and anti-inflammatory 
(M2-like; neuroprotective). Therefore, M1 and M2 polarization 
switches play the most significant role in the proper activation of 
microglia and release of pro-inflammatory mediators (Ransohoff, 
2016; Greten and Grivennikov, 2019; Ho et al., 2020).

Although, Activation of microglia, seems to help in the clearance 
of Aβ during the chronic phase of neuroinflammation and early 
development of AD through phagocytosis (Villeda et al., 2011; Long 
and Holtzman, 2019). According to Newcombe et  al. (2018), the 
pathogenesis of AD may be advanced by the microglia’s continuous 
brain stimulation in response to the accumulation of Aβ plaque, tau 
protein phosphorylation, and inflammatory responses which impairs 
their ability to phagocytose, produces pro-inflammatory mediators, 
and exacerbates tau and Aβ pathology (Leng and Edison, 2020).

Mutations in microglia-related genes have a substantial impact on 
the ability of microglia, causing them to become permanently 
activated, reducing their capacity for phagocytosis, and ultimately 
resulting in neuroinflammation and neurodegeneration (Zhang et al., 
2021). Therefore, understanding the molecular mechanism of 
microglia is highly important to detect their dual roles in either Aβ 
plaques accumulation or degradation (Baltes et al., 2011).

Recently certain molecular regulators of microglial proliferation 
have been directly demonstrated to exist including triggering receptor 
expressed on myeloid cells 2 (TREM2) and apolipoprotein E (APOE) 
which are both among AD risk factors for Late Onset AD (LOAD) 
(Wolfe et al., 2018).

In the central nervous system, APOE plays multiple roles, such as 
maintaining lipid homeostasis, healing damaged neurons, eliminating 
toxins like Aβ, and immune responses modulator (Bertram et al., 2008). 
Among all APOE isoforms, APOE4 has been shown to exacerbate 

tau-mediated neurodegeneration, while the absence of APOE is 
protective in Patients with AD (Liu et al., 2013). Patients who carry at 
least one APOEε4 allele shows faster disease progression, and increased 
brain atrophy compared to non-APOEε4 carriers (LaDu et al., 1995; Shi 
et al., 2017). As previously mentioned, it inhibits the gene that produces 
SirT1, a molecule that has been associated with longer lifespans and has 
anti-Alzheimer’s properties and instead It’s linked to nuclear factor 
kappa B (NF-κB) activation, which encourages inflammation (Shi et al., 
2017). This explains why ApoE4 is linked to an elevated inflammatory 
response: it suppresses multiple genes that inhibit inflammation while 
accelerating the NF-κB that stimulates it (Teng et al., 2017).

Aβ binding to APOE and other apolipoproteins was tested in 
different in vitro (Shi et al., 2017; Zhang et al., 2021). Even though the 
binding was consistently verified, none of those investigations 
suggested that variations in APOE-Aβ binding were linked to an 
increased risk of AD (Keren-Shaul et al., 2017). According to Yuan 
et al., TREM2 deficiency increased the amount of diffuse amyloid 
plaques that covered a greater surface area due to longer and more 
branched amyloid fibrils (Yuan et  al., 2016a). Through TREM2 
binding APOE evaluates the phagocytosis and APOE-Aβ uptake, 
while the TREM2 R47H variant has less affinity to bind with APOE 
(Tao et  al., 2018; Sheng et  al., 2019). Due to its dysregulation of 
neuroinflammation and elevation of AD risk, the missense mutation 
R47H of TREM2 is linked to AD risk (Ruganzu et al., 2021). A dose-
dependent reduction in TREM2 inhibits the accumulation of myeloid 
cells surrounding Aβ plaques. In addition, plaque number and size are 
decreased in TREM2 deficiency (Wang et al., 2016; Yeh et al., 2016).

Microglia in plaque-loaded brain areas of AD transgenic mice 
expressed more TREM2, suggesting a significant role for TREM2 
against AD (Yuan et al., 2016a). Growing data indicates that TREM2 
deficiency support microglial phagocytosis and maintain microglial 
responses to Aβ deposition through inhibit the transition of microglia 
from a homeostatic to a disease-oriented state (Wang et al., 2016; Yuan 
et al., 2016b). TREM2 in blood and CSF can act as biomarker for the 
diagnosis of early AD since, the TREM2 levels in CSF increase in the 
early stages of AD, while it decreases in late stages (Wang et al., 2016).

