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Background: Alzheimer’s disease (AD) is a common neurodegenerative 
dementia, characterized by abnormal dynamic functional connectivity (DFC). 
Traditional DFC analysis, assuming linear brain dynamics, may neglect the 
complexity of the brain’s nonlinear interactions. Energy landscape analysis offers 
a holistic, nonlinear perspective to investigate brain network attractor dynamics, 
which was applied to resting-state fMRI data for AD in this study.

Methods: This study utilized resting-state fMRI data from 60 individuals, 
comparing 30 Alzheimer’s patients with 30 controls, from the Alzheimer’s 
Disease Neuroimaging Initiative. Energy landscape analysis was applied to the 
data to characterize the aberrant brain network dynamics of AD patients.

Results: The AD group stayed in the co-activation state for less time than the 
healthy control (HC) group, and a positive correlation was identified between 
the transition frequency of the co-activation state and behavior performance. 
Furthermore, the AD group showed a higher occurrence frequency and transition 
frequency of the cognitive control state and sensory integration state than the 
HC group. The transition between the two states was positively correlated with 
behavior performance.

Conclusion: The results suggest that the co-activation state could be important 
to cognitive processing and that the AD group possibly raised cognitive ability 
by increasing the occurrence and transition between the impaired cognitive 
control and sensory integration states.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by a progressive 
decline in memory and other cognitive abilities. At present, there is no curative treatment for 
AD, but medication can aid in controlling the symptoms and slowing the advancement of 
cognitive impairment. The functional magnetic resonance imaging (fMRI) technique has been 
widely applied to investigate the neural mechanism of Alzheimer’s disease (AD) and identify 
brain abnormalities specific to clinical behavior (Greicius et al., 2004; Buckner et al., 2009; 
Jagust, 2018).
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Resting-state fMRI is a noninvasive imaging technique that 
indirectly measures synchronized blood oxygen level-dependent 
(BOLD) fluctuations in the brain, providing insights into the 
functional connectivity patterns of the brain (Biswal et  al., 1995; 
Jagust, 2018). Among various resting brain networks, the default mode 
network (DMN) has been considered the core network reflecting AD 
pathological features. For AD patients, there was a significant decrease 
in the functional connectivity of the DMN (Greicius et al., 2004). In 
addition to the DMN, other brain networks, such as the executive 
control network (ECN) and salience network (SN), also showed 
changes induced by AD (Hahn et al., 2013; Badhwar et al., 2017). The 
alterations in functional connectivity may reflect cognitive dysfunction 
and compensatory responses to neurodegeneration damage in AD.

It should be  noted that static functional connectivity analysis 
cannot capture the dynamic nature of the brain and fully reveal intricate 
temporal characteristics. Many previous studies have demonstrated that 
functional connectivity fluctuates dynamically with time (Chang and 
Glover, 2010). Dynamic functional connectivity (DFC) analysis has 
been used to distinguish functional states that vary between healthy 
controls and AD patients (Badhwar et al., 2017; Preti et al., 2017). Some 
studies have examined the dynamics of functional connectivity across 
diverse subnetworks, revealing aberrant dwell times specifically within 
memory-associated networks in AD brains (Jones et al., 2012; Filippi 
et al., 2019). Other studies demonstrated a gradual decline in whole-
brain FC strengths that correlated with the increasing severity of 
cognitive impairment throughout the course of AD (Demirtaş et al., 
2017; Pathak et al., 2022). The DFC analysis method used in previous 
studies assumes linearity of the brain dynamic system, while the 
dynamics of the brain are usually nonlinear (Hutchison et al., 2013; 
Preti et al., 2017). Thus, the dysfunction of the brain dynamic network 
in a complex and nonlinear brain system of AD remains to be elucidated.

Recently, energy landscape analysis based on statistical physics has 
been extensively applied in the analysis of brain dynamics during rest 
(Watanabe et al., 2014a; Ezaki et al., 2017, 2018; Kang et al., 2021; 
Klepl et al., 2022) and bi-stable visual perception tasks (Watanabe 
et al., 2014b). In contrast with the previous DFC method, energy 
landscape analysis has several advantages in exploring brain dynamics. 
First, energy landscape analysis can provide insights into the stability 
and robustness of brain dynamics because it reveals information about 
the attractor dynamics of a system. Second, energy landscape analysis 
is particularly useful in nonlinear systems and can provide a deeper 
understanding of brain dynamics. Third, energy landscape analysis 
provides a visual representation of the system, which can help to 
clarify and simplify complex brain systems.

