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Neuromotor impairments resulting from natural aging and aging-related 
diseases are often accompanied by a heightened prevalence of falls and 
fall-related injuries. Conventionally, the study of factors contributing to falls 
focuses on intrinsic characteristics, such as sensorimotor processing delays and 
weakness, and extrinsic factors, such as environmental obstacles. However, the 
impact of these factors only becomes evident in response to people’s decisions 
about how and where they will move in their environment. This decision-
making process can be considered a behavioral risk factor, and it influences the 
extent to which a person engages in activities that place them near the limits of 
their capacity. While there are readily available tools for assessing intrinsic and 
extrinsic fall risk, our understanding of how to assess behavioral risk is limited. 
Measuring behavioral risk requires a systematic assessment of how people make 
decisions when walking in complex environments and how these decisions 
relate to their functional capacity. We propose that experimental methods and 
computational models derived from behavioral economics can stimulate the 
development of such assessments. Behavioral economics relies on theoretical 
models and empirical studies to characterize the factors that influence how 
people make decisions under risky conditions where a given decision can have 
variable outcomes. Applying a behavioral economic approach to walking can 
provide insight into how internal assessment of one’s fall risk influences the 
tasks that one is willing to perform. Ultimately, these assessments will allow us 
to identify people who make choices that increase their likelihood of fall-related 
injuries.
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Introduction

Control of bipedal gait is an inherently risky task. As we walk, our body’s center of mass 
routinely exits our base of support, defined by the contact area between our feet and the 
ground, and as a result, we must actively control where we place our feet to maintain balance 
and prevent falls. In the absence of sensorimotor impairments, we learn to maintain balance 
while walking in various conditions, from smooth, uncluttered environments to uneven, 
mountainous terrain. This ability to maintain balance while walking is even more impressive 
when we consider that the nervous system must account for sensorimotor transmission and 
processing delays (Milton, 2011), signal-dependent noise (Harris and Wolpert, 1998), slow 
conversion of neural impulses to muscle force (Sandow, 1952), and a high-dimensional action 
space (Bernshteĭn, 1967). Although the nervous system readily solves the balance control 
problem despite these challenges, age-related impairments and a variety of neurological and 
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musculoskeletal injuries can dramatically degrade balance and 
increase fall risk. Several studies over many years have characterized 
how factors such as slow response times (Smeesters et  al., 2001; 
Pijnappels et al., 2005; Okubo et al., 2017), weakness (Moreland et al., 
2004; Ding and Yang, 2016; Lauretani et al., 2018), and impairments 
in coordination (James et al., 2017; Pozaic et al., 2019; Liu and Finley, 
2020) can increase fall risk by limiting people’s ability to respond 
appropriately to balance perturbations in risky environments. 
However, much less effort has been devoted to understanding the role 
of decision-making when people are exposed to situations that may 
put them at risk of falling.

The purpose of this review is to highlight how the choices people 
make regarding their future actions influence the likelihood of falls 
and how age-related changes influence this class of behavioral risk 
factors. We first highlight differences in how the concept of risk is 
operationalized in movement science and decision-making, then 
discuss limitations in contemporary approaches to examine risk-
taking behavior during walking. Next, we discuss how theories and 
methods from behavioral economics can be used to develop models 
that explain how people make decisions in the context of risk. Finally, 
we conclude with a perspective of how we can integrate methods from 
behavioral economics with experimental methods from movement 
science to understand how age-related changes in the decision-making 
process may contribute to a heightened risk of falls in older versus 
younger adults (for key points, see Box 1).

Managing risk during walking

Risk during walking has classically been conceptualized in two forms 
within the movement sciences. First, fall risk is commonly considered as 
the likelihood that a person will experience a fall over a fixed period in 
the future (Tiedemann et  al., 2010). The primary limitation of this 
definition is that it is not directly observable as there is currently no 
assessment that precisely predicts how likely someone is to fall over short 
timescales. Second, risk is often conceptualized with reference to 
dynamic balance control by characterizing how well people recover from 
losses of balance to prevent falls during walking (McAndrew et al., 2011; 
Hak et al., 2012; McAndrew Young et al., 2012; Aprigliano et al., 2016; 
Liu et al., 2018; Liu and Finley, 2020). For example, it is common for 
researchers to use biomechanical measures such as dynamic margins of 
stability (McAndrew Young et al., 2012; Hak et al., 2013; Park and Finley, 
2017; Havens et al., 2018; Buurke et al., 2020) and whole-body angular 
momentum (Herr and Popovic, 2008; Nott et al., 2014; Aprigliano et al., 
2016; Liu et  al., 2018; Liu and Finley, 2020) to characterize balance 
control in natural and perturbed gait. Applying perturbations during 
walking allows researchers to characterize the control strategies used to 
maintain balance and assess how these strategies differ in people with 
neuromotor impairments. Although these biomechanical measures are 
precise, they fail to capture the probabilistic characteristics of behavior 
associated with the concept of risk.

In contrast to how risk is conceptualized in movement science, 
risk is formally defined within behavioral economics as the variance 
of the possible outcomes in a given situation (Markowitz, 1952; 
Kahneman and Tversky, 1979; Tobler and Weber, 2014). In the 
context of walking, one can consider a single step to be a form of 
gamble. Using the definition of risk from behavioral economics, 
taking steps on a wide path that is free of obstacles would be considered 

low risk because the probability of losing one’s balance is near zero for 
people who lack balance impairments. In contrast, walking on an 
uneven, rocky trail has more variable possible outcomes such as losing 
balance or falling and hence, has higher risk. What remains to 
be  understood is how people weigh risk when choosing between 
alternative routes through the environment or when deciding if they 
should perform a task that may increase their probability of losing 
balance or falling.

Behavioral risk

Several factors contribute to the likelihood of an individual falling 
and these are most commonly divided into three types—intrinsic, 

BOX 1 Key points.

 • Fall risk is influenced by three types of factors—intrinsic 
(e.g., weakness), extrinsic (e.g., obstacles), and behavioral 
(e.g., risk-taking behaviors) (Connell and Wolf, 1997; 
Perell et al., 2001; Feldman and Chaudhury, 2008).

 • We lack a systematic method to assess behavioral fall risk 
that does not rely on self-reports, which often do not 
match actual real-world behaviors.

