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Introduction: Neutrophil extracellular traps (NETs) provide key innate immune 
mechanisms, and studies have shown innate immunity and adaptive immunity 
are directly linked to Parkinson’s disease (PD) pathology. However, limited 
research has been conducted on NETs in the context of PD.

Methods: A differential analysis was implemented to acquire differentially 
expressed genes (DEGs) between PD and control as well as between high- and 
low-score groups determined by a gene set variation analysis (GSVA). Then, 
the genes within the critical module, obtained through a weighted gene co-
expression network analysis (WGCNA), were intersected with the DEGs to 
identify the overlapping genes. Then, five kinds of algorithms in the protein–
protein interaction (PPI) were performed to identify potential biomarkers. 
Subsequently, a nomogram for forecasting PD probability was created. An 
enrichment analysis and an immune infiltration analysis were performed on the 
identified biomarkers. qRT-PCR was performed to validate the expression trends 
of three biomarkers.

Results: We revealed 798 DEGs between PD and control groups as well as 168 
DEGs between high- and low-score groups obtained by differential analyses. The 
pink module containing 926 genes was identified as the critical module. According 
to the intersection of these gene sets, a total of 43 overlapping genes were screened 
out. Furthermore, GPR78, CADM3, and CACNA1E were confirmed as biomarkers. 
Moreover, we found that biomarkers mainly participated in pathways, such as the 
‘hydrogen peroxide catabolic process’, and ‘cell cycle’; five kinds of differential 
immune cells between PD and control groups were identified. Finally, the qRT-PCR 
analysis demonstrated the up-regulation of GPR78, CADM3, and CACNA1E in the 
PD group.

Discussion: Our study authenticated GPR78, CADM3, and CACNA1E as the 
biomarkers associated with PD. These findings provide an original reference for 
the diagnosis and treatment of PD.
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1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder characterized by the deterioration of motor activities. This 
deterioration results from the impairment of the dopaminergic 
nigrostriatal system causing the primary motor symptoms, including 
static tremor, bradykinesia, rigidity, and postural instability. These 
symptoms can arise from both genetic and environmental risk factors 
(Kalia and Lang, 2015). The characteristic pathological change of PD 
was aggregation of intraneuronal α-synuclein known as Lewy bodies 
(LB). Research by Andrei Surguchov and Alexei Surguchev found that 
synucleins, small intrinsically disordered proteins prone to 
aggregation, are implicated in both neurodegenerative diseases and 
cancer (Surguchov and Surguchev, 2022). The onset of the disease 
predated the first clinical symptom for many years. However, the 
precise etiology of dopaminergic cell death remains elusive. While 
5–10% of PD cases have a genetic basis, resulting from mutations in 
genes such as SNCA encoding alpha-synuclein, DJ-1, PINK, and 
LRRK2, leading to early onset of PD, the majority of cases are 
idiopathic and associated with aging. In addition to genetic 
predisposition, other risk factors included environmental toxins, 
pesticides, heavy metals, traumatic lesions, and bacterial or viral 
infections (Wirdefeldt et al., 2011), all of which are closely associated 
with inflammation. Research studies have demonstrated that 
neuroinflammation contributed significantly to the pathophysiology 
of PD and was intricately linked to both its onset and progression 
(Araújo et al., 2022).

Previous studies have identified shared genetic variants among PD 
patients and other autoimmune and inflammatory disorders, 
including Crohn’s disease, further supporting the involvement of the 
immune system in PD pathogenesis (Witoelar et al., 2017; Hui et al., 
2018). Moreover, exposure to environmental insecticides has been 
shown to enhance immune responses in individuals carrying HLA-DR 
variants, thereby increasing the risk of developing PD by 2.48-fold 
(Kannarkat et al., 2015). However, the precise trigger for inflammation 
in PD remains unclear. In addition to the extensively documented 
microgliosis and astrogliosis in PD brains, peripheral inflammation 
and PD risk-associated genes substantiate a significant contribution 
of the chronic inflammatory response to the progression of this 
neurodegenerative disorder.

Neutrophil extracellular traps (NETs) are intricate structures 
composed of chromatin filaments coated with histones, proteases, and 
granular and cytosolic proteins. The process known as NETosis refers 
to the production and release of these NETs by neutrophils. NETosis 
facilitates the immobilization and capture of bacteria, fungi, or viruses 
by neutrophils, thereby enhancing the efficient elimination of 
pathogens. Although the formation of NETs is a key bactericidal 
mechanism, emerging research has demonstrated that NETs can also 
elicit detrimental effects on the human body. Recently, emerging 
evidence suggests that NETs may play a significant role in the 
pathogenesis of various non-infectious diseases, such as systemic 
lupus erythematosus (SLE), rheumatoid arthritis (RA), diabetes, 
atherosclerosis, vasculitis, thrombosis, cancer, wound healing, and 
trauma. The release of NETs can damage the host tissue, promote the 
development of autoimmunity, and give rise to other dysfunctional 
outcomes, including metastasis, thrombosis, and aberrant coagulation. 
The NET formation has been reported to play a role in the 
pathophysiological processes of various brain injuries (Vaibhav et al., 

2020). Zenaro et al. (2015) recently demonstrated the generation of 
endovascular NETs in an animal model of Alzheimer’s disease (AD), 
resulting in the disruption of the blood–brain barrier (BBB). 
Additionally, intravascular NET-induced thrombosis may exacerbate 
cerebral amyloid angiopathy, a distinctive feature of AD resulting from 
Aβ deposits.

