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Cognitive impairments are a common feature of synucleinopathies such

as Parkinson’s Disease Dementia and Dementia with Lewy Bodies. These

pathologies are characterized by accumulation of Lewy bodies and Lewy

neurites as well as neuronal cell death. Alpha-synuclein is the main

proteinaceous component of Lewy bodies and Lewy neurites. To model these

pathologies in vivo, toxins that selectively target certain neuronal populations or

different means of inducing alpha-synuclein aggregation can be used. Alpha-

synuclein accumulation can be induced by genetic manipulation, viral vector

overexpression or the use of preformed fibrils of alpha-synuclein. In this review,

we summarize the cognitive impairments associated with different models of

synucleinopathies and relevance to observations in human diseases.
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Introduction

Parkinson’s Disease Dementia (PDD) and Dementia with Lewy Bodies (DLB) are two
of the most common pathologic causes of dementia. DLB is the second most common
pathologic cause of dementia, affecting up to 5% of the general population and up to 30%
of dementia cases (Zaccai et al., 2005; Mueller et al., 2017). PDD is highly prevalent among
individuals with Parkinson’s disease (PD), with estimates suggesting that up to 75% of PD
patients surviving 10 years and 83% of those who survive 20 years develop PDD (Aarsland
et al., 2003; Hely et al., 2008; Aarsland and Kurz, 2010). The prevalence of dementia in PD
patients is thought to be 3–6 times higher than the general population (Aarsland et al., 2003;
Emre et al., 2007).

These disorders share many clinical, anatomic, and neuropathologic characteristics
(Gomperts, 2016; Koga et al., 2021). Patients with each disorder suffer from executive
dysfunction, cognitive impairment, hallucinations, and parkinsonism. Both diseases
are defined neuropathologically by Lewy bodies (LB), cytoplasmic neuronal inclusions
containing α-synuclein (α-syn), in the limbic and cortical regions of the brain. The
similarities between the diseases have led some to suggest that they may exist on a common
pathophysiologic spectrum.
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Modeling the diseases and validating animal models for human
Lewy Body Dementia pose a challenge for two main reasons.
First, establishing a model of PD or DLB that recapitulates
the full spectrum of the disease remains elusive. As will be
described in detail below, there is often great heterogeneity in both
pathological findings and nervous system regions affected among
individual patients with either disorder, while pathogenesis can also
be multifactorial. Second, testing cognition in animals with the
inability to perform the complex functions that are impaired in
humans as well as a lacking of anatomical complexity necessitates
rigorous development of animal behavioral paradigms. In this
review, we will first describe the current theories for cognitive
decline in human Lewy-Body Dementia. We will then explore
progress to date in recreating pathology in animals to model
cognitive phenotypes seen in humans.

Part I: understanding cognitive
decline in human lewy-body
dementia

Clinical phenotypes

While there is heterogeneity in the cognitive profile of PDD
patients, a typical pattern of executive dysfunction, deficits in
concentration and attention, memory impairment, and flawed
visuo-spatial abilities exists (Emre et al., 2007; Kalbe et al., 2008;
Irwin et al., 2013). Specifically, executive function impairment leads
to worsened task planning, task initiation, pattern recognition,
and concept and rule forming abilities (Litvan et al., 1991; Paolo
et al., 1995; Emre et al., 2007; Irwin et al., 2013). Attention
and concentration deficits manifest as impaired spontaneous
and focused attention, difficulty maintaining concentration, and
characteristically fluctuates throughout the day (Ballard et al., 2002;
Noe et al., 2004; Kemps et al., 2005; Emre et al., 2007; Kalbe
et al., 2008). Poor executive function is thought to contribute
to a predominantly recall-related memory impairment in PDD,
(Kemps et al., 2005, Kalbe et al., 2008, Godefroy et al., 2010) though
memory encoding and storage are affected as well (Higginson et al.,
2005; Emre et al., 2007). Considerable evidence reveals that visuo-
spatial and perceptive abilities are also impaired in PDD patients
(Hovestadt et al., 1987; Bradley et al., 1989; Waterfall and Crowe,
1995; Mosimann et al., 2004; Irwin et al., 2013). The variability
in clinical presentation among PDD patients may be reflective of
the heterogeneity in neuropathologic patterns in PD (Hurtig et al.,
2000; Jellinger and Korczyn, 2018).