 • Aging can lead to a mismatch between actual and 
perceived motor ability, potentially increasing fall risk by 
encouraging risky motor decisions that do not align with 
actual ability (Butler et al., 2015, 2016; Kluft et al., 2017, 
2018, 2019).

 • Decision-making under risk is extensively studied in the 
field of behavioral economics, where risk is a function of 
the variability in outcomes when the same decision is 
repeated (Tobler and Weber, 2014).

 • Computational models of decision-making used in 
behavioral economics have successfully explained people’s 
movement choices during upper extremity tasks (Tversky 
and Kahneman, 1992; Trommershäuser et al., 2003b; Wu 
et al., 2009; Delbaere et al., 2010; Grimm, 2010; Braun 
et  al., 2011; Nagengast et  al., 2011; Hak et  al., 2013; 
O’Brien and Ahmed, 2013, 2016; Buurke et al., 2020).

 • Given the success of these behavioral economic 
approaches in explaining upper extremity movement 
choices and their underlying processes, we propose that 
this framework can be  extended to gait decisions to 
quantify behavioral fall risk.

 • While prior studies use monetary rewards or artificial 
points as decision outcomes, the investigation of gait-
related decisions should focus on incorporating outcomes 
that relate to fall risk.

 • By studying how people walk in realistic virtual 
environments while experiencing balance disturbances 
such as slips and trips, we can better understand how 
individual differences in mobility-related decision-
making influence fall risk (Lee et  al., 2019; Liss 
et al., 2022).
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extrinsic, and behavioral (Perell et al., 2001; Feldman and Chaudhury, 
2008; Figure  1). Intrinsic factors include physical and cognitive 
characteristics such as sensorimotor processing delays, weakness, gait 
and balance deficits, and cognitive impairments. Extrinsic factors 
relate to the presence of hazards in the environment, such as obstacles 
and slippery surfaces. While these two categories include factors that 
one can observe and measure, behavioral fall risk is a relatively 
ill-defined category. Broadly, it relates to people’s choices regarding 
their actions (WHO, 2007; Feldman and Chaudhury, 2008). These can 
be directly related to movement, such as hurrying or carrying multiple 
objects while walking, or they can be indirectly related to movement, 
such as excessive alcohol use. Another example of a choice that would 
impact behavioral risk is the decision one makes when faced with 
multiple candidate paths linking one location to another. For example, 
when hiking through a forest, one might encounter two potential 
routes leading to the same destination: a long but smooth path and a 
short but uneven path with loose gravel and obstacles (Figure 2). 
Deciding between these routes requires a person to estimate the 
riskiness of each option based on estimates of their capacity and 
properties of the environment, and manage a trade-off between this 
perceived risk, time, and effort. This decision-making process is 
particularly critical for elderly individuals who are at risk of 
catastrophic injury from falls. Aging is often accompanied by cognitive 
impairments in domains such as executive function, working memory, 
and fluid intelligence, which may also influence decision-making (Del 
Missier et al., 2012; Brand and Schiebener, 2013; Tymula et al., 2013; 
Trevisan et al., 2019; Waltrip et al., 2023).

Age-dependent changes in neurobiological processes can increase 
falls through their effects on decision-making. Decision-making is 
largely attributed to frontal areas of the brain such as the posterior 
parietal cortex and lateral prefrontal cortex, which show reductions in 
gray matter volume with aging (Resnick et al., 2003; Driscoll et al., 
2009; Kennedy et al., 2009). In addition, dopamine plays a key role in 
assigning subjective values to different choice options in risky 
decision-making (Levy et  al., 2010), and dopamine receptor 
availability in the prefrontal cortex has been shown to decline with 
aging (Karrer et al., 2017). It has been proposed that these declines 
lead to decisions made more from emotional or affect-based processes 
than from analytical processes (Lighthall, 2020). Additionally, the 
cholinergic system has been implicated in falls through its role in 
attentional focus such that older adults who fall have lower cholinergic 
activity than those who do not and among the fallers, the cholinergic 
activity is associated with gait speed (Pelosin et  al., 2016). This is 
particularly interesting because of the role that inattention plays in 
promoting impulsivity in older adults during gait, thereby increasing 
fall risk (Harrison et al., 2010; Ferrari et al., 2012). Impulsivity refers 
to making decisions without considering the outcomes (Harrison 
et al., 2010) or failing to consider the immediate environment and 
safety concerns when moving (Ferrari et al., 2012) and therefore, has 
a direct impact on behavioral fall risk. Overall, these results provide a 
neurophysiological basis for a complex interplay between motor 
impairments, cognitive decline, and decision-making with aging, 
which may result in elevated fall risk in older adults.

While some studies and reviews allude to the presence of 
behavioral risk factors, these factors have historically been 
understudied. A multifactorial framework for fall risk has been 
proposed based on a review of 25 studies investigating relationships 
between features of the physical environment and falls in older adults 
(Feldman and Chaudhury, 2008). Three main fall risk factors were 

identified, the interactions between which determine the risk of falls: 
mobility, features of the physical environment, and risk-taking 
behavior. Mobility was defined as the individual’s ability to perform 
movements, which can be affected by aging, weakness, and disorders 
such as Parkinson’s disease and stroke. Features of the physical 
environment included the presence of hazards or safety features in 
people’s homes and daily use environments, for example, grab bars in 
the bathroom or railings on staircases. Risk-taking behaviors were 
defined as those that increase the likelihood of falling or those that 
challenge an individual’s dynamic balance. Thus, risk-taking behaviors 
are specific to each individual, such that a behavior that may be risk-
taking for one individual might not be for another. Inappropriate risk-
taking behaviors are reported as being a major cause of falls among 
older adults (Connell and Wolf, 1997; Feldman and Chaudhury, 2008). 
This fall risk framework, however, does not propose a method to 
objectively assess risk-taking.