Despite there has been an extensive understanding of the 
pathogenesis and epidemiology of PD, the etiology remains elusive, 
and no definitive cure or preventive therapy has yet been discovered 
(Kalia and Lang, 2015; Blauwendraat et al., 2020). The diagnosis of PD, 
however, remains a challenge due to the overlapping clinical features 
with other neurodegenerative conditions and the lack of definitive 
diagnostic tests or biomarkers in the early stages. The findings 
collectively indicate that the immune system and inflammation play a 
crucial role in the development of PD (Calabrese et al., 2018; Mészáros 
et al., 2020). Net-induced inflammatory changes are implicated in a 
range of neurodegenerative alterations. Hence, this study aimed to 
identify NET-associated gene biomarkers through a bioinformatics 
gene analysis as a foundation for early diagnosis of Parkinson’s disease.

2 Materials and methods

2.1 Data sources

The datasets of PD were achieved through the GEO database. The 
GSE22491 dataset (GPL6480, Whole Human Genome Microarray 
4x44K G4112F) comprised microarray data from 8 control samples 
and 10 PD samples, and it was utilized for the training set. Moreover, 
there were RNA-sequencing (RNA-seq) data from 22 control samples 
and 50 PD samples in the GSE6613 dataset (GPL96 [HG-U133A], 
Affymetrix Human Genome U133A Array). The GSE49126 dataset 
(GPL4133, Agilent-014850 Whole Human Genome Microarray 
4x44K G4112F) contained microarray data from 20 control samples 
and 30 PD samples. The GSE6613 and GSE49126 datasets were 
utilized as external validation sets. The samples in the GSE22491 and 
GSE49126 datasets were peripheral blood mononuclear cells (PBMC) 
samples, and the samples in the GSE6613 dataset were whole blood 
samples. In addition, 136 NET-related genes (NETRGs) were extracted 
based on the references after removing the repetitions (Wu et al., 
2022). The flowchart of this study is listed in Figure 1.

2.2 Differential expression analysis and 
enrichment analysis

In the GSE22491 dataset, DEGs between PD and control groups 
were acquired by the limma (v 3.52.4) (Ritchie et al., 2015) package 
(p.value <0.05, |log2FC| > 1). We adopted Agilent software to process 
the data before the differential expression analysis. Then, the heat 
maps and volcano maps of differentially expressed genes (DEGs) 
between PD and control groups were plotted by pheatmap (v 1.0.12) 
and ggplot2 (v 3.3.6) (Ito and Murphy, 2013) packages, respectively. 
For further observing and investigating the items and signaling 
pathways that these DEGs were involved in, then the Gene ontology 
(GO) (p.adjust <0.05) and Kyoto Encyclopedia of Genes and 
Genomes (p.value <0.05) enrichment analyses were performed 
using clusterProfiler (v 4.4.4) package (Wu et al., 2021). According 
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to the expression levels of NETRGs, the score of each sample was 
computed using the gene set variation analysis (GSVA). (v 1.46.0) 
package (Hänzelmann et  al., 2013), and then, the samples were 
classified into high- and low-score groups based on the median 
GSVA score. Subsequently, the hallmark pathway scores of two score 
samples were computed using the GSVA (v 1.46.0) package 
(Hänzelmann et  al., 2013). The differences in pathway scores 
between the two score groups were compared by the Wilcoxon test 
method. Meanwhile, the DEGs between the two score groups were 
acquired by the limma (v 3.52.4) (Ritchie et  al., 2015) package 
(p.value <0.05, |log2FC| > 1).

2.3 The weighted gene co-expression 
network analysis (WGCNA) and screening 
of overlapping genes

The WGCNA was performed on all samples in the training set to 
screen the critical module. First, outlier samples were eliminated to 
secure the precision of the analysis by sample clustering. An 
appropriate soft threshold (β) was selected to make sure that the 
engagement between genes conformed to the scale-free distribution 
to the maximum extent. Then, different modules were obtained by the 
dynamic tree-cutting algorithm. Subsequently, the sample grouping 
(control and PD) was utilized as traits, and the correlation analysis was 
utilized to evaluate the relationships between modules and the traits. 
Finally, the module that most related to the traits was defined as the 
critical module. Furthermore, the DEGs between PD and control 
groups, DEGs between two score groups, and the genes in the critical 

module were overlapped to achieve the overlapping genes. In addition, 
the chromosomal localization analysis of overlapping genes was 
conducted using the RCircos package (Zhang et al., 2013).

2.4 Identification and verification of 
biomarkers

Based on the above overlapping genes, the protein–protein 
interaction (PPI) network was created. Then, percolated component 
(EPC), maximum neighborhood component (MNC), degree, density 
of maximum neighborhood component (DMNC), and maximal 
clique centrality (MCC) algorithms were performed to acquire the 
candidate genes, and then, the top 5 genes in the five algorithms were 
selected as the candidate genes. Furthermore, the top 5 genes in those 
five algorithms were intersected to screen out biomarkers. In addition, 
the Wilcoxon test method was conducted to compare the differences 
in the expression of biomarkers between control and PD groups in the 
training set, GSE6613, and GSE49126 datasets. In addition, according 
to the above biomarkers, a nomogram for forecasting the disease 
probability of PD patients was created. Moreover, a calibration curve 
was drawn to evaluate the precision of the model.