Beside the two last popular AD hallmark genes, recent data 
suggests that the fractalkine ligand and its microglial receptor 
(CX3CL1/CX3CR1) can influence pathologies related to tau by 
controlling microglial migration and attracting monocytes to the 
brain (Lyons et al., 2009; Joaquín Merino et al., 2016).

Microglia most likely proliferate more quickly and assemble 
around fibrillar amyloid plaques because of dysregulated fractalkine/
CX3CR1 signaling, brought on by CX3CR1 receptor deletion, 
indicating that CX3CR1 has been found to maintain microglia in an 
inactive, non-neurotoxic condition (Lyons et al., 2009; Bhaskar et al., 
2010; Lee et al., 2010).

Mice deficient in CX3CR1 showed a alters the inflammatory 
milieu, decreased neuronal loss, and increase of the amount of Aβ 
phagocytosis mediated by microglia however an aggravated tau 
phosphorylation was also detected (Yin et al., 2017).

Similarly, colony-stimulating factor 1 receptor (CSF1R), inhibition 
has attenuated the neurodegeneration process caused by tau proteins 
(Chadarevian et al., 2023). Mutation of IFNγ receptors increases Aβ 
synthesis and microglial activation (Orihuela et  al., 2016; Huang 
et al., 2018).

The CSF-1-CSF-1R pathway, which is mainly active in reactive 
microgliosis conditions has also been connected to microglia survival 
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in the context of TREM2 expression (Öst et al., 2006; Spangenberg 
et al., 2019). This pathway affects Aβ clearance. A similar mechanism 
may also be involved in microglial survival, as it has been shown that 
TREM2 promote macrophage survival via CSF-1R pathway 
(Chadarevian et al., 2023). The role of CSF-1R signaling in microglia 
survival is detected by a study indicating that TREM2-deficient 
microglia to exhibit reduced survival at low CSF-1 concentrations 
(Mancuso et al., 2019).

The genetic deletion of the inflammatory NLR family pyrin 
domain containing 3 (NLRP3) facilitates the synthesis of IL-1β and 
improves Aβ clearance by microglia as well as cognitive function in 
AD mice (Wang Z. et  al., 2020; Bai and Zhang, 2021). NLRP3 
activation increase the AD pathogenesis by damaging the microglia 
mitochondrial aggregation and impairs the structural and functional 
integrity of mitochondria by increasing the release of proinflammatory 
cytokines (Liang et al., 2022). All the genes related to microglia activity 
are listed in Table 1.

The blood–brain barrier and AD

The vascular blood–brain barrier (BBB), which serves as the 
brain’s primary interface with the outside world, is vital to maintaining 
brain homeostasis, it regulates the entry and exit of biological 
substances and is essential for shielding the brain parenchyma from 
blood-borne pathogens or exogenous substances into the central 
nervous system (Takechi et al., 2017). The BBB is composed of both 
molecular (the glycocalyx and basement membrane, junction 
complex) and cellular components (endothelial cells, pericytes, and 
astrocytes), The brain microvascular endothelial cells have developed 

a junction complex such as tight junction which sounds to be a very 
early feature of BBB development, separating blood from CNS by 
brain endothelial cells and provide the best conditions for synaptic 
and neural activity by certain ion channels and variety of efflux 
transporters (Halliday et al., 2000; Du et al., 2018; Khan et al., 2023). 
Under normal conditions, the BBB is relatively impermeable, the 
disruption of BBB and vascular dysfunction by the release of Many 
vasoactive substances, cytokines, and chemical mediators including 
glutamate, aspartate, taurine, ATP, endothelin-1, NO, TNF-α, and 
macrophage-inflammatory protein 2 (MIP2). Bradykinin, 5HT, 
histamine, thrombin, UTP, UMP, substance P, quinolinic acid, platelet-
activating factor, and free radicals under pathologic circumstances 
such as AD have been associated with multiple molecular changes 
result in increased BBB permeability (Kadry et al., 2020).

Growing body of research indicates that BBB disruption is an 
early indicator of neurodegeneration, including AD.

Considering the major role of BBB to clear around 85% of 
AD-related forms of Aβ from the brain, BBB breakdown can 
dysregulate efflux and influx of Aβ transporters result in Aβ 
accumulation and decrease tight junction protein expression, which 
causes a greater influx of peripheral immune cells into the brain and 
capillary degeneration (Winkler et al., 2015).