Self-reported assessments of behavioral 
risk

Because an individual’s risk-taking behaviors are not easily 
observed, clinical assessments instead capture people’s perceptions of 
their ability to maintain balance in risky environments using scales 
such as the Falls Efficacy Scale, Activities-Specific Balance Confidence 
Scale, and the Modified Gait Efficacy Scale (Delbaere et al., 2010; 
Hadjistavropoulos et al., 2011; Moreira et al., 2017; Kluft et al., 2020). 
The Falls Efficacy Scale assesses the fear of falling by asking 
respondents to rate their level of concern about falling while 
performing different activities. The Activities-Specific Balance 
Confidence Scale and the Modified Gait Efficacy Scale measure 
balance confidence by having respondents rate their level of 
confidence in their ability to perform different activities without losing 
their balance. Though neither falls efficacy nor balance confidence 
assess decision-making, they can be used to gain insight into risk-
seeking tendencies such that individuals with high falls efficacy and 
high balance confidence may be more willing to take risk, regardless 
of their actual physical ability. The Falls Behavioral Scale for Older 
People assesses people’s perceptions of their behaviors when faced with 
risky situations (Clemson et  al., 2003). Respondents can rate the 
frequency with which they engage in protective behaviors, such as 
holding on to a handrail when using stairs and using a walking aid 
when needed, and risky behaviors, such as hurrying when doing 
things. Each of these questionnaires relies on self-reports and, hence, 
necessarily assesses people’s perceptions of their behaviors and not 
their actual behaviors. These types of questionnaires are also subject 
to self-reporting biases (Raphael, 1987; Grimm, 2010; Althubaiti, 
2016), including recall and social desirability such that people may 
tend toward reporting their behaviors as being more cautious than 
they actually are.

Experimental methods of assessing 
behavioral risk while walking

Plank-crossing is a walking task that has been used to assess 
behavioral risk in older adults, such that when participants are free to 
choose from planks of different widths and heights to walk across, 
their choice can indicate their level of behavioral risk (Butler et al., 
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FIGURE 1

Examples of intrinsic (aging and weakness, dizziness), extrinsic (obstacles, vehicles on the road), and behavioral (carrying heavy objects, walking in 
heels under the influence of alcohol) factors that influence fall risk.

FIGURE 2

Examples of risky decision-making during walking. Decision between two hiking paths to the same destination—a long path without obstacles (green 
dashed line) and a short path with several obstacles (red dashed line) such as rocks and fallen trees. (Left) From the perspective of the decision-maker. 
(Right) Top view of the two options. This scenario represents a decision situation with a trade-off between risk and time such that while the route on 
the left (or green dashed line) has low risk, it would require more time to reach the destination whereas the opposite is true for the second option. The 
route on the right (or red dashed line) presents a greater fall and injury risk.
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2015). Older adults who took higher behavioral risk in this task self-
reported as being cautious in their everyday lives (Butler et al., 2015). 
This mismatch could potentially be due to the previously discussed 
self-reporting biases, incorrect estimates of gait ability during plank-
crossing, impaired sensorimotor integration or cognitive deficits (Li 
and Lindenberger, 2002). These same older adults also experienced 
more falls in a 12-month follow-up period. Additionally, there was no 
association between precision walking ability and behavioral risk as 
those with better ability chose lower-risk planks and vice versa. One 
limitation of this study, however, is that plank crossing speed was not 
controlled or accounted for and can itself be a source of risk due to its 
influence on foot placement accuracy (Bradshaw and Sparrow, 2000; 
Roerdink et al., 2021). A second limitation is that participants did not 
cross the chosen planks, and thus the chosen speed of plank-crossing 
and the likelihood of making a misstep were unknown.

A mismatch has also been found between reported risk-taking 
during road-crossing and actual observed road-crossing decisions in 
older adults (Butler et al., 2016). Road-crossing is a common risky 
activity that requires a good estimate of one’s ability and accurate 
perceptions of the speed of moving vehicles. In a study of road-
crossing decisions, a simulated pedestrian crossing was created and 
participants were instructed to cross in front of a styrofoam car, at the 
shortest possible distance from it (Butler et al., 2016). One group 
crossed within a small distance from the car, suggesting that they 
accurately judged their ability and their environment. This group also 
performed best on a battery of physical and cognitive tests. However, 
they reported engaging in risky behavior and being less cautious in 
everyday life. Conversely, the groups that were either “hit” by the car 
or had to retreat to avoid being “hit” reported being less risky and 
more cautious on the everyday risk-taking scale.

A major limitation of the studies described above was that only a 
single decision was made in each condition. In everyday life, we tend 
to face similar decision-making situations multiple times and our 
decisions generally change over time as we learn from experience. It is 
important to understand how experience influences decision-making 
and whether experience-dependent changes are appropriate, given the 
individual’s motor ability. These studies were also limited in the range 
of risky conditions that could safely be used. One potential way to 
address this limitation is to use virtual reality (VR) in combination with 
physical perturbations to create complex walking scenarios that mimic 
the real world (Cano Porras et al., 2018, 2019; Raffegeau et al., 2023). 
An advantage of this method is that it would allow for the evaluation 
of decision-making in real-world scenarios within a controlled and safe 
environment. Using physical perturbations delivered via motion 
platforms or specialized treadmills can further improve ecological 
validity by introducing balance-disturbing consequences to decisions 
that may better reflect what people experience in the real world (Park 
and Finley, 2017; Lee et al., 2019; Buurke et al., 2020; Debelle et al., 
2020). This would allow researchers to systematically capture the effects 
of experience, the visual representation of risk, and the physical 
consequences of errors on decision-making while walking.

The role of misjudgment in risky 
decision-making during walking

The results above suggest a mismatch between people’s perception 
and memory of how they manage risk while walking and their behaviors. 

Similarly, there is a mismatch between perceived and actual motor 
ability. In older adults, it is possible that a decline in physical function 
with aging may not always be accompanied by a perception of this 
decline (Butler et al., 2016). In risky situations, this mismatch between 
perceived and actual ability has the potential to increase the probability 
of a fall. For example, if an individual who overestimates their stepping 
ability faces an obstacle on a hiking trail, they may incorrectly choose to 
step over it instead of walking around it, thereby putting themselves at 
an increased risk of tripping or falling and injuring themselves. 
Therefore, there is a need to investigate this construct of “misjudgment” 
between perceived and actual ability and its contribution to fall risk.