2.5 Enrichment analysis

To investigate the related biological functions and pathways of the 
biomarkers, moreover, the ‘c5.go.v2022.1.Hs.entrez.gmt’ and ‘c2.
cp.kegg.v7.5.1.symbols.gmt’ were utilized as the background gene set, 

FIGURE 1

Flow chart of this study. DEG, differentially expressed gene; PD, Parkinson’s disease; EPC, percolated component; MNC, maximum neighborhood 
component; DMNC, density of maximum neighborhood component; MCC, maximal clique centrality; NETRGs, neutrophil extracellular trap-related 
genes.
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and then, the gene set enrichment analysis (GSEA) was conducted 
using the clusterProfiler (v 4.4.4) package (Wu et al., 2021) (|NES| > 1, 
NOM p < 0.05, and q < 0.25). Furthermore, in order to further 
understand the molecular mechanism of biomarkers, the classical 
signaling pathway analysis was performed by the ingenuity pathway 
analysis (IPA) to explore the signaling pathways that were significantly 
affected by the biomarkers (p < 0.05). Moreover, the relationships 
between biomarkers and other diseases or functions were analyzed.

2.6 Immune infiltration analysis

In order to further explore the immune infiltration condition, in 
the GSE22491 dataset, the CIBERSORT algorithm was implemented 
to analyze the infiltration abundance of the immune cells in every 
PBMC sample. Furthermore, the differential immune cells between 
PD and control groups were identified by the t-test (p  < 0.05). 
Moreover, the relationships between biomarkers and differential 
immune cells were computed by the Spearman method.

2.7 The regulation network and the drug 
prediction

The miRNAs corresponding to the above biomarkers were 
forecasted using the miRDB,1 miRmap,2 and miRWalk3 online 
databases. The miRNAs in those three databases were crossed to 
acquire the common miRNAs (co-miRNAs) of each biomarker. 
Moreover, the TFs of the biomarkers were forecasted by the ChIP-X 
Enrichment Analysis 3 (ChEA3)4 online database. The TF–mRNA–
miRNA regulatory network was created. Furthermore, based on the 
co-miRNAs of each biomarker, the lncRNAs were forecasted using the 
StarBase online tool.5 In addition, the potential drugs of those above 
biomarkers were acquired through the drug–gene interaction database 
DGIdb (www.dgidb.org) and CTD6 database. Moreover, the mRNA–
drug network was created.

1 http://mirdb.org

2 https://mirmap.ezlab.org/

3 http://mirwalk.uni-hd.de/

4 https://amp.pharm.mssm.edu/ChEA3

5 http://starbase.sysu.edu.cn/

6 http://ctdbase.org/

2.8 Power analysis

To evaluate the adequacy of the sample size, we conducted a 
power analysis utilizing the R package pwr (Version 1.3–0) to 
estimate the sample size based on biomarkers. The significance 
level was set at 0.05, with a desired statistical power level of 0.9. 
The effect size for the t-test (Cohen’s d) was computed using 
RNA-seq data.

2.9 Quantitative real-time PCR verification

The blood samples were obtained from patients with knowledge 
and consent from The First Hospital of Lanzhou University, and this 
study was approved by The First Hospital of Lanzhou University 
ethics committee. There were five PD samples and five control 
samples. Total RNA from blood samples was isolated and purified by 
TRIzol (Ambion) reagent following the instruction manual. Then, the 
extracted RNA was tested for concentration by NanoPhotometer 
N50. Then, reverse transcription was performed utilizing SureScript-
First-strand-cDNA-synthesis-kit (Servicebio) with an ordinary PCR 
instrument to synthesize cDNA. Reverse transcription product 
cDNA was diluted 5–20 times with ddH2O (RNase/DNase free). 
Subsequently, polymerase chain reaction (PCR) amplification 
reaction was performed by CFX96 real-time quantitative PCR 
instrument: 1 min at 95°C (pre-denaturation), followed by at 95°C 
for 20 s (denaturation), 55°C for 20 s (annealing) and 72°C for 30 s 
(elongation). The above reactions were subjected to 40 cycles. Primer 
sequences are shown in Table 1.

3 Results

3.1 Acquisition of DEGs

In the GSE22491 dataset, there were 798 DEGs between PD and 
control groups, including 245 up-regulated DEGs and 553 down-
regulated DEGs (Figure 2A; Supplementary Table S1). The expression 
heat map of PD-associated DEGs is shown in Figure  2B. The 
functional enrichment analysis revealed that the DEGs between the 
PD and control groups were predominantly enriched in processes 
related to ‘hydrogen peroxide catabolic process’, ‘specific granule’, 
‘haptoglobin binding’, etc. (Figures 2C,D; Supplementary Tables S2–S3). 
The high- and low-score groups exhibited significant disparities in  
15 pathways, including ‘WNT beta catenin signaling’, ‘angiogenesis’, 
‘reactive oxygen species pathway’, and other hallmark pathways. These 
findings indicate functional differences between the two score groups 
(Figure 2E). A total of 168 DEGs between high- and low-score groups 
were identified among which 245 DEGs were up-regulated and 553 
DEGs were down-regulated (Figure 2F; Supplementary Table S4). The 
expression heat map of DEGs in the two score groups is shown in 
Figure 2G.

3.2 Acquisition of critical module and 
overlapping genes

The sample clustering result indicated there was no outlier sample 
(Figure 3A); β was 8, indicating that those genes conform to a scale-free 

TABLE 1 Primer sequences for quantitative real-time PCR verification of 
three co-DEGs.