Energy landscape analysis has been utilized to analyze abnormalities 
in brain dynamic dysfunction, including autism spectrum disorder 
(Watanabe and Rees, 2017), poststroke aphasia (Fan et al., 2022) and AD 
(Klepl et al., 2022; Li et al., 2023). For the AD patient, it was found that 
the dynamics of AD patients’ EEG were shown to be more constrained - 
with more local minima, less variation in basin size, and smaller basins 
(Klepl et al., 2022). Due to poor spatial resolution of EEG, the EEG study 
cannot reveal the dynamic changes of brain networks in AD patients. Li 
et al. (2023) applied the energy landscape analysis to the resting fMRI 
data of AD and investigate the dynamic changes of the DMN, the SN, 
and the ECN. The study revealed that the dynamics of patients with AD 
tend to be  unstable, with an unusually high flexibility in switching 
between states (Li et al., 2023). However, Li’s study analyzes the DMN, 
SN and ECN separately by using the energy landscape method and 

ignored the interaction between the three networks. It has been 
demonstrated that several resting-state networks existed and interacted 
with each other in the resting fMRI data (Filippi et al., 2019; Puttaert 
et al., 2020; Cruzat et al., 2023). Therefore, it is essential to investigate the 
dynamic changes of the interactions between the resting networks by 
using the energy landscape analysis method to provide a more 
comprehensive understanding of the pathogenic mechanisms of 
Alzheimer’s disease.

This study aimed at revealing the abnormal dynamics of AD 
patient by treating all the resting-state networks as a whole activity 
pattern and examining the dynamic changes of the interactions 
between the resting networks collectively. In this study, we applied 
independent component analysis (ICA) to extract 9 resting fMRI 
networks and utilized the pairwise maximum entropy model to 
construct the energy landscape by using time series driving the 9 
resting networks from 30 Alzheimer’s patients and 30 normal 
individuals. The maximum entropy model (MEM), as part of our 
energy landscape analysis, is used to estimate state energy distributions. 
We chose MEM due to its established effectiveness in deriving reliable 
and unbiased statistical inferences from limited datasets, with minimal 
prior assumptions (Jaynes, 1957; Schneidman et  al., 2006). In the 
energy landscape analysis, the probability distribution of the brain 
states follows the Boltzmann distribution (the more frequently the state 
occurs, the lower its energy is). Our analysis methodology is illustrated 
schematically in Figure  1. The brain’s energy landscape comprises 
several valleys with local minima (referred to as “stable states” or 
“attractors”). The local minima have energy lower than their neighbours 
in the valley. The major brain activity patterns are defined as those that 
are frequently visited and situated in the lowest points of the energy 
landscape. We  then assessed the ease of dynamic transitions by 
measuring the frequency of visits to these major activity patterns. The 
fMRI results revealed that AD symptoms could lead to an increased 
transition frequency between the cognitive control state and the 
sensory integration state as well as the occurrence frequency of the two 
states, which suggests that AD patients possibly used the compensatory 
mechanism to improve cognitive ability by increasing the transition 
frequency between the cognitive control and sensory integration states.

2 Materials and methods

2.1 Subjects

The dataset was from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database.1 The ADNI was established in 2003 as a 
public–private partnership led by Principal Investigator Michael 
W. Weiner, MD. The ADNI is a longitudinal database that aims to 
develop biomarkers for the early detection and tracking of AD 
progression. It collects clinical, imaging, genetic, and bio-specimen 
data related to AD and cognitive impairments. A total of 60 subjects, 
including 30 patients diagnosed with Alzheimer’s disease and 30 
controls, were used in this study. Ethical approval was granted by the 
local ethical committees of all involved sites.

According to the protocols, AD was diagnosed based on a 
combination of clinical and cognitive assessments, along with 

1 http://adni.loni.usc.edu/
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biomarker data. The criteria used for AD diagnosis were primarily 
based on the National Institute on Aging-Alzheimer’s Association 
(NIA-AA) guidelines for the diagnosis of Alzheimer’s disease. 
Participants underwent a comprehensive battery of neuropsychological 
tests evaluating various cognitive domains, including memory, 
language, attention, executive function, and visuospatial skills. Key 
tests included the Mini-Mental State Examination (MMSE), Rey 
Auditory Verbal Learning Test (RAVLT), Montreal Cognitive 
Assessment (MoCA), Functional Activities Questionnaire (FAQ) and 
others. The sample descriptions are presented in Table 1. Details on 
Alzheimer’s Disease Stages can be found in Supplementary Table S1.