In general, misjudgment is quantified by measuring perceived 
ability through an oral response and actual ability through the 
performance of the task. Studies of misjudgment in motor tasks are 
summarized in Table  1. One example of such a task is precision 
walking wherein perceived ability was measured by asking participants 
to estimate the narrowest path within which they could walk without 
stepping outside its boundaries (Kluft et al., 2017). Actual ability was 
measured by determining the actual narrowest path within which they 
could accurately walk. The degree of misjudgment in this paradigm 
was found to be highly variable among participants, with many older 
adults overestimating their walking ability (Lighthall, 2020). 
Additionally, older adults with a better precision walking ability were 
not better judges of their accuracy than those with a lower ability. 
Therefore, judgment of ability appears to be a separate skill in older 
adults, independent of one’s actual ability.

Preliminary evidence suggests that misjudgment of ability is task-
specific and not an inherent trait. Misjudgment was quantified across 
four different stepping tasks that involved stepping over a height, 
stepping across a certain distance, or taking a step to recover from a 
forward lean (Kluft et al., 2017). There was no association between the 
degrees of misjudgment across these tasks, suggesting that this may 
not be a trait inherent to an individual but rather a task-specific skill. 
While further work has been done to develop more tasks to better 
assess misjudgment, a good method for quantification of misjudgment 
has not yet been identified (Kluft et al., 2018).

Decision-making under risk

While judgment of ability is one factor in walking-related 
behavioral decisions, these are complex decisions that require an 
evaluation of the walking environment and the possible outcomes. As 
a result, there is a need to develop a quantitative framework to better 
explain how people integrate information about themselves and the 
environment to inform their decisions. Behavioral economics is a 
field of study that investigates the psychological and cognitive 
processes underlying decision-making (Glimcher and Fehr, 2014). 
Theories in this field provide a framework to study people’s choices in 
different contexts and the underlying processes that lead to these 
choices. In the context of behavioral economics, a risky prospect is 
defined as a situation in which the possible outcome of choosing a 
specific option is uncertain, and risk is defined as the variance in the 
distribution of possible outcomes (Braun et  al., 2011; Nagengast 
et al., 2011).

Models of risky decision-making typically maximize a utility 
function. For example, the mean–variance model expresses the utility 
of an option, U(x), as a function of the expected value of the possible 
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TABLE 1 Summary of studies of misjudgement of ability in different gait-related motor tasks.

Type of motor ability to 
be judged

Illustration Key findings

Maximum forward reach distance 

(Butler et al., 2011)

1. No association between differences in estimated and actual 

maximum reach distance and falls over one year, both retrospective and 

prospective

2. Greater reach ability associated with lower judgement error

Maximum step-over height  

(Sakurai et al., 2013)

1. No correlation between actual measured maximum step-over height 

and the perceived maximum height for older adults

2. Greater overestimation of ability among fallers

Narrowest plank that can be crossed 

quickly without falling  

(Butler et al., 2015)

1. Those who chose riskier planks, whose widths were narrower than 

that required to cross successfully, reported cautious everyday behavior.

2. Level of risk in plank choice, measured as the probability of falling off 

the chosen plank, was a significant predictor of falls.

Ability to cross a simulated road 

while leaving a short final gap from 

a simulated moving car  

(Butler et al., 2016)

1. Exact crossing decisions leaving a small gap from the car made by 

those with better performance on a series of physiological and cognitive 

tests

2. Those who made unsafe crossing decisions, leading to being ‘hit’ or 

having to retreat to avoid being ‘hit’, reported cautious everyday 

behavior.

Accuracy of foot placement inside a 

projected path of varying width for 

different gait speeds  

(Kluft et al., 2017b)

1. No association between actual ability to stay within the bounds of a 

narrow path and perceived ability

2. Degree of misjudgement between actual and perceived ability not 

associated with actual ability

Maximum step-over height; 

Maximum forward stepping 

distance; Maximum forward lean 

angle (Kluft et al., 2017a)

1. Significant correlation between perceived and actual ability in all but 

the forward lean task

2. No consistency in the extent of misjudgement across the four 

judgement tasks

Maximum stepping down height 

using a heel-first strategy  

(Kluft et al., 2018)

Perceived ability, measured as the step height at which there was an 

equal probability of choosing a heel-first and toe-first strategy, was not 

associated with actual ability, measured as the ability to recover balance 

from an unexpected step-down.

Maximum stepping down height 

using a heel-first strategy  

(Kluft et al., 2019)

A fall prediction model that included a misjudgement term between 

actual stepping ability (maximum step height and step length) and 

perceived ability (step height with an equal probability of heel-first and 

toe-first strategy) did not perform better when predicting falls over a 

10-month period than a model without the misjudgement term.

The table briefly describes the type of motor task studied and the key findings with respect to judgement of ability. Illustrations of the tasks are included. Butler, Annie A.; Lord, Stephen R., 
Reach Distance but Not Judgment Error Is Associated With Falls in Older People, Journals of Gerontology - Series A: Biological Sciences and Medical Sciences, 2011, 66A, 8, by permission of 
Oxford University Press. Butler, Annie A.; Lord, Stephen R., Ability Versus Hazard: Risk-Taking and Falls in Older People, Journals of Gerontology - Series A: Biological Sciences and Medical 
Sciences, 2014, 70, 5, by permission of Oxford University Press. Kluft, Nick; van Dieën, Jaap H.; Pijnappels, Mirjam., The degree of misjudgment between perceived and actual gait ability in 
older adults, Gait & Posture, 2017, 51 with permission Elsevier. All other images are distributed under the terms of the Creative Commons Attribution License.
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outcomes, E(x), and their variance (Equation 1) (Markowitz, 1952; 
Nagengast et al., 2011).

 U x E x Var x( ) = ( ) - ( )q  (1)

Here, θ is the risk-sensitivity parameter where a value of zero 
indicates risk neutrality, a positive value indicates risk aversion, and a 
negative value indicates a risk-seeking tendency. This model has 
previously been applied in effort-based decision-making, in which the 
“sure bet” required the exertion of a known fixed force by the hand, 
whereas the risky option could require the individual to exert a lower 
or higher force than the fixed option, thereby having a larger variance 
(Nagengast et  al., 2011). This and other studies that have applied 
behavioral economic models of decision-making to motor control are 
summarized in Table 2. Fitting this model to the participants’ behavior 
demonstrated that they were sensitive to the level of risk and had 
tendencies to choose riskier options.