Patients with DLB share many clinical characteristics with PDD
patients, though there are a few notable differences. The most
apparent difference between the two is the timing of cognitive
decline, as DLB patients experience cognitive decline at the time
of diagnosis or shortly after motor symptom development (usually
within 1 year), while PDD patients usually have motor symptoms
for a substantial period before cognitive decline onset (McKeith
and Burn, 2000; McKeith et al., 2005; Emre et al., 2007). Subtle
differences in the cognitive profiles of the patients also exist, as
DLB patients have been shown to perform worse than PDD patients
in attention tasks (measured by verbal memory and delayed

recall) and executive function tasks (measured by the cognitive
interference "Stroop” test) (Park et al., 2011). The overall rate of
cognitive decline is thought to be faster in DLB than either PDD
or Alzheimer’s Disease (AD) (Rongve et al., 2016; Kramberger
et al., 2017). Furthermore, hallucinations are more frequent in DLB
and can occur any time after disease onset, while PDD patients
typically develop hallucinations after levodopa replacement therapy
(Jellinger and Korczyn, 2018). Rest tremor is less frequent and
balance is less affected in DLB than in PDD, though other motor
manifestations, such as bradykinesia and rigidity, are similar
between entities (Fritz et al., 2016; Jellinger and Korczyn, 2018).

Neuropathological phenotypes

α synuclein patterns
While neurodegeneration of the nigrostriatal basal ganglia

circuitry may be responsible for the motor symptoms of PD,
the neuropathologic underpinnings of cognitive decline in DLB
and PDD remain less clear, as studies have highlighted the
importance of cortical LB and Lewy-neurite pathology, concurrent
Alzheimer’s disease-like pathology, and involvement in the brain’s
cholinergic system in the development of cognitive decline (Braak
et al., 2003; Compta et al., 2011; Irwin et al., 2013). Parkinson’s
disease is traditionally characterized by neurodegeneration and
accumulation of α-syn1 in the substantia nigra, and α-syn
pathology can be observed throughout the brain (Braak et al.,
2003; Bohnen and Albin, 2011; Irwin et al., 2013). Post-mortem
neuropathologic studies have revealed the importance of cortical
LBs in development of PDD, (Hurtig et al., 2000, Mattila et al.,
2000, Harding and Halliday, 2001, Kövari et al., 2003) with specific
involvement of the entorhinal cortex, temporal neocortex, anterior
cingulate gyrus, and the pre-frontal cortices (Irwin et al., 2012,
2013). Cortical LB burden has also been shown to predict dementia
onset and severity in DLB patients (Ruffmann et al., 2016; Ferman
et al., 2018). Studies of α-syn aggregates in animal models have
long raised the increasingly accepted concept of a prion-like ability
for aggregates to spread throughout the nervous system and even
from the periphery, although mechanisms of spread are an active
area of research (Luk et al., 2012; Masuda-Suzukake et al., 2013;
Kovacs et al., 2017; Henderson et al., 2019). Meticulous pathologic
analysis of the brains of PD patients, conducted by Braak and
others, have led to theories that PD pathogenesis may follow
a caudal-to-rostral pattern of spread in at least some patients
(Braak et al., 2003). In these patients, pathology was found to
start in the brainstem, spread to limbic, sub-cortical structures,
before eventually propagating to the cerebral cortex. In fact, the
original description of this abnormality by Lewy noted considerable
pathology in the basal forebrain, where cholinergic neurons project
to regions responsible for many cognitive functions (Lewy, 1913;
Bohnen and Albin, 2011) (Box 1). A challenge for modeling these
forms of human disease is thus to recreate where possible this
concept of pathology propagation in a manner that is consistent
with human observations.