2.2 Image acquisition

All participants underwent MRI scanning using a 3 T Philips MRI 
scanner to acquire resting-state functional images. The scanning 
protocol employed an echo-planar imaging (EPI) sequence with the 
following acquisition parameters: 140 volumes, repetition time 

(TR) = 3,000 ms, echo time (TE) = 30 ms, flip angle = 80°, number of 
slices = 48, slice thickness = 3.3 mm, spatial resolution = 3 × 3 × 3 mm3, 
and matrix size = 64 × 64. The original image files from this study are 
accessible to the broader scientific community for further analysis and 
research purposes. Additional information regarding the fMRI images 
can be found on the ADNI homepage.2

2.3 Data preprocessing

The present study utilized the Data Processing Assistant for Resting-
State fMRI (DPARSF) software (Yan et  al., 2016)3 to perform 
preprocessing steps on the rs-fMRI data. Specifically, each subject’s 
functional images underwent slice-timing correction, motion correction, 
and spatial normalization to the Montreal Neurological Institute (MNI) 
space. The resulting images were resliced into a voxel size of 3 × 3 × 3 mm 
and underwent spatial smoothing (Gaussian kernel with a full width at 
half maximum of 6 mm). Subsequently, linear detrending was applied, 
and the images were bandpass filtered (0.01–0.1 Hz).

2.4 Resting brain network extraction by ICA

Group independent component analysis (group-ICA) was 
performed to identify functional networks of the resting state. All 
preprocessed fMRI data were subjected to analysis using the GIFT 

2 http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/

3 http://rfmri.org/dpabi

FIGURE 1

Pipeline of energy landscape analysis. (A) Functional brain network extraction by ICA. (B) The time series driving each network. (C) Binarized time series 
in (B). (D) Identification of brain states in energy landscapes. (E) Extraction of the brain dynamic measures. (F) Relationship between brain dynamic 
measures and behavior scores.

TABLE 1 Demographic data.

HC AD t value p-value

Age 74.69 ± 6.3 72.88 ± 6.3 1.08 0.284

Male/female 14/16 14/16

MMSE 28.7 ± 1.3 22.5 ± 2.5 12.01 <0.001

MoCA 25.3 ± 1.9 16.1 ± 5.1 9.20 <0.001

RAVLT 43.03 ± 10.3 21.53 ± 6.6 9.58 <0.001

FAQ 0.06 ± 0.25 15.4 ± 7.64 −11.23 <0.001
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toolbox.4 The optimal number of independent components (ICs) was 
estimated by the MDL criteria and was set to 30. The Component 
Labelling toolbox in GIFT was used to label the resulting independent 
components. Each component was identified according to its 
correlation with the resting-state network mask (Shirer et al., 2012). 
We finally selected 9 components (i.e., brain networks) relevant to AD 
according to a previous study (Badhwar et al., 2017): auditory network 
(AN), basal ganglia network (BGN), left executive control network 
(LECN), right executive control network (RECN), DMN, 
sensorimotor network (SMN), primary visual network (PVN), higher 
visual network (HVN), and SN.

2.5 Fitting of the pairwise MEM

To conduct energy landscape analysis, we applied the pairwise 
maximum entropy model (MEM) to the time series of the 9 brain 
networks in the same manner as in previous studies (Watanabe et al., 
2014a; Watanabe and Rees, 2017; Ezaki et al., 2018; Fan et al., 2022). 
The pairwise MEM and the model fitting procedures are briefly 
described as follows.

For each group, the time series corresponding to N brain networks 
of S subjects were concatenated, and the data matrix 
ZN╳ST=[Z Z ZN T N T N T

S
� � ��1 2 ] was obtained. T is the number of time 

points in the time series. In this study, N was equal to 9, T was equal 
to 140 and S was equal to 30. The matrix ZiN T×  represents the time 
series of N networks for the ith subject. The nine mean values 
m m m mN

T� �� �1 2, , ,  that represent the average network activity of 
the nine brain networks were calculated by averaging Z across the 
columns. The data matrix Z was binarized based on the threshold of 
the mean values m. If Z(i,j) > mi, Z(i,j) = 1; otherwise, Z(i,j) = −1. A 
value of 1 represented the active state, while −1 represented the 
inactive state. Each column of Z represented the activity pattern of N 
networks at each time point. The total number of possible activity 
patterns amounted to 2N. Vk N� �� �� � �1 2, , ,  represents the kth 
activity pattern of all 2N possible activity patterns, where σ i represents 
a binary activity of network i.

According to the principle of maximum entropy, the probability 
distribution P Vk� � of the network activity pattern Vk should follow 
the Boltzmann distribution when the mean network activity and the 
mean pairwise interaction are constrained by the empirical data (see 
Eqs 1, 2).
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Here, E(Vk) is the energy of activity pattern Vk, � i kV� � represents 
the binarized activity of network i in activity pattern Vk, hi represents 
the activation tendency (baseline activity) of network i and Jijindicates 
a pairwise interaction between networks i and j. No interaction exists 

4 mialab.mrn.org/software/gift/

between networks i and j for Jij = 0 while interaction exists for Jij ≠ 0
. It is important to note that the energy E does not represent biological 
energy. Rather, it serves as a statistical indicator of the likelihood of 
occurrence of each brain activity pattern. Brain activity patterns with 
lower energy values tend to occur more frequently.