A model of motor decision-making has been proposed that 
accounts for the inherent uncertainty in movement planning and 
execution in addition to biomechanical costs such as effort 
(Trommershäuser et  al., 2003a). To test this model, partially 
overlapping target and penalty areas were presented on a screen. A 
reaching movement that ended in the target circle yielded reward 
points, whereas the penalty circle led to a loss. A prediction was made 
for each individual’s optimal movement endpoint that would 
maximize reward while accounting for their natural movement 
variability. This prediction was compared to their actual chosen 
endpoints. Actual decisions closely matched those of an “optimal 
performer” suggesting that people accurately take both their own 
movement variability or uncertainty as well as explicit costs into 
account when making decisions for such pointing tasks 
(Trommershäuser et al., 2003a).

Prospect Theory is a model of risky decision-making that was 
developed to explain commonly observed “irrationalities” in 
people’s behaviors (Kahneman and Tversky, 1979; Tversky and 
Kahneman, 1992). These include risk-seeking tendencies in the 
presence of small probability gains (e.g., gambling), and risk-
aversive tendencies in the presence of small probability losses (e.g., 
purchasing insurance). According to this model, people’s choices 
can be explained by a process in which they transform and represent 
the probability and values of options available to them and use 
these representations to make a decision (Kahneman and Tversky, 
1979; Tversky and Kahneman, 1992). Prospect Theory considers 
three key elements of decision-making: diminishing sensitivity, loss 
aversion, and probability distortion. For an option with a possible 
outcome x that has a probability p, Prospect Theory defines its 
subjective value v(x) and decision weight w(p) as in the 
following equations.
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Consider a lottery that offers $50 with probability p and $0 with 
probability 1-p. First, Prospect Theory suggests that the subjective 
value of a gain of $50 is higher for someone who only has $100 than 
for someone with $10,000. This feature reflects a value function that 
has a diminishing sensitivity to change (Equation 2, when ɑ < 1 or 𝛽 < 
1). Second, the theory captures loss aversion for which the value 
function is steeper for losses than for gains. This leads to losses having 
a higher impact on value than a gain of equivalent magnitude (𝜆 in 
Equation 2). Third, the theory characterizes probability distortion, 
according to which people do not objectively represent the 
probabilities of possible outcomes in a lottery. Instead, they transform 
the probabilities to decision weights, w(p), that determine the impact 
of each outcome on the person’s decision (Equation 3). This distortion 
function is generally represented by a sigmoidal function, which is 
steepest near probabilities of 0 and 1 (Tversky and Kahneman, 1992). 
A more recent version of this theory, called Cumulative Prospect 
Theory, applies the probability weighting function to cumulative 
probabilities of outcomes and is generalizable to decisions that include 
more than two possible outcomes (Tversky and Kahneman, 1992).

Several studies have used the Prospect Theory framework to 
investigate motor decision-making, subjective valuation, and 
probability distortion during motor tasks (Wu et al., 2009; O’Brien and 
Ahmed, 2013; O’Brien and Ahmed, 2014; O’Brien and Ahmed, 2015). 
A comparison between equivalent economic and motor decision-
making tasks observed typical overweighting of small probabilities and 
underweighting of moderate to large probabilities in the economic 
domain but the opposite tendency in the motor domain (Wu et al., 
2009). “Motor lotteries” were presented in the form of targets of varying 
widths, which, combined with each individual’s motor variability, 
determined the probability of success of a reaching movement. Each 
target was associated with some reward equivalent to those in the 
economic task. Therefore, with all else being equal, the only difference 
between the two tasks was the manner in which probability information 
was provided—explicitly in the economic task and implicitly based on 
the target width in the motor task. These results suggest that the 
probability weighting function depends on the task, the nature in 
which probability information is provided, or both (Box 2).

Within the motor domain, risk-seeking has been observed in both 
upper-body reaching and whole-body leaning type of movements 
(O’Brien and Ahmed, 2013). Similar to previously reported results, 
underweighting of small and overweighting of moderate to large 
probabilities was observed in both these movements, along with the 
overvaluation of rewards and undervaluation of penalties (O’Brien 
and Ahmed, 2013). In both tasks, swift out-and-back movements were 
performed to control a cursor on a screen using either a 
manipulandum for the reaching task or by leaning forward on a force 
plate for the whole-body task. The cursor was taken from its home 
position to as close as possible to the edge of a virtual “cliff.” Risk was 
manipulated by either varying the penalty associated with the cliff 
region or by adding noise to the cursor position. Surprisingly, risk-
seeking was greater in the whole-body task than in the arm-reaching 
task. This result is counterintuitive because one would expect that a 
whole-body movement, which has a more unstable posture than a 
seated reaching movement, might lead to risk-aversive tendencies. 
However, it is important to note that the cliff and the consequences of 
risk-taking in this task are artificial, and therefore, these results may 
not generalize to the presence of real, physical consequences.
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TABLE 2 Summary of studies examining the influence of risk on decision-making in motor tasks.

Type of task Goal of decision-
making task

Illustration of task (if available) Decision-making models applied Key findings

Reach and point to a reward 

circle on a screen, partially 

overlapping with a penalty 

circle (Trommershäuser 

et al., 2003a)

Maximize accumulated reward 

points

Statistical Decision Theory  

Endpoint (x,y) minimizes:
L x y C P x y C P R x yo, , |, ,( ) = ( ) + ( )1 1

Co: Target reward, Ro: Target region, C1: Penalty points,  

R1: Penalty region

1. Optimal endpoints predicted by 

the model matched actual 

endpoints.

2. Endpoints shifted away from 

penalty circle as penalty increased 

and as penalty circle moved closer 

to target circle.