1 Recent mass spectroscopy-based studies have shown that modified
α-syn with phosphorylation of serine residue 129 (pSyn) is the dominant
version of the protein within LBs and may in fact be responsible for
aggregation and pathogenesis in PDD and LBD.
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BOX 1 Definition of terms.
Dopaminergic Neurons: Neurons that produce dopamine as their
primary neurotransmitter, characterized by expression of tyrosine
hydroxylase (TH), dopamine transporter (DAT), GIRK2 (a G-Protein
coupled receptor), and others. These neurons are found in various
regions of the brain, including the substantia nigra and the ventral
tegmental area.
Cholinergic Neurons: Neurons that release acetylcholine (ACh) as
their primary neurotransmitter, characterized by expression of
choline acetyl-transferase (ChAT), acetylcholine esterase (AChE),
and others. While they are found throughout the brain, they are
typical of basal forebrain structures.
Cortical Neurons: Neurons located in the cerebral cortex, the outer
layer of the brain responsible for higher cognitive functions. Cortical
neurons are morphologically diverse and classified into various
types based on their structure, function, and connectivity within the
cortical circuitry.

Alzheimer’s disease co-pathology
The presence of concurrent AD-like pathology, extracellular

amyloid-β (Aβ) plaques and intracellular neurofibrillary
tau-tangles, are predictive of PDD (Kalaitzakis et al., 2008;
Compta et al., 2011) and LBD (Jellinger and Attems, 2008;
Gomperts, 2016). In fact, it is estimated that between one-quarter
and one-half of PDD patients have enough AD pathology to
meet post-mortem pathologic criteria for diagnosis (Mattila
et al., 1998; Galvin et al., 2006; Sabbagh et al., 2009). Some have
demonstrated that time onset to dementia in parkinsonian patients
is correlated with cortical deposition of both α-syn and Aβ (Ballard
et al., 2006). Both α-syn and AD-pathology are likely involved
in development of the Lewy-Body Dementia, possibly in an
additive or synergistic manner (Irwin et al., 2013; Ferman et al.,
2018).

Cholinergic degeneration
In addition to these pathologic hallmarks of neurodegeneration

in DLB and PDD, impairment of the brain’s cholinergic systems
may play a significant role in development of the diseases.
Specifically, cholinergic neurons of the basal forebrain (BF), which
have projections to the hippocampus, olfactory bulb, cortical
mantle, and amygdala, (Bohnen and Albin, 2011; Pasquini et al.,
2021) are implicated in PDD and DLB. Neurodegeneration of
BF cholinergic neurons (Arendt et al., 1983; Candy et al., 1983;
Nakano and Hirano, 1984; Braak et al., 2003) and their targets in
the hippocampus (Perry et al., 1994; Tiraboschi et al., 2002; Hall
et al., 2014) have been associated with PDD and DLB. This has
been supported by positron-emission tomography (PET) studies
revealing decrease in cortical cholinergic activity, (Asahina et al.,
1995; Bohnen et al., 2003; Hilker et al., 2005; Shimada et al., 2009;
Kanel et al., 2020) and the fact that acetylcholinesterase inhibitors,
which prevent acetylcholine degradation, have been shown to
improve cognitive outcomes in PDD and DLB (McKeith et al.,
2000; Reading et al., 2001; Bergman and Lerner, 2002; Fabbrini
et al., 2002; Giladi et al., 2003; Beversdorf et al., 2004; Dujardin
et al., 2006; van Laar et al., 2011; Dubois et al., 2012; Mori et al.,
2012; Wang et al., 2015). While the exact relationship between
cholinergic neurodegeneration and the other neuropathologic
findings of Lewy Body Dementia is unknown, there is likely
a complex interplay of factors resulting in the ultimate clinical
phenotype.

PDD-DLB pathologic discrepancies
While there is certainly overlap in the pathology seen in

PDD and DLB, subtle differences may explain the disparities
in cognitive and overall clinical presentation. There is less
nigral neurodegeneration in DLB patients compared to PDD
patients, which may explain the motor differences seen between
the disorders (Tsuboi and Dickson, 2005). Compared with
PDD patients, DLB patients have higher α-syn burden in the
hippocampus and amygdala (Kalaitzakis et al., 2009; Jellinger and
Korczyn, 2018). Additionally, DLB patients have an increase in
cortical and subcortical Aβ when compared to PDD patients,
specifically with increased Aβ load in the entorhinal cortex,
amygdala, and putamen (Hepp et al., 2016). DLB patients also have
higher amounts of cortical atrophy compared to PDD patients,
most notably in the temporal, parietal, and occipital lobes (Beyer
et al., 2007). Collectively, these may account for the cognitive
differences seen between patients with PDD and DLB. These
findings also emphasize the challenges faced when attempting
to model cognitive dysfunction from synucleiopathies in animal
models, since not only must the specific mechanism of generating
α-syn pathology be considered but also co-pathologies can be
critical to the models and may differ in consequences depending
upon both levels of expression and location of expression within
specific brain regions.