Clinical researches have demonstrated that decrease in pericyte 
quantity and coverage in the cortex and hippocampus of AD patients 
and mouse might be a reason for breaking BBB integrity through 
reducing brain microcirculation (Sweeney et al., 2018). Therefore, in 
AD patients numerous circulating soluble inflammatory mediators 
may impact on BBB malfunction specially during systemic 
inflammation and/or infection. Which is demonstrated by the fact 
that serum from mice treated with lipopolysaccharide (LPS) weakened 

TABLE 1 Summarizes all the genes related to microglial activity and their functions in AD.

Gene Function Expression References

Microglia genes in Aβ pathogenesis

SR-A Regulation of microglia phagocytosis Increased in AD Frenkel et al. (2013)

CD36 Regulation of microglia phagocytosis Increased in AD Kim et al. (2017)

RAGE Regulation of microglia phagocytosis Increased in AD Deane et al. (2012)

APOE Regulation of microglia phagocytosis Increased in AD Nguyen et al. (2020)

CR1 Modulate microglia phagocytosis of Aβ Increased in AD Crehan et al. (2013)

CD33 Modulate microglia phagocytosis of Aβ Increased in AD Griciuc et al. (2013)

TREM2 Modulate Aβ phagocytosis Decreased in AD Ruganzu et al. (2021)

ABCA7 Modulate microglia phagocytosis of Aβ Increased in AD Aikawa et al. (2019)

Microglia genes in Neuroinflammation

NLRP3 Modulate microglia-mediated inflammatory response Increased in AD Heneka et al. (2013)

BACE1 Increasing inflammatory responses Increase in AD Singh et al. (2022)

SOCS Regulate the balancing of inflammatory response Decreased in AD Ruganzu et al. (2021)

SHIP1 Modulate microglia-mediated inflammatory response Decreased in AD Terzioglu and Young-Pearse (2023)

CX3CR1 Regulate tau phosphorylation Decreased in AD Cho et al. (2011)

Microglia genes in tau pathology

CSF1R Modifying tau-mediated neurodegeneration Increased in AD Spangenberg et al. (2019)

APOE Modifying tau-mediated neurodegeneration Increased in AD Shi et al. (2017) and Nguyen et al. (2020)

TREM2 Regulating Aβ plaque and tau aggregates Decreased in AD Cheng et al. (2018)
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the integrity of an in vitro BBB model more than serum from mice 
treated with a vehicle. Also aging can cause alterations in BBB as well 
as the immune system’s reactions. Aging cells usually take on a 
senescence-associated secretory phenotype which is associated with a 
transcriptional program that promotes Immune cells activation, 
migration, and infiltration by producing growth factors, cytokines, 
chemokines, and extracellular matrix proteases affect the BBB 
integrity (Lasry and Ben-Neriah, 2015; Figure 1).

Inflammation and AD

Different clinical studies indicate the role of inflammation in 
cognitive decline especially in AD pathogenesis. Currently, 
inflammation is considered the third main hallmark of AD besides the 
hyper-phosphorylated tau protein and amyloid-beta (Aβ) protein 
accumulation (Bhaskar et  al., 2010; Das and Ganesh, 2023). The 
molecules responsible for inflammation can be generally divided into 
cytokines and transcription factors (Šimić et al., 2016). Although the 
inflammatory response can be  beneficial via accelerating the Aβ 
clearance, at the same time they can increase the Aβ and tau 
production, and promote neurodegeneration and synapse loss (Šimić 
et al., 2016).

The balance between initiation and termination of immune 
response ensures the prompt removal of invasive pathogens and the 
cessation of excessive response within the central nervous system. 
This is crucial for the prevention of many diseases including the 
(Zheng et al., 2016). The inappropriate activation of inflammatory 
cytokines may lead to long-lasting alteration of regulatory neural 
gene expression. For instance, cytokines by interacting with different 
immune molecule groups such as the major histocompatibility 