Make choices between 

equivalent economic and 

motor lotteries (Wu et al., 

2009)

Maximize reward accumulated 

in both types of decision-making 

tasks

Prospect Theory

Value function for outcome O:
v O O O O O( ) = ³ - -( ) <{ , ,a b

0 0

Probability (p) weighting function:

w p lnln p( ) = - - ( )( )é
ëê

ù
ûú

exp
g

1. Risky lotteries chosen with 

higher frequency in motor 

decision-making

2. Overweighting of small and 

underweighting of large 

probabilities in economic task; 

vice-versa in motor task

Make choices between motor 

lotteries whose outcomes are 

forces to be exerted on a 

handheld manipulandum 

(Nagengast et al., 2011)

Not applicable Mean-Variance Model

For an option with possible force exertions x:

U E x Var x= - ( ) + * ( )q

E(x): Mean required force, Var(x): Variance of required 

force, q : Risk-attitude parameter

Cumulative Prospect Theory

For an option with possible force exertion x with 

probabilities p:

v x x( ) = - a

w p lnln p( ) = - -( )é
ëê

ù
ûú

exp
g

1. Sensitivity to risk was present, 

in the direction of risk-seeking.

2. Mean-Variance model was a 

better fit to the data than 

Cumulative Prospect Theory.

(Continued)
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Type of task Goal of decision-
making task

Illustration of task (if available) Decision-making models applied Key findings

Movement of handheld 

manipulandum to control the 

position of a cursor under 

different noise conditions 

and end at the center of a 

target line (Nagengast et al., 

2010)

Minimize final target error (error 

cost) and the amount of control 

applied to the manipulandum 

(control cost)

Mean-Variance Model

Given a cost function C, an optimal controller minimizes:

E C Var C( ) - * ( )q

E(C): Mean of cost function, Var(C): Variance of cost 

function, q : Risk-sensitivity parameter

1. Sensitivity to risk was present, 

in the direction of risk-aversion.

2. When noise was high, 

participants were willing to incur a 

control cost to avoid movement 

errors.

Movement of handheld 

manipulandum to control the 

position of a cursor from a 

start to end position and 

passing through a target 

region, under different levels 

of visual feedback 

uncertainty (Grau-Moya 

et al., 2012)

Minimize target error and 

movement cost, explicitly added 

in the form of horizontal viscous 

force

Risk-Sensitive Bayesian Integration

Optimize the stress function given by:

u y
a
Q

aopt p

i p

j i p

i p
j=

+
- -

+

s

s s

s s

s s
q

2

2 2

2 2

2 22
: target position,

 

 s p: Uncertainty in visual feedback, 

 y: Observed target position, 

 si: Strength of viscous force, 

 Q: importance of reaching the target, 

 a j: risk-sensitivity parameter

1. Decisions were based on both, 

feedback uncertainty and 

movement cost.

2. As uncertainty increased, 

movements were more biased 

towards low movement cost 

regions.

Swift out and back 

movements with the hand 

and whole-body lean to 

control the position of a 

cursor under different levels 

of noise (O’Brien et al., 2013)

Maximize reward points by 

moving greater distances but 

avoiding a penalty region at the 

end

Statistical Decision Theory

Expected gain function for a chosen movement strategy y:

G y G P y if y y G P y if y ysafe cliff cliff cliff( ) = ( ) £ ( ) >¢ ¢{

Gi: Gain associate with region, y: Planned endpoint, y’: 

Actual endpoint

Cumulative Prospect Theory

Expected gain function for a chosen movement strategy y:
G y G w P if G G w P if Gi i i i( ) = ( ) ³ - -( ) ( ) >{ , ,a b

0 0

w P logP y( ) = - - ( )éë ùû{ }exp
g

1. Sensitivity to risk was present, 

in the direction of risk-seeking, for 

both types of movements.

2. Higher risk-seeking in the 

whole-body movement.

For each study, the type of task, the task objective, an illustration of the task, a list of the decision-making models used, and the key findings are listed. Maloney, Laurence T.; Landy, Michael S. Statistical decision theory and trade-offs in the control of motor response, 
Spatial Vision, 2003, 16(3-4), 255. Reprinted with permission from Spatial Vision © Optical Society of America. Copyright (2009) National Academy of Sciences. O’Brien, Megan K.; Ahmed, Alaa A., Does risk-sensitivity transfer across movements?, Journal of 
Neurophysiology, 2013, 109, 7 with permission Elsevier. All other images are distributed under the terms of the Creative Commons Attribution License.

TABLE 2 (Continued)
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When the same two tasks described above were performed on a 
platform at a height of 0.8 m above the ground, the difference in the 
extent of risk-seeking between the two was eliminated (O’Brien and 

Ahmed, 2015). Decision analysis using CPT revealed a significant 
difference in probability weighting in the whole-body movement 
between the two elevations, such that small probability losses were 
overestimated to a greater extent at high elevations, leading to more 
risk-averse behavior. Therefore, it seems that implicit postural threat 
increases risk sensitivity in the context of movement-related decisions. 
While these two studies were the first to assess risk-sensitive decision-
making in goal-directed whole-body movements using a behavioral 
economic approach, more work remains to be done using tasks with 
actual physical consequences to understand how the perception of risk 
and its effects on decision-making is affected by movement type, 
context, and experience.

While these studies have considerably advanced the understanding 
of motor decision-making in young adults, the effects of aging in this 
decision domain are not well studied. There is some evidence of 
decreased risk-taking in older adults compared to young adults in a 
reach-to-target task where risk is manipulated using penalty points 
(Valsecchi et  al., 2018). In a plank-crossing task described in a 
previous section, mixed results were reported among older adults with 
some choosing to cross risky planks and some choosing safer options 
(Butler et al., 2015). However, this study did not compare young and 
older adults, making it difficult to ascertain whether risk-taking in this 
task is age-dependent. Studies comparing decision-making across 
multiple domains suggest an interaction between domain and age 
such that risk-seeking generally decreases with age in the financial, 
health, ethical, and recreational domains but might increase with age 
in the social domain (Weber et  al., 2002; Blais and Weber, 2006; 
Rolison et  al., 2014; Waltrip et  al., 2023). More work is needed, 
specifically in the context of gait-related decision-making, to 
understand how aging influences behavioral fall risk.