Part II: toward animal models of
synucleinopathies

Cognitive testing in rodents

Any attempt to model cognitive decline first requires thorough
evaluation and validation of behavioral paradigms. The most
commonly used tests for gauging cognitive ability in rodents
include the Y-maze, the novel object recognition (NOR) test, the
Morris Water Maze (MWM), and fear conditioning (Taylor et al.,
2010; Tanila, 2018). In the Y-maze, animals are allowed to freely
explore a three-armed maze. An unimpaired animal’s inclination to
explore novel areas results in a tendency for alternation between the
maze’s arms, while an animal with short-term memory impairment
would explore the arms of the maze in an uneven manner. In the
NOR test, an animal’s tendency to explore unfamiliar objects is
again evaluated. The time spent examining a novel object compared
to a familiar one is measured over 2 days. Therefore the NOR test
can be used as a measure of both short- and long-term memory. In
the MWM, animals are trained to find a hidden platform in a pool
of water using visual cues. With extended training, a cognitively
unimpaired animal would display a decrease in the latency to find
the platform and an increase in the time spent around the platform.
The MWM is accepted as a measure of spatial-visual memory.2 In
fear conditioning, animals are conditioned to associate a neutral
stimulus with an aversive stimulus. The development, persistence
in a new context and unlearning of the conditioned fear response

2 The Barnes maze test is a similar test of spatial memory and navigation,
though involves a circular platform with several holes, one of which leads to
escape from an elevated platform.
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TABLE 1 Representative human clinical and animal behavioral tests for
various cognitive impairments in Lewy Body Dementia.

Clinical
deficit

Example human
clinical test

Example animal
behavioral test

Executive
Function

Stroop Interference Test;
(Watson and Leverenz,
2010; Park et al., 2011)
Tower of London Test
(Kalaitzakis et al., 2009)

Motor sequence learning

Task Planning Tower of London Test
(Weintraub et al., 2005;
Watson and Leverenz, 2010)

Goal-directed behavior
tests

Attention Trail Making Test (Watson
and Leverenz, 2010);
Letter/number sorting task
(Kalbe et al., 2008)

–

Concentration Naming months backward
(Pagonabarraga et al., 2010)

–

Memory
Retrieval

Word Pair Association
Learning Task (Kalbe et al.,
2008)

MWM; NOR; Fear
conditioning

Memory
Encoding

Selective reminding test
(Chiaravalloti et al., 2014)

NOR; Fear conditioning

Visuospatial
Ability

Clock drawing test
(Pagonabarraga et al., 2010)

MWM

MWM, Morris Water Maze; NOR, Novel Object Recognition.

can all be measured. The facets of cognition that these tests measure
and their clinical counterparts are listed in Table 1.

Besides the technical challenge in performing these tests,
the tests themselves may not be specific to cognitive ability.
For example, the Y-maze, MWM, and NOR can be skewed by
visual or olfactory dysfunction. Additionally, the MWM and fear
conditioning are heavily influenced by an animal’s sensitivity to
aversive stimuli and anxiety, which can be heavily affected by
pathology in the limbic system, a region known to be affected in
synucleinopathies. Furthermore, these tests rely on movement of
animals in a behavioral context due to the inability to communicate
with rodents, so any motor deficits could confound interpretation
of cognitive dysfunction in these models. Finally, many cognitive
tests can only be performed once and so choosing a time where
the cognitive impairment will be detectable is critical. The order in
which cognitive tests are performed also matters, as stress-inducing
tests can confound subsequent performance (Rodriguiz and Wetsel,
2006). As such, it may be difficult to assess the order of symptom
development as compared to humans.

Modeling aspects of lewy body dementia
in rodents

When it comes to modeling synucleinopathy in rodents, the
two aspects of the disease primarily focused on are the loss of
dopaminergic innervation in the midbrain and the progressive
accumulation of both α-syn and pSyn. To replicate these
fundamental pathologic features, researchers have undertaken a
multitude of innovative approaches.