The model-based mean network activity 
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using P Vk� �  in Eq.  1. The empirical mean network activity 
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= ∑  were estimated from the empirical data, where 

σ it  represented a binary activity of network i at time t. The parameters 
hi and Jij were iteratively adjusted by using a gradient ascent algorithm 
until miσ  and mi jσ σ  were approximately equal to the 
empirically obtained iσ  and i jσ σ  for each group.

2.6 Accuracy of fit

According to previous studies (Watanabe et al., 2014a; Watanabe and 
Rees, 2017), the accuracy measure R was calculated by Eq. 3 to evaluate 
the goodness of fit of the pairwise MEM to the fMRI data of each group.
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where D1 represents the Kullback–Leibler divergence between the 
MEM with Jij = 0 and the empirical data, as calculated using Eq. 4. 
D2 represents the Kullback–Leibler divergence between the MEM 
with Jij ≠ 0 and the empirical data, was calculated using by Eq. 5. The 
accuracy measure R ranges from 0 to 1. MEM perfectly reproduces 
the empirical distribution of activity patterns for R = 1 and the 
pairwise interactions have no contribution to the MEM model fit 
for R = 0.

Additionally, the Pearson correlation coefficient between the 
appearance probability derived from the pairwise MEM and the 
empirical appearance probability was calculated. The greater the 
Pearson correlation coefficient was, the more accurately the maximum 
entropy model could explain the empirical data.

2.7 Construction of energy landscapes

To characterize the resting dynamics of the brain system, an 
energy landscape analysis was conducted for each group according to 
the procedure described in previous works (Watanabe et al., 2014a; 
Watanabe and Rees, 2017).
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A network of activity patterns was constructed by setting each 
activity pattern as a network node. Two nodes were defined as adjacent 
if the two activity patterns were the same across all brain networks 
except one. Therefore, an activity pattern Vk was adjacent to N activity 
patterns. The network of activity patterns with their node energy E 
Vk� � was defined as the energy landscape. In the energy landscape, the 

local energy minima (attractors) were the nodes with energy values 
smaller than those of their N adjacent nodes.

A dysconnectivity graph (Becker and Karplus, 1997) was 
constructed according to the following six steps, as depicted in the 
flowchart in Figure 2. First, all the local energy minima were achieved 
by thoroughly searching the energy landscape. Second, the energy 
threshold Eth, was set to the highest energy value present among all 2N 
nodes. Third, the nodes with energy values equal to or larger than Eth 
were removed. Fourth, a connectivity check was performed to ensure 
that each pair of local minima was connected via a path within the 
reduced network. Fifth, Eth was adjusted by the subsequent largest 
energy value. The third, fourth and fifth steps were repeated until each 
local minimum was isolated in a reduced network. Finally, a hierarchical 
tree was generated. The terminal leaves represented the local minima, 
and the internal nodes indicated the branching points of different local 
minima. The leaves’ vertical positions reflected their energy values.

2.8 Estimation of the sizes of dominant 
brain states

The basin sizes of the detected local minima were used to measure 
the dominance of each local minimum. A starting node i was selected 

from the 2N nodes. If there was any neighbouring node that had lower 
energy than node i, node i was moved to its neighbouring node with 
the lowest energy value. If no such neighbouring node existed, node 
i was a local minimum, and no movement occurred. This procedure 
was repeated until a local minimum was obtained. The starting node 
i was defined as an element of the basin of the local minimum that was 
reached by the starting node i. This process was applied to all 2N nodes 
repeatedly. All the brain activity patterns that belonged to the basin 
constituted the basin of a local minimum. Consequently, the basin size 
was defined as the fraction of the number of brain activity patterns 
belonging to the basin.

In this study, six local minima were grouped into three brain states 
according to the hierarchical structures of these minima (local minima 
1, 2 and 4 for State 1; local minima 3 and 5 for State 2 and local 
minimum 3 for State 3; Figure 1C). The size of each brain state was 
defined as the summation of the basin sizes of all the local minima 
that belonged to the brain state.