Opportunities for advancing 
theoretical understanding and 
assessment of behavioral risk during 
walking

As reviewed above, fall risk assessments in the clinic largely focus 
on identifying intrinsic and extrinsic fall risk factors, often rely on 
self-reports, and do not have a high predictive value for falls (Lee et al., 
2013). One potential reason for the limited predictive ability of current 
assessments is that they neglect an assessment of actual decisions in 
the context of risk. The emergence of intrinsic risk factors with age or 
disease is likely accompanied by changes in decisions that people 
make. For example, a decline in visual acuity may lead to an individual 
consciously adopting more cautious behaviors such as walking slower. 
Conversely, the lack of intrinsic or extrinsic risk factors is not 
necessarily indicative of low fall risk as the individual’s behavioral 
decisions could be putting them in risky situations. Therefore, this 
interplay between intrinsic and extrinsic risk factors and behavioral 
decisions needs to be  investigated, and this requires the means to 
systematically assess people’s motor decision-making in 
risky environments.

The need to assess behavioral risk has been addressed in part by 
developing self-report questionnaires that ask respondents to rate 
their level of engagement in risky behaviors in everyday life (Clemson 
et  al., 2003; Kwan et  al., 2013; Butler et  al., 2015). However, such 
questionnaires rely on people’s perceptions and memories of their 
actions and can, therefore be subject to common biases such as recall 

BOX 2 The description-experience gap.

The most common form of decision-making tasks in behavioral economics 

involve a clear, numerical description of the possible outcomes of a decision and 

their associated probabilities. While such studies have provided tremendous 

insight into human decision-making under conditions of risk and uncertainty, 

such decisions are not commonplace in everyday life. These decisions which are 

made based on explicit descriptions are examples of “decisions from description.” 

More commonly, decisions in real life are made from experience in the same or 

similar situations. The study of such “decisions from experience” is relatively 

recent and has led to the discovery of differences in decisions based on these 

two modalities, commonly termed the “description-experience gap” (Hertwig 

et al., 2004; Hertwig and Erev, 2009; Wu et al., 2009; Ludvig and Spetch, 2011; 

Camilleri and Newell, 2013).

Early in the study of this phenomenon, it was most widely studied and 

reported in situations with rare events (Hertwig et al., 2004; Hertwig and Erev, 

2009). The common finding is that rare events are overweighted in decisions 

from description but underweighted in decisions from experience. Because rare 

events by nature occur with low probabilities, two explanations for this finding 

are limited sampling because rare events are not experienced often in a decision 

from experience paradigm, and a recency heuristic because even if they are 

experienced sufficiently, more likely events may be experienced more recently 

and hence, receive more weight (Hertwig et al., 2004). In walking in everyday 

life, falls can be considered rare events, underweighting of which can lead to 

repeated engagement in activities that are likely to cause falls.

More recent work has found that this description-experience gap exists not 

only for low probability, rare outcomes but even for those with higher 

probabilities (Ludvig and Spetch, 2011). Specifically in the context of Prospect 

Theory, the common finding is that of overweighting of low probabilities and 

underweighting of moderate-large probabilities in decisions from description, 

but the opposite in decisions from experience (Wu et al., 2009; Ludvig and 

Spetch, 2011). In addition to the limited sampling and recency effects, a 

potential reason for this observed difference is that explicit probabilities are 

known in description-based decisions but must be  inferred or learned in 

experience-based decisions (Hertwig and Erev, 2009; Wu et al., 2009). However, 

it is unclear how this difference in information format might influence 

probability weighting. Finally, another proposed cause of this gap is contingent 

sampling where in experience-based decisions, people may rely more heavily 

on information gained in situations similar to the current one, thereby 

disregarding any other important information which would otherwise 

be readily available in a description paradigm (Hertwig and Erev, 2009).

Most movement and gait-related decisions in everyday life are based on 

previous experiences. These decisions are different from lottery-based decisions 

from experience because of the added aspects of voluntary motor control and 

motor learning. It has previously been suggested that the differences seen in 

motor and economic decision-making, in addition to stemming from this 

description-experience gap, may also be due to people’s perceived ability to 

control the outcome of a decision when the outcome is based on their motor 

skill (Wu et al., 2009; O’Brien and Ahmed, 2013, 2014, 2015). Due to these 

differences, it is important to further investigate the description-experience gap 

specifically in the context of movement-related decisions.

https://doi.org/10.3389/fnagi.2024.1384242
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Jain et al. 10.3389/fnagi.2024.1384242

Frontiers in Aging Neuroscience 11 frontiersin.org

bias and social desirability bias (Althubaiti, 2016). In fact, as reviewed 
above, people’s self-reports of risky behaviors in everyday life do not 
always match the nature of their actual decisions in behavioral tasks 
(Butler et  al., 2015, 2016). This points toward the need to assess 
people’s actual decision-making during walking, the factors that 
influence this decision-making process, and the relationship between 
walking decisions and fall risk.

We propose that experimental methods and computational 
models derived from behavioral economics can overcome the 
limitations associated with assessments of behavioral risk that are 
based primarily on self-reporting. A behavioral economic approach 
can be used to identify the cognitive processes that underlie decision-
making in complex environments and identify individuals who may 
be  at a higher risk of falls because they engage in risk-seeking 
behaviors. The Mean–Variance model and Prospect Theory are 
examples of integrative or algebraic models of decision-making, which 
assume that people assess all the information about all available 
options before making a decision. While these models have been fairly 
successful in explaining people’s economic decisions, they are not 
considered to be plausible representations of the underlying cognitive 
computations that mediate decision-making (Payne et  al., 1978; 
Pachur et al., 2017). For example, when we decide between alternate 
paths along a rocky trail, we do not have explicit information about 
the probabilities of different outcomes (e.g., losses of balance) 
associated with each path. Even in situations where all this information 
is explicitly available, the ability to perform a Prospect Theory-like 
algebraic analysis may not be psychologically plausible (Payne et al., 
1978; Lopes, 1995; Pachur et al., 2017).