Toxin models
To date, the most efficient way of achieving dopaminergic

denervation is through the use of the catecholaminergic
selective toxins MPTP and 6-hydroxydopamine (6-OHDA).
When administered systemically (MPTP) or intracerebrally (6-
OHDA), these toxins cause an accumulation of oxidative species
resulting in death of dopaminergic neurons. While not involving
Lewy pathology specifically, due to their selective targeting of
the dopaminergic pathway, these models capture the motor
impairments associated with midbrain degeneration well. Toxin-
treated mice fail to remain on the rotarod as long as their sham
treated littermates and display amphetamine desensitization. When
6-OHDA is injected unilaterally, mice display rotation behaviors
as an effect of the asymmetric burden of neurodegeneration. These
toxin models are also useful in understanding the contribution
of the nigro-striatal dopaminergic pathway to cognition. While
both models have been shown to induce deficits in memory and
attention, there is some evidence that MPTP is better at impairing
short-term memory, and that 6-OHDA primarily affects long-term
memory (Fan et al., 2021). One drawback to these models, however,
is that the cognitive impairment induced by the toxins is not stable
long-term, with animals showing recovery a few months post
injection (p.i.) (Bezard et al., 2000; Fan et al., 2021). This could
indicate the measured cognitive decline is related to the brain’s
inflammatory response rather than the neurodegeneration itself. In
a rotenone study, depleting or inactivating microglia (with PLX397
or minocycline, respectively) attenuated the cognitive impairments
as measured by the MWM, NOR, and passive avoidance tests. The
microglial inhibition however, also attenuated the pSyn pathology
and neuronal loss, making it difficult to ascertain whether the
neuroinflammation itself caused the impairment (Zhang D. et al.,
2021). In contrast, inducing neuroinflammation in wildtype mice
by systemic administration of lipopoylysaccharide (LPS), activates
microglia and causes hippocampal neuronal loss as well as sickness
behavior and impairments in the MWM and passive avoidance
tests (Zhao et al., 2019).

Viral vector models
Viral vector-mediated overexpression of SNCA, the gene coding

for α-syn, has been shown to result in a local, progressive
accumulation of the protein and severe neurotoxicity around the
area of injection (Huntington and Srinivasan, 2021). The use of
viral vectors to stably overexpress the protein allows for control
of the types of cells affected and the degree of pathology by
modulating the injection site, serotype, volume and titre of virus
delivered as well as promoter and α-syn form (human vs mouse;
full-length vs truncated; wildtype vs mutated) expressed. Even
though these models have been reported to display cognitive and
motor impairments, (Fan et al., 2021) the focal overexpression,
the acute neurotoxicity, and the ensuing inflammatory response
are not thought to be representative of the neuropathology of
synucleinopathies (Volpicelli-Daley et al., 2016). These models
have therefore fallen out of favor in recent years. Nonetheless, if
the level of α-syn expression influences susceptibility to pathology
or co-pathologies, the viral model still can be attractive if dosing,
promoter strength or regulation and cell-type specificity can be
adjusted to specific applications.
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Transgenic models
In contrast, transgenic mouse models overexpressing some

form of SNCA, often display a time-dependent accumulation of α-
syn aggregates which more closely mimic the disease. These models
rarely achieve levels of neurodegeneration comparable to the toxin
models, but they do reflect a genetic form of human disease,
characterized by triplication or mutations of the SNCA gene leading
to overexpression and eventual pathogenesis. Depending on the
promoter and SNCA variant used, the spatial and neuropathologic
signature of the accumulation can be manipulated (Giasson et al.,
2002; Freichel et al., 2007; Zhou et al., 2008). The M83 line, which
overexpresses the human familial PD-associated A53T form of
SNCA under the control of the prion promoter, is one of the
most popular transgenic models of synucleinopathy (Giasson et al.,
2002). When bred homozygous, these mice develop severe motor
phenotypes such as trembling, limb paralysis and inability to stand.
Prior to motor symptom onset, which is typically described at 7–
8 months of age, these mice display diminished nesting behavior
and impaired spatial memory as tested by the Y-maze (Paumier
et al., 2013). These mice, however, accumulate α-syn in CNS regions
not typically associated with human synucleinopathy, such as the
cerebellum and the spinal cord, which may be explained by the use
of the prion promoter.