2.9 Dynamic measures of brain states

According to the definition of the three brain states, the activity 
pattern at each time point was classified as one of the three brain 
states for each participant. Seven dynamic measures, including the 
appearance frequency, mean duration, mean energy, transition 
frequency, direct transition frequency, indirect transition frequency 
and transition in/out frequency, were calculated from the empirical 
data of each subject. For each participant, the appearance frequency 
of a state was calculated as the ratio of the occurrence number of the 
state to the total number of all states observed. The mean dwell time 
of a state was measured as the average number of consecutive 
occurrences of the state. The mean energy was calculated by averaging 
the energy levels of states across all time points. The state transition 
frequency from state A to B was measured as the ratio of the 
transition number from state A to B to the total transition number 
between states. Specifically, the state transition was further classified 
into direct transition and indirect transition. Indirect transitions 
involved intermediate states between the initial and target states. The 
transition in/out frequency was defined as the transition frequency 
at which a particular state transitioned to or from other states. 
Two-sample t tests with a Bernoulli correction were applied to all 
dynamic measures to evaluate the differences between the HC and 
AD groups.

2.10 Numerical simulations

According to the energy landscape estimated for each group (HC/
AD), the movement of the brain activity patterns was numerically 
simulated using a Markov chain Monte Carlo method with 
Metropolis-Hasting’s algorithm (Metropolis et  al., 1953; Hastings, 
1970). In this method, any brain activity pattern Viwas only allowed to 
move to its neighbour pattern Vj that was selected from all N 
neighbours with a uniform probability of 1/N. The probability of 
transition from Vi to Vj was P eij

E V E Vi j� �
��

�
��

� �� � �
min 1, . For each group, 

we repeated the random walk of 105 steps with a randomly selected 
initial pattern Vkso that the simulated data could fully describe the 
transition of the brain activity pattern. Using this numerical 
simulation, the mean duration, mean energy and transition probability 

FIGURE 2

Work flow of dysconnectivity graph.
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of the brain states were calculated to characterize the brain dynamics. 
The differences in brain dynamics between the AD and HC groups 
were assessed through the utilization of chi-square (χ2) tests and post 
hoc residual tests.

2.11 Associations between brain dynamics 
and behaviors

We further explored the relationships between brain dynamics 
and behavior performance. The analysis focused on the DFC measures 
that showed significant intergroup differences. The Pearson 
correlations between behavior performances and the brain dynamic 
measures were calculated for the two groups separately.

3 Results

3.1 Accuracy of model fitting

Figure 3 displays the fitting results of the pairwise MEM for the 
empirical data of the AD and HC groups. The results indicated that 
the MEM could accurately predict the empirical data for both the AD 
and HC groups (accuracy: RAD = 0.822, RHC = 0.836). Moreover, the 
appearance probability derived from the pairwise MEM was highly 
correlated with the empirical appearance probability for both groups 
(rAD=0.930, p < 0.001; rHC=0.945, p < 0.001).

3.2 Energy landscapes and basin size

The hierarchal structures of the two groups’ energy landscapes are 
shown in Figures 4A,B. The energy landscapes of the AD and HC 
groups showed a similar hierarchal structure with the same six local 
minima (Figure 4C). The six local minima were grouped into three 

brain states (local minima 1, 2 and 4 for State 1; local minima 3 and 5 
for State 2; local minimum 3 for State 3). Figure 4D shows the sizes of 
the three brain states of the two groups. The distributions of the brain 
states were significantly different between the two groups (χ2 = 7.95, 
p < 0.05 in a χ2-test). For State 3, the state size of the AD group was 
significantly smaller than that of the HC group (p < 0.05 in a post hoc 
residual test).

3.3 Characterization of brain dynamics

Figure 5 shows a comparison of the appearance frequency, mean 
duration and mean energy of the three states in the empirical data. In 
contrast to the HC group, the AD group displayed a significantly 
higher appearance frequency in State 1 (t = 3.33, p < 10−2, 
PBonferroni < 0.05) and State 2 (t = 3.14, p < 10−2, PBonferroni < 0.05) and a 
significantly lower appearance frequency in State 3 (t = 7.46, p < 10−3, 
PBonferroni < 0.05). Moreover, the HC group exhibited a significantly 
longer mean duration of State 3 than the AD group (t = 3.88, p < 10−3, 
PBonferroni < 0.05). State 2 showed significantly higher mean energy 
(t = 2.77, p < 10−2, PBonferroni < 0.05), and State 3 showed significantly 
lower mean energy in the HC group versus the AD group (t = 10.06, 
p < 10−3, PBonferroni < 0.05).