Primer Sequence

GPR78 F ATGGGACTCTCTGATGGGCT

GPR78 R ATGCCAAGAGCAAGTGACGA

CADM3 F AGCAGACTCTCTACTTTGGGG

CADM3 R GCACAGGCATAGTGAAGATTGA

CACNA1E F ATTCAACAGTTCACAGCGGC

CACNA1E R GCGAGCCATCCTGAGGTTTA

internal reference–GAPDH F CGAAGGTGGAGTCAACGGATTT

internal reference–GAPDH R ATGGGTGGAATCATATTGGAAC

DEG, Differentially expressed gene.

https://doi.org/10.3389/fnagi.2024.1388226
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://www.dgidb.org
http://mirdb.org
https://mirmap.ezlab.org/
http://mirwalk.uni-hd.de/
https://amp.pharm.mssm.edu/ChEA3
http://starbase.sysu.edu.cn/
http://ctdbase.org/


Wang et al. 10.3389/fnagi.2024.1388226

Frontiers in Aging Neuroscience 05 frontiersin.org

distribution to the greatest extent possible (Figure 3B); nine modules 
were obtained after merging (Figure 3C). The pink module, containing 
926 genes, was identified as the critical module (|Cor| = 0.88 and 
p = 2e-06) (Figure 3D). According to the intersection, 43 overlapping 
genes were screened out (Figure 3E). The overlapping genes were found 
on chromosomes 1, 3, 4, 5, 6, 7, 9, 12, 15, 16, 19, 21 and the sex 
chromosome. For instance, GPR78 was located on chromosome 
number four (Figure 3F).

3.3 Three biomarkers were identified

There were 24 overlapping genes in the PPI network, and GPR78 
had a higher connectivity degree (Figure  4A). A total of three 
biomarkers including GPR78, CADM3, and CACNA1E were identified 
(Figure 4B). In addition, in the training set, these three biomarkers 

were all up-regulated in the PD group, and they were all significantly 
different between the two groups (Figure  4C). Meanwhile, in the 
external validation sets GSE6613 and GSE49126, the expression trends 
of the three biomarkers were the same as those in the training set, 
which had good universality (Figures 4D,E). A nomogram for disease 
diagnostic prediction of the PD patients was created based on GPR78, 
CADM3, and CACNA1E (Figure  4F). The calibration curve was 
plotted based on the above nomogram, demonstrating that the 
predictive ability of the nomogram was favorable (Figure 4G).

3.4 The GSEA of the biomarkers

We performed GSEA on the aforementioned biomarkers. 
According to the results of GO enrichment analysis, we observed that 
GPR78 and CACNA1E primarily participated in biological processes 

FIGURE 2

Hierarchical clustering analysis of differentially expressed genes between PD and control groups. (A) Volcano map of differentially expressed genes. 
(B) Expression heat map of PD-associated DEGs. (C) GO enrichment analysis of DEGs. (D) KEGG enrichment analysis of DEGs. (E) Differential path heat 
map between high- and low-GSVA score groups. (F) Volcano map of differentially expressed genes between high- and low-GSVA score groups. 
(G) Expression heat map of DEGs between high- and low-GSVA score groups. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; DEG, differentially expressed gene; PD, Parkinson’s disease.
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such as ‘hydrogen peroxide catabolic process’ and molecular 
complexes like ‘haptoglobin hemoglobin complex’. Moreover, the 
KEGG enrichment analysis demonstrated that GPR78, CADM3, and 
CACNA1E were mainly associated with ‘cell cycle’ and ‘glycine serine 
and threonine metabolism’ KEGG pathways. (Figures  5A–F; 
Supplementary Tables S5–S10).

3.5 Ingenuity pathway analysis of 
biomarkers

The IPA results revealed that biomarkers were primarily associated 
with the ‘S100 Family Signaling Pathway’, ‘Neurovascular Coupling 
Signaling Pathway’, and other related pathways (Figure  6A; 
Supplementary Table S11). The biomarkers were involved in ‘Cell 

Death and Survival’, ‘Inflammatory Response’, etc. biological functions 
(Figure 6B).

3.6 Immune infiltration analysis between 
PD and control groups

The immune cell infiltration level is displayed in Figure 7A. There 
were five kinds of differential immune cells (resting mast cells, 
macrophages M0, monocytes, naive B cells, and activated NK cells) 
between PD and control groups (Figure 7B). We could observe that 
GPR78, CADM3, and CACNA1E were all negatively correlated with 
two differential immune cells (naive B cells and resting mast cells) 
(|Cor| > 0.3) and GPR78 had the highest negatively associated with 
naive B cells (|Cor| = 0.6465; Figures 7C–F).

FIGURE 3

Critical module and overlapping genes between PD and NETs. (A) Sample clustering diagram. (B) Selection of soft threshold β. (C) Module cluster 
diagram. (D) Heat map of the relationship between gene modules and traits within sample groups. (E) Venn diagram of candidate genes. (F) Mapping of 
candidate genes on chromosomes. PD, Parkinson’s disease; NET, neutrophil extracellular traps.
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3.7 The miRNA–mRNA–TF and ceRNA 
networks

According to the intersection, there were 9 miRNAs, 63 
miRNAs, and 15 miRNAs forecasted based on GPR78, CADM3, and 

CACNA1E, respectively, and a total of 86 miRNAs were obtained 
after eliminating duplicates (Figures 8A–C). A total of 1,632 TFs 
were screened out, the top 25 TFs were selected for visualization, and 
the TF–mRNA–miRNA network was created. We  found that 
CADM3 was regulated by the hsa-miR-6721-5p and SCRT1 