Another well characterized transgenic mouse line, line 61,
which overexpresses human full-length wild-type SNCA under
the control of the Thy-1 promoter, also displays progressive
accumulation of α-syn, with the highest fold increase described
in the thalamus when compared to wildtype littermates (Chesselet
et al., 2012). These mice display reduced motility in the open-field
test at 14-months of age, around which time a 40% decrease in
striatal TH levels are observed. Prior to motor symptom onset,
these mice display mild cognitive impairments as measured by the
Y-maze and NOR tests. Similar to many other transgenic mouse
models, these mice do not display TH cell loss in the nigra, even
at 22-months of age. Similarly, other Thy-1-asyn mice also display
cognitive impairments in the NOR (Subramaniam et al., 2018).

Another approach, in an effort to more closely mimic
accumulation of α-syn in relevant brain regions, is to overexpress
the human form of the protein under the control of the mouse’s
endogenous SNCA promoter, on either a wildtype (Hansen et al.,
2013) or mouse SNCA knockout background (Janezic et al.,
2013). These mice also display a progressive accumulation of α-
syn, very mild neurodegeneration, and progressive motor and
cognitive phenotypes starting at around 9-months of age. Besides
SNCA, other genes have been implicated in PD and LBD in
GWAS studies. Among the most commonly reported are PINK1
and LRRK2. PINK1 KO mice have been developed and though
they show impaired synaptic plasticity, (Kitada et al., 2007)
cognitive impairment hasn’t been as widely reported (Gispert
et al., 2009). LRRK2G2019S mice on the other hand, have
been reported to show impairments in executive function in
the touchscreen operant task tests (Cheng et al., 2022; Hussein
et al., 2022). A comprehensive review of transgenic models used
and the cognitive impairments reported can be found elsewhere
(Fan et al., 2021).

Preformed fibril models
A model that has been gaining popularity in recent years is

the preformed fibril (PFF) model, in which preformed fibrils of

human or mouse α-syn are injected into mice (Chung et al., 2019).
Alpha-synuclein can be recombinantly expressed and fibrillization
induced, commonly by shaking at 37◦C. The resulting α-syn fibrils
closely resemble those found in Lewy bodies when examined by
electron microscopy (Cremades et al., 2012; Marotta et al., 2021).
When added to cells or injected into animals, PFFs have been
shown to rapidly induce the templating of endogenous α-syn,
resulting in a spatio-temporally defined spread of α-syn aggregates
(Polinski et al., 2018). PFFs also cause neurotoxicity, with the
severity of the toxicity determined by the α-syn PFF ‘strain’
(Bousset et al., 2013) and cellular subtype, (Alegre-Abarrategui
et al., 2019) with nigral dopaminergic neurons showing particular
vulnerability. One main advantage of this model is that the targeted
pathways and the signature of α-syn pathology can be altered with
the injection site. As such, the contributions of different pathways
to behavioral deficits can be dissected. Summaries of the cognitive
impairments induced with PFF injections are listed in Figure 1 and
Table 2.

Striatum
Mice injected unilaterally in the striatum have been reported to

display impaired short-term memory as measured by the Y-maze
(Pan et al., 2022) and impaired long-term memory in the NOR
test, (Dauer Née Joppe et al., 2021) albeit several months p.i..
When injected bilaterally into the striatum, mouse PFFs have been
shown to induce accumulation of pSyn not only in the striato-nigral
pathway but also in connected areas such as the prefrontal cortex
and amygdala. Six months p.i., these mice have been reported
to display diminished social dominance and impairments in fear
conditioning in some (Stoyka et al., 2020) but not all studies
(Stoyka et al., 2021) despite a loss of tyrosine hydroxylase (TH)
immunoreactivity. The coordinates targeted within the striatum
may modulate the development of pathology, as mice injected in
the dorsolateral but not dorsomedial striatum showed impaired
learning even though both groups of mice displayed impaired
goal-directed behavior. When the substantia nigra was targeted,
impairments in sequence learning were already apparent at 1-
month p.i. (He et al., 2022). The NOR test and the Barnes maze
test (another spatial memory test) have been shown to detect
impairments in mice injected in the dorsal striatum as early as
60 days p.i., at which point the Y-maze did not. This cognitive
impairment was attributed to a decrease in septal GABAergic
neurons (Matsuo et al., 2021). This is surprising, as a previous
study suggested that the septo-hippocampal pathway was not
susceptible to pSyn accumulation post PFF injection into the
hippocampus (Luk et al., 2012). Interestingly, two other studies
have demonstrated a particular resistance of the (cholinergic)
medial septal, but not (GABAergic and glutamatergic) lateral septal
neurons to α-syn accumulation when PFFs were injected into the
hippocampus (Nouraei et al., 2018; Dues et al., 2023).