The transition frequencies of the three states in the empirical data 
of the two groups are presented in Figure 6. The transition frequency, 
including direct transition and indirect transition, between States 1 
and 2 was significantly reduced in the HC group compared to the AD 
group (t = 2.83, p < 10−2, PBonferroni < 0.05). Compared with the AD 
group, the HC group showed a significantly higher transition 
frequency between States 1 and 3 (t = 4.03, p < 10−3, PBonferroni < 0.05) and 
between States 2 and 3 (t = 4.85, p < 10−3, P Bonferroni < 0.05). For the 
direct transition frequency, the HC group showed a significantly lower 
frequency between States 1 and 2 (t = 4.35, p < 10−3, PBonferroni < 0.05) and 
a significantly higher frequency between States 1 and 3 (t = 2.73, 
p < 10−2, PBonferroni < 0.05) and between States 2 and 3 (t = 4.55, p < 10−2, 

FIGURE 3

Fitting of the pairwise MEM for the AD group (A) and HC group (B).
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PBonferroni < 0.05) compared with the AD group. For the indirect 
transition frequency, the HC group showed a significantly higher 
frequency between States 1 and 2 (t = 4.73, p < 10−3, PBonferroni < 0.05), 
between States 1 and 3 (t = 3.53, p < 10−3, PBonferroni < 0.05), and between 
States 2 and 3 (t = 2.11, p < 10−2, PBonferroni < 0.05) than the AD group. 
Moreover, the transition in/out frequency of State 3 was significantly 
higher for the HC group than for the AD group (t = 4.91, p < 10−3, 
PBonferroni < 0.05).

3.4 Association between brain dynamics 
and cognitive ability

Figure  7 illustrates the relationships that had a significant 
correlation between neuropsychological assessments and the 
measurements of brain dynamics. For the RAVLT, the average score 
of AD patients was significantly lower than that of HCs (t = 9.58, 
p < 10−3, PBonferroni < 0.05). For the AD group, the RAVLT score 
showed a significant positive correlation with the transition 
frequency between States 1 and 2 (r = 0.55, p < 0.05), the transition 
frequency between States 1 and 3 (r = 0.45, p < 0.05), the direct 
transition frequency between States 1 and 2 (r = 0.43, p < 0.05), the 
direct transition frequency between States 1 and 3 (r = 0.45, 
p < 0.05), and the transition in/out frequency of State 3 (r = 0.45, 
p < 0.05).

3.5 Numerical simulation results

The dynamic measurements of the three states in the simulated 
data of the AD and HC groups are displayed in Figure  8. The 
distributions of the mean duration of each state exhibited significant 
differences between the two groups (χ2 = 106.9, p < 10−3 in a χ2-test). In 
contrast to the AD group, the HC group showed a significantly longer 
mean duration for State 1 (p < 10−3 in a post hoc residual test) and State 
3 (p < 10−4 in a post hoc residual test) and a significantly shorter 
duration for State 2 (p < 0.05  in a post hoc residual test). The 
distribution of the mean energy of states displayed a significant 
difference between the HC and AD groups (χ2 = 1272.17, p < 10−3 in a 
χ2-test). The mean energy of the AD group was significantly larger for 
State 1 (p < 10−4 in a post hoc residual test) and State 2 (p < 10−4 in a post 
hoc residual test; Figure  8B) and significantly lower for State 3 
compared to that of the HC group (p < 10−4 in a post hoc residual test).

Moreover, significant intergroup differences were observed in the 
distributions of state transition probabilities, including transition 
probability (χ2 = 208.9, p < 10−3 in a χ2-test), direct transition 
probability (χ2 = 404.4, p < 10−3 in a χ2-test), indirect transition 
probability (χ2 = 61.7, p < 10−3 in a χ2-test), and transition in/out 
probability (χ2 = 116.3, p < 10−3 in a χ2-test) in the simulated data. For 
both the transition frequency and direct transition frequency, the HC 
group exhibited a significantly higher frequency between States 1 and 
3 (p < 10−4 in a post hoc residual test) and between States 2 and 3 

FIGURE 4

Comparison of energy landscape structures. (A,B) Hierarchal structure of the energy landscape for the AD (A) and HC (B) groups. (C) The six local 
minima of the landscapes of the two groups. (D) Basin sizes of the three brain states for the two groups. *p  <  0.05.

FIGURE 5

Dynamic properties of brain states. (A) Appearance frequency of the three brain states for the HC and AD groups. (B) Mean duration of the three brain 
states for the HC and AD groups. (C) Mean energy of the three brain states for the HC and AD groups. *p  <  0.05, **p  <  10−2, ***p  <  10−3.
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(p < 10−4 in a post hoc residual test; Figure 8A) than the AD group, 
while the AD group had a significantly higher frequency between 
States 1 and 2 (p < 10−4 in a post hoc residual test) than the HC group. 
For indirection transitions, the frequency of the HC group was 
significantly higher between States 1 and 2 (p < 10−4 in a post hoc 
residual test) and between States 1 and 3 (p < 0.05 in a post hoc residual 
test) and significantly lower between States 2 and 3 (p < 10−4 in a post 
hoc residual test) compared to that of the AD group. For the transition 
in/out frequency, the HC group displayed a significantly lower 
frequency for State 1 (p < 10−4 in a post hoc residual test) and State 2 
(p < 10−3 in a post hoc residual test) and a significantly higher frequency 
for State 3  in contrast to the AD group (p < 10−4 in a post hoc 
residual test).