FIGURE 4

Three key DEGs were identified as biomarkers for PD. (A) Construction of candidate gene PPI network. (B) Venn diagram of gene intersection is 
generated by applying five algorithms. A total of three biomarkers including GPR78, CADM3, and CACNA1E were identified. (C) Validation of key gene 
expression in training set GSE22491. (D) Validation of key gene expression in training set GSE6613. (E) Validation of key gene expression in training set 
GSE49126. (F) Nomogram for disease diagnostic prediction of the PD patients was created based on GPR78, CADM3, and CACNA1E. (G) Calibration 
curve of the nomogram. PD, Parkinson’s disease; DEG, differential expression gene; GPR 78, orphan G protein-coupled receptor 78; CADM3, cell 
adhesion molecule 3.
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(Figure 8D; Supplementary Table S12). A total of 1,310 lncRNAs 
were forecasted; due to the excessive number of lncRNAs predicted 
in this study, the ceRNA network is shown in 
Supplementary Table S13. Therefore, the miRNA–mRNA network 
was created, and hsa-miR-5193 regulated CADM3 and GPR78; 
moreover, CADM3 and GPR78 were all regulated by hsa-miR-4290 
(Figure 8E).

3.8 The drug prediction

In addition, the mRNA–drug network (65 nodes and 71 edges) 
was created, including “PREGABALIN,” “1,2-Dimethylhydrazine,” 
and “Arsenic Trioxide” (Figure 9; Supplementary Table S14).

3.9 The verification of biomarkers by 
qRT-PCR

Power analysis manifested that the sample size required for a 
single group was 4 (Supplementary Table S15). Based on the qRT-PCR 

verification results, we found that GPR78, CADM3, and CACNA1E 
were up-regulated in the PD group, and the validation results were 
consistent with the above analyses (Figures 10A–C).

4 Discussion

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder pathologically characterized by the loss of dopaminergic 
neurons in the substantia nigra and the presence of protein 
inclusions termed Lewy bodies (Pajares et  al., 2020). NETs are 
involved in numerous pathological processes, including infection 
(He et al., 2022), autoimmune diseases (Gupta et al., 2022), tumor 
development (Tamura et al., 2022), Alzheimer’s disease (Pietronigro 
et al., 2017), acute ischemic stroke (Vallés et al., 2017), peripheral 
nerve injury (Tansley et al., 2022), thrombosis (Zhou et al., 2022), 
and NMDA encephalitis (Qiao et  al., 2022; Zhou et  al., 2022). 
However, its role in PD remains unclear. Here, we  conducted 
bioinformatics gene analysis for potential biomarkers and 
therapeutic targets of PD based on neutrophil extracellular traps. A 
total of three biomarkers including GPR78 (orphan G 

FIGURE 5

GSEA enrichment analysis of key DEGs. (A) GO enrichment analysis of CACNA1E gene. (B) GO enrichment analysis of CADM3 gene. (C) GO 
enrichment analysis of GPR78 gene. (D) KEGG enrichment analysis of CACNA1E gene. (E) KEGG enrichment analysis of CADM3 gene. (F) KEGG 
enrichment analysis of GPR78 gene. DEG, differentially Expressed Gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GPR 
78, orphan G protein-coupled receptor 78; CADM3, cell adhesion molecule 3.
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protein-coupled receptor 78), CADM3 (cell adhesion molecule 3), 
and CACNA1E were identified through bioinformatics 
gene analysis.

GPR78 is a member of the G protein-coupled receptor (GPCR) 
family, which represents the most abundant group of cell surface 
receptors. Several members of this family have already been implicated 
in the pathophysiology of PD. G protein-coupled receptors, including 
dopamine receptors, play a pivotal role in regulating multiple 
intracellular signaling pathways, thus modulating the functionality of 
neuronal circuits affected by PD. In addition to dopamine receptors, 
several other GPCRs are also capable of regulating the neural circuits 
affected by PD, and many are currently being investigated as potential 
therapeutic targets for various aspects of PD. For example, researchers 
found that the deletion of GPR6 in mice leads to a decrease in striatal 
cAMP levels, an increase in locomotor activity, and slight reductions 
in L-DOPA or dopamine agonist-induced dyskinesia (Oeckl et al., 
2014). Except for GPR6, the study also found the levels of ecto-
GPR37 in the cerebrospinal fluid of PD patients were significantly 
higher. Moreover, CSF ecto-GPR37 demonstrated superior diagnostic 
performance for PD than total α-synuclein (Morató et al., 2021). As 
for GPR78, it was identified by virtue of its homology to orphan 
GPR26, which was identified in humans and rats (Lee et al., 2000, 
2001) The expression of GPR78 mRNA in the pituitary and placenta 
suggests its potential involvement in the functioning of the 
hypothalamic–pituitary–adrenal (HPA) axis and pregnancy (Lee et al., 
2001). However, until now, no studies have investigated the 

relationship between GPR78 and PD. Studies have shown that the 
GPR78 gene is linked to bipolar affective disorder (BPAD) and 
schizophrenia in a large Scottish family (Underwood et al., 2006). In 
particular, the neurodegeneration observed in PD is not confined 
solely to dopaminergic neurons, and patients also experience 
non-motor symptoms such as cognitive impairment or 
neuropsychiatric disturbances. The potential involvement of GPR78 in 
psychiatric symptoms among PD patients warrants further 
investigation to enhance our understanding. The aforementioned 
statement serves as a reminder that GPR78 may also play a role in the 
pathogenesis of PD, necessitating further experimentation to elucidate 
this association in subsequent studies.