complex class I (MHC I) can adversely affect the synaptic plasticity 
necessary for synapse formation and activity-dependent synaptic 
pruning (Ljunggren and Anderson, 1998). It is believed that these 
changes in synaptogenesis are fundamental to the causes of 
dementia. Additionally, cytokines can strongly stimulate the 
hypothalamic-pituitary-adrenal (HPA) axis, and increase the 
hormones release (Brosseron et  al., 2014).Pro-inflammatory 
cytokines that cause chronic inflammation, like TNF-α, IL-6, and 
IL-1β, can influence and penetrate the blood–brain barrier (BBB), 
causing it to release proinflammatory mediators and increasing cell 
permeability, which permits leukocytes to enter the brain 
(Szczepanik et  al., 2001; Swardfager et  al., 2010). While anti-
inflammatory cytokines are also produced. These include IL-1 
receptor antagonist, IL-4, IL-10, and IL-11. These cytokines may be a 
part of a complex mechanism that prevents excessive 
neuroinflammation (Pousset et al., 2001; Guillot-Sestier et al., 2015). 
Activating the NF-κB pathway in microglia, can subsequently 
increase the amount of tau seeding and spreading and most AD 
patients are detected with considerably higher levels of NF-κB 
(Kaltschmidt et  al., 1997). The silencing of microglial NF-κB 
cognitive abnormalities and homeostatic were restored. Hence, 
inhibiting the NF-κB pathway may offer a therapeutic approach to 
lessen AD pathogenesis (Sun et al., 2022). Finally, the other factor 
that can directly or indirectly increase inflammation and 
neuroinflammatory mediators is the overproduction of neutrophil 
extracellular traps (NETs) that induce macrophage activation and 
tissue damage (Brosseron et  al., 2014; Swanson et  al., 2018). 
Therefore, as shown in Figure  2, the permanent activation of 
astrocytes and Microglia can cause chronic inflammation. Chronic 
inflammation can be also caused by specific environmental factors, 
bacterial and viral infections, and Aging (Zhao et  al., 2021). In 

FIGURE 1

AD hallmarks and risk factors leading to neurodegeneration. Common risk factors leading to Two AD (A). The main pathogenic hallmarks of AD are the 
extra-accumulation of amyloid-β plaques and Tau phosphorylation (B). Microglial phenotype modification accelerating the neuroinflammatory 
response (C). Inflammatory cytokines released from activated microglia causing BBB leakage and neurodegeneration (D).
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chronic inflammation there is a major change in inflammatory 
pathway activation, leading to different immune responses and 
excessive production of inflammatory cytokines which lead to 
neuroinflammation (Figure 2; Neurath and Finotto, 2011).

Inflammatory biomarkers and AD

Currently, Aβ42and phosphorylated tau proteins are the main 
fluid-based biomarkers of Cerebrospinal fluid (CSF) in clinical 
practice (Bălaşa et al., 2020). However, there are still limitations in 
their specific detection based on their low concentration in blood 
(Noble et  al., 2014; Galizzi and Di Carlo, 2023). As mentioned, 
inflammation plays a major role in AD development and among all 
different neuroinflammatory biomarkers which can be considered as 
therapeutic targets for drug design, cytokines, chemokines and 
transcription factors for their precise roles in the various stages of AD, 
possible medical applications, and easy isolation from blood or CSF 
have attracted a lot of attention (Zheng et al., 2016; AmeliMojarad 
et al., 2022; Park et al., 2022).

Different research groups indicated the cytokine levels alternation 
in AD patients. For example, IL-1β, TNF-α, NF-κB and chemokines 
like CCL2 has found to be increasing in AD patients which can also 
be used as inflammatory markers (Bălaşa et al., 2020).

Fast-progressing AD is linked to IFN-γ polymorphism implies 
that this cytokine may actively contribute to accelerating the 
progression of AD specially the LOAD (O’Bryant et al., 2017).

Dysregulation of the cytokines and chemokines can cause 
neuroinflammatory modulation, altering the microglia phenotype, 
and reducing microgliosis which accelerate the AD progression 
(Swanson et al., 2018; Zhang et al., 2021). Nonetheless, the most recent 
meta-analysis revealed substantial heterogeneity in certain 
comparisons but no significant differences in cytokines, such as IL-1β, 
IL-6, IL-8, IL-10, or TNF-α, were discovered between AD patients and 
healthy controls (Blennow and Hampel, 2003; Newcombe et al., 2018).

Other inflammatory biomarkers in Alzheimer’s disease may 
include IL-33 and the soluble form of its receptor ST2 (sST2). In 
animal models of Alzheimer’s disease, IL-33 stimulates microglia and 
protects against Aβ plaques, despite its association with inflammation 
(Fu et al., 2016).