4 Discussion

In the present study, we investigated the impact of AD on resting-
state dynamics by using an energy landscape analysis. Both the AD and 
HC groups showed dynamic direct and indirect transitions among the 
cognitive control state (State 1), the sensory integration state (State 2) 
and the co-activation state (State 3). In contrast to the HC group, the 
AD group spent significantly less time in State 3, and State 1 and State 
2 occurred significantly more frequently. Moreover, the AD group 
tended to switch directly between State 1 and State 2, while the HC 
group tended to transit in/out of State 3. In the AD group, the RAVLT 
score showed a positive correlation with the transition in/out frequency 
of State 3 and the transition frequency between State 1 and State 2. The 

FIGURE 6

Dynamic transition of states. (A) Transition frequency of the AD and HC groups. (B) Direct transition frequency of the AD and HC groups. (C) Indirect 
transition frequency of the AD and HC groups. (D) Transition in/out frequency of the AD and HC groups.

FIGURE 7

Association between transition rates and cognitive ability (RAVLT) in the AD group. (A) RAVLT scores of the HC and AD groups. (B) The relation between 
RAVLT and the transition frequency of States 1 and 2. (C) The relation between RAVLT and the transition frequency of States 1 and 3. (D) The relation 
between RAVLT and the direct transition frequency of States 1 and 2. (E) The relation between RAVLT and the direct transition frequency between 
States 1 and 3. (F) The relation between RAVLT and the transition in/out frequency of State 3.

https://doi.org/10.3389/fnagi.2024.1375091
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Xing et al. 10.3389/fnagi.2024.1375091

Frontiers in Aging Neuroscience 09 frontiersin.org

results suggest that State 3 could play an important role in cognitive 
processing and that AD patients possibly use the compensatory 
mechanism to improve cognitive ability by increasing the transition 
frequency between State 1 and State 2.

4.1 Brain state

A similar hierarchal structure with the same six local minima was 
detected in the energy landscapes of the AD and HC groups. The first 
local minima with all 9 networks inactivated may represent an inactive 
state. The second local minimum with RECN and LECN activation 
possibly represents the cognitive control state (Joo et al., 2016). The 
third local minimum with HVN, PVN, SMN and AN activation 
possibly represents a sensory processing state that includes visual, 
auditory and motor perception (Hutchison et al., 2013). The fourth 
local minimum exhibits activation of the BGN, DMN, SN, RECN and 
LECN. The SN has been implicated in modulating the switch between 
the internally directed cognition of the DMN and the externally 
directed cognition of the RECN and LECN (Sridharan et al., 2008). 
Thus, the fourth local minimum may represent a switching state 
between internal and external cognition. The fifth local minimum 
exhibits activation of the BGN, HVN, PVN, DMN, SMN, SN and 
AN. Because the SN plays a role in the detection and integration of 
salient sensory stimuli (Downar et al., 2000), it may work with the 
HVN, PVN and AN to detect and integrate visual and auditory 
stimuli. The BGN was reported to be  involved in motor control 
(Turner and Desmurget, 2010) and may work with the SMN to 
perform motor processing. Thus, the fifth local minimum may 

be relevant to the integration of various sensory stimuli and motor 
function. The sixth local minimum with all networks activated 
represents an activated state.

In the hierarchal structure of the energy landscape, local minima 
1, 2 and 4 were on the left branch, and local minima 3 and 5 were on 
the same branch for the AD and HC groups. Local minima 1, 2 and 4 
were grouped into State 1, which may be related to cognitive control. 
Local minima 3 and 5 were grouped into State 2, which may be related 
to the integration of sensory stimuli and motor processing. Local 
minimum 6 was assigned to State 3, which may be  related to the 
co-activation state.

4.2 Dynamic property of brain states

In contrast to the HC group, the AD group showed a significantly 
lower mean energy in State 2 and a higher mean energy in State 3. 
Because subjects prefer to stay in a stable state with low energy, State 
3 occurred less frequently and State 2 more frequently in the AD 
group than in the HC group (Figure 5A). In State 3, all 9 networks 
cooperated and showed co-activation. Many previous studies observed 
altered functional connectivity between brain regions in AD patients 
(Filippi et  al., 2019). Because the altered functional connectivity 
pattern may impact the co-activation of the 9 networks, State 3 
occurred less frequently in the AD group than in the HC group. This 
result may suggest that the 9 networks of the HC group tended to 
interact more closely with each other than those of the AD group. 
State 2 was relevant to sensory and motor processing. Previous 
evidence indicated that sensory and motor changes may precede the 