The CADM family of proteins also referred to as nectin-like 
(Necl) and synaptic cell adhesion (SynCAM) molecules. The CADM 
protein family comprises four neuron-specific adhesion molecules 
(CADM1, CADM2, CADM3, and CADM4), CADM1 (Necl2), 
CADM2 (Necl3), and CADM3 (Necl1) are found in axons, while 
CADM2 and CADM4 (Necl4) are present in myelinating Schwann 
cells (Maurel et al., 2007; Spiegel et al., 2007). The malfunctioning of 
normal CAM is suspected to contribute to synaptic dysfunction, 
potentially leading to neurodegeneration. As for AD, Necl-1 
expression is significantly upregulated in pyroglutamate-modified 
amyloid β-expressing transgenic mice (TBA42 mice) (Yang et  al., 
2013). These results suggest that nectins and Necl-1 are implicated in 
the pathology of AD. A genome-wide association scan in Sardinians 
revealed that an inflammatory biomarker, monocyte chemotactic 

FIGURE 6

Disease and functional enrichment analysis of key DEGs. (A) Classical pathway analysis of key DEGs. (B) Heat map of key DEGs on disease biological 
functions. The orange zone represents the activated pathway, and the darker the color, the greater the absolute value of the z-score; blue zone 
represents the suppressed pathway, and the darker the color, the greater the absolute value of the z-score. DEG, Differential expressed gene.
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protein-1 (MCP-1), was associated with the SNP in CADM3 
(rs3845624) (Naitza et al., 2012). In a model of depressive behavior 
after the immune challenge, cell adhesion molecule 3 (Cadm3) on 
microglia was over-expressed (Gonzalez-Pena et al., 2016). Currently, 
there is a dearth of research on the association between CADM3 and 
PD, and the underlying mechanism by which CADM3 contributes to 
PD remains elusive. The onset of PD is widely acknowledged to 
be closely associated with microglia-mediated inflammation. Previous 
studies have also indicated the involvement of CADM3  in the 

adhesion of inflammatory cells to endothelial cells and microglia-
mediated inflammation. Our study further suggests that CADM3 may 
contribute to the development of PD through neutrophil extracellular 
traps (NETs). However, more comprehensive research is required to 
validate this hypothesis.

In our study, bioinformatics gene analysis found another key 
gene biomarker of NETs for PD was CACNA1E. The CACNA1E 
gene exhibits robust expression in the central nervous system and 
encodes the alpha-1 subunit of the voltage-gated CaV2.3 channel, 

FIGURE 7

Immune infiltration analysis between PD and control groups. (A) Heat map of immune cell infiltration. (B) Box plots of 22 types of immune cell 
infiltration in PD and control groups. (C) Correlation analysis of key genes and differential immune cells. The blank squares in the figure indicate that 
the correlation between genes and immune cells is not significant (p  ≥  0.05), and the remained colored squares indicate that the correlation is 
significant (p  <  0.05). Red represents a positive correlation, blue represents a negative correlation, and the darker the color, the stronger the correlation. 
(D) Scatter plot of correlation between CACNA1E and naive B cells. (E) Scatterplot of correlation between CADM3 and resting mast cells. (F) Scatter 
plot of correlation between GPR78 and naïve B cells. PD, Parkinson’s disease; GPR 78, orphan G protein-coupled receptor 78; CADM3, cell adhesion 
molecule 3.
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which mediates high voltage-activated R-type calcium currents that 
initiate synaptic transmission (Williams et al., 1994; Wormuth et al., 
2016). The influx of Ca2+ plays a crucial role in modulating 
neuronal excitability and activating Ca2 + −dependent physiological 
processes. However, the rhythmic Ca2+ load in SN DA neurons also 
induces mitochondrial oxidative stress. Disrupted Ca2+ 
homeostasis and mitochondrial dysfunction are regarded as pivotal 
factors in the pathophysiology of PD (Guzman et al., 2010; Zaichick 
et al., 2017; Zampese and Surmeier, 2020). Researchers found that 
the Cav2.3 subtype of voltage-gated Ca2+ channels exhibits the 
highest level of expression in adult SN dopaminergic neurons and 
levels increase with age (Benkert et al., 2019). In MPTP-induced PD 
mouse model, global Cav2.3 knockout fully prevented SN DA 
neuron degeneration and profoundly reduced somatic Ca2+ 
oscillations (Benkert et  al., 2019). In a microbiota-induced 
depression animal model, proteomic analysis of the olfactory bulb 
suggests CACNA1E and its downstream CREB signaling were 
down-regulated, which provides a novel insight for further research 
of the “microbiota-gut-brain axis” (Huang et al., 2019). PD patients 
also have a decreased sense of smell, and its pathogenesis is related 
to the abnormal function of the microbial–gut–brain axis, and 

whether CACNA1E is involved in this process needs to 
be further studied.

According to the GO enrichment analysis, we found that GPR78 
and CACNA1E mainly participated in the ‘hydrogen peroxide 
catabolic process’ and ‘haptoglobin hemoglobin complex’. KEGG 
enrichment analysis demonstrated that GPR78, CADM3, and 
CACNA1E were mainly associated with ‘cell cycle’ and ‘glycine serine 
and threonine metabolism’. Studies conclude that the degeneration 
and loss of nerve cells in PD may be attributed to the direct generation 
of hydrogen peroxide during extracellular or intracellular protein 
aggregation, leading to oxidative damage, particularly in the presence 
of metals (Tabner et al., 2002). Hydrogen peroxide is a member of 
reactive oxygen species (ROS), the enzyme superoxide dismutase 
catalyzes the conversion of superoxide into hydrogen peroxide, which 
is subsequently degraded by either catalase or glutathione peroxidase 
(von Ossowski et  al., 1993). Experiments concluded that the 
α-synuclein molecule inhibited the expression of catalase; thus, the 
low catalase activity and high hydrogen peroxide production lead to 
PD (Graham, 1978; Yakunin et  al., 2014). Based on the previous 
literature reports and our findings, it is postulated that the three 
co-DEGs we  have identified may exert an influence on the 