To this end, heuristic models of decision-making have been 
proposed as more plausible strategies by which people make 
decisions. Individuals with high levels of statistical numeracy have 
been shown to use heuristic rather than algebraic models of 
decision-making, which leads to more consistent choices between 
risky economic gambles (Ashby, 2017). These models assume that 
people have a limited capacity for memory and information 
processing and as a result, filter the available information to simplify 
the decision-making process (Slovic et  al., 2004; Gonzalez and 
Mehlhorn, 2016; Pachur et al., 2017). An example of this filtering 
process is the recency bias, according to which people more heavily 
weigh events that were experienced closer in time to the decision 
(Hertwig and Erev, 2009). In the context of gait, if a decision about 
a walking path must be made quickly, this heuristic may be utilized 
and allow for more recent experiences of losses of balance to 
influence the decision. Another heuristic, which is particularly 
relevant in the context of walking and falls, is the affect heuristic 
(Slovic et al., 2004). Affect is the feeling of positivity or negativity 
that we associate with any event or object. By associating each of 
our experiences with a general “feeling” or “affect,” we can perform 
a quick analysis of possible outcomes of a decision in the future by 
identifying the affect associated with each. This becomes 
particularly relevant when studying motor decisions that involve 
whole-body movements because of the affective response that near-
falls or falls elicit. The use of heuristic processes in simple choices 
has also been shown to lead to more consistent decisions than in 
complex choices with higher cognitive demands (Bessette et al., 
2021). However, the extent to which the use of more cognitively 
demanding deliberative and simpler heuristic decision-making 
processes explains individual differences in behavioral risk during 
walking remains to be seen.

The development of a comprehensive framework of decision-
making during walking requires an understanding of how different 
factors, such as risk or uncertainty, time, movement goals, movement 
context, and personality traits, influence decisions. Future studies 
should aim to study these factors in isolation and in combination to 
best approximate people’s decision-making behaviors in more 
complex, real-world situations. The influence of risk or uncertainty 
can be determined by having people choose between walking options 
with different levels of variability in the possible outcomes of each. 
These outcomes may be presented in the form of trips or slips, which 
are often the cause of falls in both young and older adults and are, 
therefore, ecologically valid decision consequences. Technologies such 
as augmented and virtual reality (VR) can be particularly useful in 
these contexts as they allow for the simulation of real-world 
environments within which one or more factors can be systematically 
manipulated (Cano Porras et al., 2018, 2019; Raffegeau et al., 2023). 
For example, the effects of movement context may be studied by using 
multiple virtual environments such as road-crossing in traffic, hiking 
on a trail, or navigating in a crowded mall. In combination with 
motion platforms or specialized treadmills that can be used to deliver 
the physical consequences of decisions, these virtual environments 
can be made to match real-world environments more closely.

While technologies such as VR and specialized treadmills can help 
advance the research endeavor to understand behavioral fall risk, they 
may not always be practical options for use in clinical practice due to 
financial and physical space constraints. More practical solutions for 
evaluating decision-making in the clinic include those similar to the 
plank-crossing task described previously where planks of differing 
levels of difficulty can be presented to walk across (Butler et al., 2015). 
While participants in this study did not actually cross their plank of 
choice due to safety concerns, future studies could implement safety 
measures to enable clinicians to assess their patients’ risk-taking 
tendencies based on which planks they choose to cross or avoid. 
Further work is required to develop low-cost and efficient methods to 
assess gait-related decision-making in the clinic.

Assessments of behavioral fall risk can also be  improved by 
modifying assessments of fall history to better capture the 
circumstances surrounding a fall. These circumstances could include 
the individual’s goals and motivation at the time of the fall, and the 
exact movement or behavior that led to the fall. Although this 
information is prone to each of the biases associated with self-reports 
(Raphael, 1987), it may be used to track the conditions surrounding 
falls more comprehensively in both research and the clinic. 
Additionally, it is just as important to consider the circumstances 
leading to near-falls or balance disturbances, as they can provide 
insight into daily behaviors that put the individual in risky situations 
but may otherwise be overlooked.

A final challenge when translating the risky decision-making 
framework to locomotor control and fall risk is that of identifying ideal 
decisions and decision-making processes. When walking, decisions are 
made within the context of the individual’s intrinsic characteristics and 
features of their environment (Feldman and Chaudhury, 2008). These 
decisions then directly inform gait behavior and fall risk. Because of 
the many sources of sensory information available, identifying the key 
factors that decisions are based on and those that they should be based 
on is important, particularly in terms of translating this work to the 
clinic. Ultimately, the goal is for physical therapists to be  able to 
recognize key features of a patient’s decision-making process and 
prescribe specific and actionable ways to alter it in a way that reduces 
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fall risk. Fall risk itself is inherently multidimensional and its reliable 
estimation continues to be an elusive goal despite a wealth of research 
(Perell et al., 2001; Gates et al., 2008; Ejupi et al., 2014; Kluft et al., 
2019). This is primarily because assessments of gait and balance ability 
at a single time point in a clinic or research setting do not entirely 
reflect daily behaviors in the outside world. As the use of wearable 
technology (Howcroft et al., 2013, 2017; Bet et al., 2019; Nouredanesh 
et al., 2021) for health and behavioral monitoring improves, clinicians 
may be able to combine data from daily gait behavior and assessments 
of risky decision-making to address excessive risk-seeking or risk-
aversive tendencies in their patients.

Conclusion

While it is well-established that aging and the presence of 
neurological impairments increase the risk of falls, much less is known 
about how these factors influence behavioral risk. As reviewed here, 
behavioral risk is influenced by an individual’s ability to assess their own 
capacity, the requirements of the task, the features of the environment, 
and the ability to integrate this information to make appropriate 
decisions. Impairments in any of these processes can cause impaired 
decision-making and when this occurs in the context of gait and balance-
related movements, it can lead to potentially catastrophic outcomes. 
Age-related declines in physical ability are not always accompanied by a 
simultaneous adjustment of perceived ability, leading to higher 
engagement in risky behaviors (Sakurai et al., 2013; Butler et al., 2015; 
Liphart et al., 2016). This misjudgment of ability can stem from factors 
including, but not limited to, sensory impairments such as information 
transmission delays, increased noise, and reductions in sensitivity that 
affect multiple sensory modalities. The development of a rigorous 
computational framework to explain people’s decisions during walking 
may help identify the type of information that an individual uses when 
performing a risk assessment for walking, how the perception of this 
information may be distorted, and how this distortion influences the 
mobility-related decisions that people make in everyday life. By using VR 
in combination with perturbations capable of triggering losses of balance 
(Lee et al., 2019; Liss et al., 2022), one can create simulations of complex 
real-world environments to expand the current understanding of how 
decision-making influences fall risk in older adults and people with 
mobility impairments.
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