FIGURE 8

Dynamic measurement comparison of simulated data. (A) Mean duration of HC and AD. (B) Mean energy of HC and AD. (C) Transition frequency of AD 
and HC. (D) Direct transition frequency of AD and HC. (E) Indirect transition frequency of AD and HC. (F) Transition in/out frequency of AD and HC.
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cognitive symptoms of AD by several years and may signify an 
increased risk of developing AD (Albers et al., 2015). Moreover, visual, 
auditory and motor dysfunctions are selectively observed in subgroups 
of AD patients (Albers et al., 2015; Weintraub et al., 2018). Therefore, 
the higher appearance frequency of State 2 in AD patients possibly 
provides a compensatory mechanism for sensory and motor 
impairment in AD (Brier et al., 2012). State 1 showed a significantly 
higher appearance frequency in the AD group than in the HC group. 
In State 1, the SN, CEN and DMN interacted closely to control 
cognitive processes. It has been reported that functional organizations 
of CEN and DMN were impaired in AD (Joo et  al., 2016), and 
functional connectivity between the SN and the other two networks 
(CEN and DMN) was also altered in AD patients (He et al., 2014). 
Furthermore, a triple-network (SN, CEN and DMN) analysis of 
Alzheimer’s disease, focusing on the energy landscape of these 
networks, revealed that the dynamics of patients with AD tend to 
be unstable, suggesting fluctuations in network interactions (Li et al., 
2023). An increased occupancy rate in State 1 of AD patients possibly 
suggests a potential brain compensatory mechanism for enhancing 
cognitive control and coordination.

In terms of the transition between states, AD patients switched 
directly between State 1 and State 2 more frequently and between State 
3 and the other two states less frequently than HCs. The results 
indicated that the AD group liked to stay in States 1 and 2, whereas 
the HC group liked to stay in State 3, which was consistent with the 
results of appearance frequency. It was reported that transitions to 
co-activated states within brain networks became more challenging in 
the aging population (Ezaki et al., 2017), which is consistent with the 
finding that the transition to State 3 is suppressed in AD patients in 
this study. For the AD group, the increased transition frequency 
between State 1 and State 2 and the higher appearance frequency of 
State 1 and State 2 may serve as a compensatory strategy to offset 
cognitive impairment in sensory processing and cognitive control 
(Brier et al., 2012; Hillary et al., 2015).

4.3 Association between brain dynamics 
and cognitive ability

Associations between atypical brain dynamics and cognitive 
ability were observed in AD patients. These associations were also 
observed in other cognitive impairment patients (McKeith et al., 2017; 
Premi et  al., 2019). For the AD group, the transition frequency 
between State 1 and State 2 showed a significantly positive correlation 
with the RAVLT score (Figure 7B). The RAVLT score is often used to 
evaluate verbal memory performance (Moradi et  al., 2017). High 
RAVLT score represents high verbal memory performance. In contrast 
to HCs, AD patients had a significantly lower RAVLT score due to 
their memory impairment (Figure  7A). However, the AD group 
showed a significantly higher transition frequency between State 1 and 
State 2 than the HC group. Thus, the positive correlation between the 
transition frequency and RAVLT score further supported the 
compensatory mechanism in the AD group of enhancing the RAVLT 
score by increasing the transition frequency between State 1 and State 
2. Moreover, the RAVLT score of the AD group was highly correlated 
with the transition in/out frequency of State 3 and the transition 
frequency between State 1 and State 3 (Figure 7F). In contrast to the 
HC group, the AD group showed a significantly lower transition in/
out frequency of State 3 and transition frequency between State 1 and 

State 3. For the AD group, subjects with a higher transition of State 3 
had less impairment of coactivation of all 9 networks, and subjects 
with a high RAVLT score had less cognitive impairment. Therefore, 
the AD group displayed a positive correlation between the transition 
frequency of State 3 and the RAVLT score, which may suggest that the 
high transition frequency of State 3 improves the RAVLT score.

5 Conclusion

In summary, this study explored the brain dynamics of AD 
patients by applying energy landscape analysis to resting-state fMRI 
data. Three stable brain states were identified from both the AD group 
and the HC group. The results revealed that cognitive impairments in 
AD primarily reduced the average dwell time in State 3 and the 
transition frequencies associated with State 3. The positive correlation 
between the transition in/out frequency of State 3 and RAVLT score 
of the AD group suggested that State 3 was important for cognitive 
processing. Furthermore, the increased transition frequency of State 
1 and State 2 that was positively correlated with the RAVLT score 
suggests a compensatory mechanism of the AD group to raise 
cognitive ability by increasing the occurrence and transition between 
the two states with impaired cognitive function.
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