A 1-year follow-up study indicated that MCI and AD patients 
with positive IL-33 expression in serum performed better on cognitive 
tests, adding to the evidence for IL-33’s benefit. The explanation for 
the increase in IL-33 in AD and MCI patients’ plasma is surprising, 
given higher levels of this cytokine have been related to improved 
cognitive function. Recent research suggests that higher levels of 
sST2 in AD patients buffer the physiological effects of IL-33 and may 
play a role in the cognitive function impairment associated with AD 
(Fu et al., 2016; Liang et al., 2020). Moreover, based on the damaged 
blood–brain barrier (BBB), different proteins can pass through BBB 
therefore, the blood of AD patients can reflect the AD progression-
related targets. More importantly, the large surface area of the blood–
brain barrier can be  considered as potential for therapeutic 
intervention (Sweeney et al., 2018; Niculescu et al., 2020).

Therefore, detecting the well-established inflammatory 
biomarkers and methods for early diagnosis and monitoring of AD 
patients can be considered as alternative method of AD identification. 
However, cytokines may not be  sufficient to demonstrate that an 
imbalance in cytokine levels is the sole cause of AD based on their 
overlapping with other neurodegenerative disease and aging. 
Therefore, it makes more sense to combine the use of several proteins 
given the unpredictable results of using a single cytokine level.

But few sets of biomarkers have demonstrated consistent 
performance and good reproducibility since the first AD prediction 
model comprising 18 plasma biomarkers with multiple cytokines was 
proposed. Using hypersensitive methods, such as 
immunoprecipitation-mass spectrometry (IP-MS), and single-
molecular mass analysis (SIMOA) can detect the minor changes in the 
Aβ plasma level in patients with AD (Wu et al., 2021; Nijakowski et al., 
2024). A more sensible strategy is to use multiple proteins in 
combination (Ray et al., 2007; Zheng et al., 2016). However, only a 
small number of biomarker sets have demonstrated consistent 
performance and good reproducibility since the first AD prediction 
model comprising 18 plasma biomarkers with multiple cytokines was 
proposed (Ray et al., 2007). Furthermore, a combination of soluble 
IL-6 receptor (sIL-6R), tissue inhibitor of metalloproteinases-1 
(TIMP-1), and soluble TNF-α receptor I (sTNFR-I) in CSF was found 
to provide the best prediction to AD among other molecules after 
screening 120 inflammatory molecules in CSF and serum of AD, MCI, 
and healthy controls using protein-array analysis (Richens et al., 2014; 
Delaby et al., 2015). Future research on AD should look at pathogens 

FIGURE 2

The role of chronic inflammation in AD pathology. Sustained 
inflammatory response can cause blood–brain barrier (BBB) damage, 
which increases the entrance and activity of other immune cells in 
brain. This over-activates microglia in the brain and triggers them to 
produce more inflammatory mediators including cytokines, which 
increase the extracellular plaques accumulation triggering 
neuroinflammation.
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other than Aβ and examine how cytokines interact with other players. 
New genes and proteins can only be discovered through the creation 
of brain banks, while genome-wide association studies and online 
database analysis will continually update polymorphism information 
linked to AD (Delaby et al., 2015; Khan and Alkon, 2015). Table 2 
summarized the recent neuroinflammatory biomarkers related 
with AD.

Therapeutic strategies for AD

Novel therapeutics are being offered by the recently made 
connections between inflammation and neurodegeneration (Wu et al., 
2021). Currently, a major treatment strategy for AD is the reduction 
of toxic Aβ plaque accumulation and generation and reducing the 
inflammatory responses (Muralidar et al., 2020; Wang Z. et al., 2020). 
Even though there is still no known treatment for AD, NSAIDs are 
commonly used drugs for AD with the ability to decrease of Aβ plaque 
load, microglial activation, and proinflammatory cytokine levels. 
Currently the most promising drugs in reducing inflammation are 
COX-2 inhibitors Celecoxib and roficoxib which attenuate the 
neuroinflammation in AD (Moride et  al., 2003; Miguel-Álvarez 
et al., 2015).

COX-2 inhibitors work by inhibiting the cyclooxygenase (COX-1 
and COX-2 enzyme), arachidonic acid cannot be  converted into 
prostaglandins, or prostacyclin without cyclooxygenase which have 
degenerative effect. And can raise Aβ levels (Moride et  al., 2003; 
Benito-León et al., 2019).