FIGURE 8

miRNA–mRNA–TF and ceRNA networks. (A) Venn diagram of GPR78 gene predicts miRNA intersection. (B) Venn diagram of CADM3 gene predicts 
miRNA intersection. (C) Venn diagram of CACNA1E gene predicts miRNA intersection. (D) TF–mRNA–miRNA regulatory network. Red is mRNA; orange 
is TF; blue is miRNA. (E) mRNA–miRNA regulatory network. Red is mRNA; blue is miRNA. GPR 78, orphan G protein-coupled receptor 78; CADM3, cell 
adhesion molecule 3.
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pathogenesis of PD via the oxidative stress mechanism mediated by 
hydrogen peroxide.

Bioinformatics gene analysis on DEGs in the Gene Expression 
Omnibus (GEO) database (GSE8397 and GSE22491) of PD patients 
found that Ankyrin 1 (ANK1) was the only common gene 
differentially down-regulated in lateral substantia nigra (LSN), medial 
substantia nigra (MSN), and blood. GO analysis displayed that these 
DEGs were mainly enriched in hemoglobin complex, haptoglobin–
hemoglobin complex and cortical cytoskeleton, and so on (Xue et al., 
2023), which was consistent with our results. The modulation of iron 
homeostasis may be influenced by hemoglobin, which serves as the 
primary source of peripheral iron. Furthermore, an association has 
been suggested between increasing levels of hemoglobin and a 
significant rise in the incidence of PD (Abbott et  al., 2012). The 

dysregulation of iron homeostasis in patients with PD has been 
demonstrated by several studies (Savica et al., 2009). The increased 
iron level has been found in the SN in PD patients in comparison with 
controls and high iron concentrations may be  responsible for PD 
pathogenesis (Sengstock et al., 1993). Our results are consistent with 
the findings presented herein, providing evidence that GPR 78 and 
CACNA1E have the potential to serve as a valuable biomarker for 
facilitating the diagnosis of Parkinson’s disease.

In our study, KEGG enrichment analysis demonstrated the 
co-DEGs were associated with ‘glycine, serine, and threonine 
metabolism’. Several studies have consistently revealed that the 
pathophysiology of PD is deeply associated with amino acid 
metabolism, which has emerged as a distinctive biological hallmark 
characterizing PD. Glycine serves as a co-agonist with glutamate at the 

FIGURE 9

Drug prediction network diagram. Red is mRNA; blue is the predictive drug.

FIGURE 10

Verification of three DEGs by qT-PCR between PD and control groups. (A) Expression of GPR78 between PD and control groups. (B) Expression of 
CADM3 between PD and control groups. (C) Expression of CACNA1E between PD and control groups. GPR 78, orphan G protein-coupled receptor 78; 
CADM3, cell adhesion molecule 3; qRT-PCR, quantitative simultaneous polymerase chain reaction.

https://doi.org/10.3389/fnagi.2024.1388226
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnagi.2024.1388226

Frontiers in Aging Neuroscience 13 frontiersin.org

site of glutamate receptors, functioning as an additional inhibitory 
neurotransmitter. Inhibiting glycine transport can enhance the activity 
of dopamine axons (Schmitz et al., 2013), which supported our results. 
The study also reported there was a significant difference in threonine 
concentrations between the early-stage PD patients and advanced-
stage PD patients with levodopa-induced dyskinesia and threonine 
concentrations correlated with disease duration, but not with levodopa 
equivalent dose taken daily (Figura et  al., 2018). A recent study 
conducted by LeWitt et al. reported that alterations in serine and 
taurine concentrations exhibited the strongest predictive capability for 
changes in the UPDRS II + III score through analysis of the baseline 
15 plasma compounds of PD patients (LeWitt et  al., 2017). The 
literature is consistent with our findings, suggesting that the key genes 
(GPR78, CADM3, and CACNA1E) identified in our study are 
promising markers for predicting PD.

Immune infiltration analysis between PD and control groups in 
our study showed that five different kinds of differential immune cells, 
respectively, were resting mast cells, macrophages M0, monocytes, 
naive B cells, and activated NK cells. Microglia are CNS-resident 
macrophages, initially described by Pio del Rio Ortega (Del 
Río-Hortega Bereciartu, 2020). The injection of 6-OHDA in rats 
induces a reactive microgliosis that precedes the initiation of 
astrogliosis and dopaminergic cell death. The chronically activated 
microglia secrete elevated levels of proinflammatory mediators, which 
inflict damage upon neurons and further stimulate microglia, thereby 
establishing a self-perpetuating cycle that promotes inflammation and 
neurodegeneration. Studies demonstrated that peripheral 
inflammation was involved in PD origin and spreading. For example, 
oxidative modification of α-Syn generates novel antigenic epitopes 
capable of initiating peripherally driven CD4+ and CD8+ T-cell 
responses (Benner et al., 2008). On the other hand, in the murine 
model of intra-striatal injection of preformed fibril (PFF) α-Syn, 
except for microglial and astrocyte activation, there is significant 
infiltration of B, CD4+ T, CD8+ T, and natural killer cells (Earls et al., 
2019). Our study provides some evidence for the involvement of NETs 
in PD, and further research is imperative to unravel the intricate 
involvement of the peripheral immune system in disease initiation 
and propagation toward the central nervous system.