It’s interesting to note that degenerative brain cells express high 
levels of COX-2; therefore, blocking COX may lessen AD. Aβ-induced 
microglial activation may occur directly or indirectly, leading to an 
increase in COX-2 which can be found during inflammation (Moride 
et al., 2003). Compared to control brains, AD brains exhibit higher 
levels of COX-1 and COX-2 (Moussa and Dayoub, 2023).

Research using animal models of AD has demonstrated the 
potential benefit of NSAIDs against AD. For instance, oral 

administration of ibuprofen, a nonspecific COX inhibitor, at the outset 
of amyloid plaque formation in transgenic mice overexpressing APP 
reduced glial activation and plaque density (Moussa and Dayoub, 
2023). In a different experiment, treated rats with indomethacin, 
reduced microglial activation, improved the hippocampus over time, 
and avoided working memory problems. Furthermore, and elevated 
COX-2 levels were generated in mice given an intracerebroventricular 
injection of Aβ (Karkhah et al., 2021). In addition, pretreatment with 
the specific COX-2 inhibitor NS398 reduced COX-2 levels and 
cognitive impairment (Minter et  al., 2003). Further studies have 
demonstrated that therapy with ibuprofen and naproxen in transgenic 
mice models of AD Other studies of NSAIDs in human cell cultures 
have raised hopes for its usage in AD treatment (Wilkinson et al., 
2012; Linda and Hershey, 2019; Steven Karceski, 2019). For instance, 
the overexpress APP695NL, in human neuroglioma cells identified 
different NSAIDs that can selectively reduce Aβ42 such as sulindac, 
ibuprofen, and diclofenac (Weggen et al., 2003).

Activating PPARγ, a transcriptional factor that suppresses the 
expression of proinflammatory genes by blocking the activity of other 
transcription factors like NFκB, AP-1, and STAT1, is another potential 
neuroprotective mechanism of NSAIDs. Additionally, 
proinflammatory genes can be suppressed by PPARγ in the vasculature 
and myeloid lineage cells like macrophages and microglia (Daynes and 
Jones, 2002; Heneka et al., 2011).

Consequently, pioglitazone, a PPARγ agonist, has been used in 
clinical AD research suppressing the expression of genes that promote 
inflammation to regulate transcription (Geldmacher et al., 2011).

However, NSAID usage is only beneficial in the early stages of AD, 
because, with the start of the Aβ deposition process, NSAIDs are 
ineffective and even dangerous because they decrease microglial 
inflammation, which mediates the clearance of A despite its negative 
effects (Ho et al., 2006). Targeting NLRP3 inflammasome of microglia 
is another strategy against AD and AD-related inflammatory 
responses, a small molecule NLRP3 inhibitor such as JC-124, and 
MCC950 has been discovered which vigorously pro-inflammatory 
cytokines, chemokines, and ROS in AD however, along with more 

TABLE 2 List of neuroinflammatory biomarkers for AD.

Inflammatory markers Type Function in inflammation References

IL-1α and IL-1β Proinflammatory cytokines Increased in CSF of AD patients Forlenza et al. (2010)

ICAM-1 Adhesion molecule Increased in CSF of AD patients Rentzos et al. (2004)

VCAM-1 Adhesion molecule-1 Increased in CSF of AD patients Borradaile and Pickering (2009) and 

Dou et al. (2013)

TNF-α Proinflammatory cytokines Increased in serum and CSF of AD patients Frankola et al. (2011)

IL-6 Proinflammatory cytokines Increased in serum and CSF of AD patients Halliday et al. (2000)

IL-12 Proinflammatory cytokines Increased in serum and CSF of AD patients Zhang et al. (2023)

NF-κB Transcription factor Transcription factor that activates genes related to 

inflammation

Ju Hwang et al. (2019) and Liu et al. 

(2021)

CCL2 Chemokines Increased in serum and CSF of AD patients Westin et al. (2012)

IL-8 Pro-inflammatory Increased in serum and CSF of AD patients Galimberti et al. (2003)

IL-33 Pro-inflammatory Increased in plasma of AD patients Fu et al. (2016) and Liang et al. (2020b)

Progranulin A growth factor Increased in AD patients plasma with a potential for 

early prediction of AD patients

Kanazawa et al. (2016)

YKL-40 Mammalian chitinase-like proteins Increased in AD patients’ plasma/serum increasing 

the neuroinflammation in astrocytes

Vergallo et al. (2020) and Zhang et al. 