In the current study, hsa-miR-4290 and hsa-miR-5193 were 
predicted and confirmed as a downstream target of CADM3 and GPR 
78; hsa-miR-6721-5p and SCRT1 were also predicted as a downstream 
target of CADM3. SCRT1 is a recently identified transcriptional 
repressor belonging to the SNAIL family of zinc finger transcription 
factors. Xia et  al. found that epigenome-wide DNA methylation 
analysis of whole blood cells showed differential expression of CRT1 
among individuals with generalized anxiety disorder (GAD), obsessive-
compulsive disorder (OCD), and healthy controls. This suggests that 
CRT1 may help distinguishing patients from healthy controls or 
classifying patients with GAD and OCD (Guo et al., 2022). SCRT1 also 
regulated the conversion from microglia to neurons, which was crucial 
for nerve system development (Malygina et al., 2021). It is well known 
that patients with PD often have emotional problems and that PD is 
associated with microglia and neuroinflammation. Although there was 
no research on the PD population, our study and previous literature 
may provide a basis for further exploration of the mechanism of 
SCRT1 in PD patients. To date, there have been no studies on hsa-miR-
4290 and hsa-miR-5193 in PD. However, according to bioinformatics 
gene data from TargetScan, miR-5193 was predicted to target TRIM11 
(Pan et al., 2019) and early published studies have identified TRIM11 

involvement in neurodegenerative disorders (Lee et al., 2013) as well 
as in the regulation of Alzheimer’s disease by destabilizing intracellular 
humanin (Niikura et al., 2003). Our study also predicted hsa-miR-5193 
involved in the onset of PD, which needs more research to validate this 
conclusion. A study of COVID-19 found that miR-6721-5p was 
involved in inflammatory pathways, the latter was also one of the main 
mechanisms of PD, and our study on NETs in PD patients also found 
the same result (Hashemi Sheikhshabani et al., 2023).

A deeper understanding and accurate detection of the 
immunological mechanisms underlying the earliest signs of 
Parkinsonism will lead to new therapies and in future may enable 
clinicians to intervene effectively with novel or repurposed anti-
inflammatory and immunomodulatory therapies to slow or delay the 
progression of disease from the periphery to the CNS. Our study 
aimed to provide biomarkers that can be used for early diagnosis and 
disease-modifying therapy of PD by exploring extranuclear neutrophil 
trapping net genes associated with inflammation in a PD 
patient database.

5 Strength and limitations

Our study is the first to identify common differentially expressed 
genes in PD and NETs through bioinformatics gene analysis. 
Additionally, we explore the enrichment pathways of these co-DEGs, 
inflammatory cell infiltration, and downstream RNA pathways and 
predict potential intervention drugs. Furthermore, we validated the 
nomogram model established by co-DEGs in other databases as well 
as in blood samples from both PD patients and control populations to 
enhance the reliability of our experimental results. The drawback of 
our study lies in the fact that it is based solely on microarray analysis, 
which relies on gene expression values. However, as gene expression 
may not directly correlate with protein expression, the biomarkers 
identified in this study should be considered at the gene level, rather 
than at the protein level. Validation should be conducted through both 
in vitro and in vivo experiments and clinical trials. Moreover, to some 
extent, larger prospective clinical studies would provide a more 
comprehensive validation of our findings.

6 Conclusion

Our study reported co-DEGs of GPR78, CADM3, and CACNA1E 
link NETs and Parkinson’s disease and established a nomogram model 
to diagnose PD based on these genes, which also performed well in 
external cohort validation. GO and KEGG enrichment analysis of the 
key genes showed the co-DEGs mainly participated in the ‘hydrogen 
peroxide catabolic process’, ‘haptoglobin hemoglobin complex’, and 
‘glycine serine and threonine metabolism’. By further immune 
infiltration analysis between PD and control groups, we found that 
co-DEGs were associated with five kinds of immune cells. Finally, the 
top miRNAs for each co-DEG may be  potential biomarkers or 
therapeutic targets for NETs-PD, especially hsa-miR-5193 and 
hsa-miR-4290. In addition, we examined co-DEGs in blood samples 
of both PD and control patients, which showed that the co-DEGs in 
PD patients were higher than those in the control population. Thus, 
there is an association between NETs and PD, and expression of 
GPR78, CADM3, and CACNA1E genes could serve as a biomarker 
for NET-related PD.
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Glossary

AD Alzheimer’s disease

BBB Blood–brain barrier

BPAD Bipolar affective disorder

CADM3 Cell-adhesion molecule 3

CREB cAMP-response element-binding protein

CSF Cerebrospinal fluid

DEG Differentially expressed gene

DMNC Density of maximum neighborhood component

EPC Edge percolated component

GO Gene ontology

GPCR G protein-coupled receptor

GPR 78 Orphan G protein-coupled receptor 78

HPA Hypothalamic pituitary adrenal

KEGG Kyoto encyclopedia of genes and genomes

LB Lewy bodies

LSN Lateral substantia nigra

MCC Maximal clique centrality

MCP-1 Monocyte chemotactic protein-1

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MNC Maximum neighborhood component

NET Neutrophil extracellular traps

NK Natural killer cells

PBMC Peripheral blood mononuclear cells

PD Parkinson’s disease

qRT-PCR Quantitative simultaneous polymerase chain reaction

RA Rheumatoid arthritis

ROS Reactive oxygen species

SCRT1 Scratch family transcriptional repressor 1

SLE Systemic lupus erythematosus

TF Transcription factor
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