(2023)
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comprehensive evaluations of the outcomes, could produce 
delightfully unexpected results (Yin et al., 2018; Kelley et al., 2019; 
Zhang et al., 2021; Sharma et al., 2023). Minocycline is a tetracycline 
with anti-inflammatory qualities that can cross the blood–brain 
barrier (BBB) (Garcez et al., 2019). An in vivo study suggests that 
minocycline reduces Aβ accumulation and attenuates microglial 
activation because it inhibits the NLRP3 inflammasome (Li et al., 
2016; Garcez et al., 2019).

Nicodipine (P2X7R antagonists), a dihydropyridine calcium 
channel antagonist, has also been shown to confer neuroprotective 
effects by reducing the levels of activated NF-κB and inhibiting the 
release of mature IL-1β in Aβ-stimulated microglia (whose potential 
target is P2X7R), which plays a permissive role in NLRP3 
inflammasome activation and cytokines release (Ryu and McLarnon, 
2008; Di Virgilio et al., 2017; Huang et al., 2023). The list of recent 
agents for treatment strategy of AD is provided in Table 3.

Conclusion

Chronic inflammation is the third core pathology in the progression 
of Alzheimer’s disease, alongside the well-known activities of Aβ and 
tau. Microglia play a crucial part in this process, activated microglia are 
thought to be  the primary source of pro-inflammatory mediators 
released, such as cytokines, which drive inflammatory cascades in the 
CNS, resulting in neuroinflammatory modulation. Activated microglia 
can also enhance blood–brain barrier (BBB) permeability, synaptic loss, 
and neurodegeneration in the brain, accelerating the AD pathogenesis. 
Since there are still no effective therapies in terms of disease attenuation 
or prevention, further research is needed to unrevealing the potential 
reliable biomarkers for monitoring AD in early stages (Leng and 
Edison, 2020).

Inflammatory markers alternation in patients with AD can 
be  considered as a new means to track AD progression. Novel 
biomarkers related to neuroinflammation such as proinflammatory 
cytokines and chemokines are mainly altered in in patients with 
AD. However, there are still limitation for considering proinflammatory 
markers as AD specific biomarkers, since many neurodegenerative 
diseases have similar clinical presentations, it is possible that their 

changes be explained by aging or other systemic disease. However, 
based on their easy extraction and interpretation, they can still 
be  considered the best first-step biomarkers in the multi-step AD 
process. As a result, we can improve the accuracy of AD diagnosis and 
treatment plans in the near future by using the multiplex model, which 
combines various blood markers and proteins of AD patients.
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TABLE 3 Current agents for therapeutic strategies in AD.

Drug Targets Function References

Minocycline NLRP3 inflammasome blockage Attenuates microglial activation and reduces Aβ accumulation Li et al. (2016)

MCC950 NLRP3 inflammasome blockage Attenuates microglial activation and reduces Aβ accumulation Jiao et al. (2020)

JC-124 NLRP3 inflammasome blockage Attenuates microglial activation and reduces Aβ accumulation Yin et al. (2018) and O’Brien et al. (2020)

Ibuprofen NLRP3 inflammasome blockage Attenuates microglial activation and reduces Aβ accumulation Wilkinson et al. (2012)

Edaravone NLRP3 inflammasome blockage Attenuates microglial activation and reduces Aβ accumulation Yang et al. (2015)

P2X7Rinhibitor NLRP3 inflammasome blockage Attenuates microglial activation and reduces Aβ accumulation Huang et al. (2023)

P22 CD33 inhibitor Increased Aβ phagocytosis Boulanger (2009)

Lintuzumab CD33 inhibitor Increased Aβ phagocytosis Miles et al. (2019)

4D9 antibody TREM2 Modulator Boosting microglial phagocytosis Wang et al. (2016)

AL002c TREM2 Modulator Neuroprotective effects via reducing Aβ Wang S. et al. (2020)

AL002a TREM2 Modulators Neuroprotective effects via reducing Aβ Cheng et al. (2018)

PLX3397 CSF1R inhibitor Suppress tau propagation Sosna et al. (2018)

PLX5622 CSF1R inhibitor Prevent plaque formation Spangenberg et al. (2019)
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