Hippocampus
Mice with PFFs injected bilaterally in the hippocampus

displayed pSyn accumulation near the site of injection, in the
dentate gyrus. Two months p.i., a reduction in Y-maze alteration
was described, which was attributed to aberrant adenosine A2A
receptor signaling, Hu et al. (2016) a pathway involved in both
glutamatergic and dopaminergic regulation (He et al., 2022).
Similarly, rats with bilateral hippocampal PFF injections displayed
accumulation of pSyn in the injected and connected areas with
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FIGURE 1

Summary of cognitive deficits elicited based on location of preformed fibril injection. MWM, Morris Water Maze; NOR, Novel Object Recognition.
Created with BioRender.com.

concomitant cognitive impairment detected by the two radial arm
water maze (a combination of the Y-maze and MWM), but not with
the MWM (Espa et al., 2019; Kasongo et al., 2020).

Cortex

Cortical structures have also been targeted with PFFs. Bilateral
injection of PFFs into the motor cortex induced impairment of
spatial memory as measured by MWM at 3-months p.i. After 6-
months, these same mice displayed impairment in memory as
measured by NOR (Boutros et al., 2021). While no habituation
was observed in the open field test, this may be explained by
hyperactivity, which has previously been reported in PD-mouse
models (Freichel et al., 2007). When PFFs were injected bilaterally
into the medial prefrontal cortex 6-months after AAV-induced
overexpression of human SNCA in the medial prefrontal cortex,
ventral tegmental area, and basal forebrain, pSyn accumulation
was induced not only in the PFF-injected areas, but also in the
striatum, substantia nigra, and entorhinal cortex. Six months after
the PFF injections, however, the mice displayed no differences
in interval timing compared to controls. Although it seemed the
PFF injected mice displayed a slight decrease in mobility and
discrimination in the open field and NOR tests, respectively,
these differences did not reach statistical significance (Zhang Q.
et al., 2021). Six months after human PFFs were unilaterally
injected into the right somatosensory cortex and dorsal striatum,
mice displayed cognitive impairments as measured by the MWM
(Huang et al., 2023). In contrast, pSyn in the hippocampus and
frontal cortex induced by a unilateral injection of PFFs in the
medial forebrain bundle in rats did not result in a measurable
cognitive impairment in the MWM up to 120 days p.i. (Pang et al.,
2022).

Peripheral injections

In an attempt to model a “body first” synucleinopathy,
mouse PFFs injected in the gut have been shown to produce a
progressive, caudal-rostral accumulation of pSyn in the brainstem,

cortex, hippocampus and striatum (Kim et al., 2019). This was
accompanied by cognitive impairments as measured by the MWM,
Y-maze, NOR, and step-through passive-avoidance test 7-months
p.i.

Alpha-synuclein co-pathologies
Considering the prevalence of co-pathology in patients, another

strategy for PFF-induction of synucleinopathy is the use of α-
syn PFFs in Aβ, tau, or APOE mouse models. Injecting A53T
PFFs unilaterally into the right frontal cortex has been shown
to improve the spatial memory deficits observed in APP/PS1
mice with Aβ accumulation. Surprisingly, in that same study,
wildtype mice injected with the PFFs also showed a statistically
significant improvement in the MWM compared to PBS-injected
controls (Hao et al., 2018). In contrast, in a study using a
different model of Aβ pathology, 5xFAD mice injected unilaterally
in the hippocampus with mouse α-syn PFFs displayed cognitive
impairment, as measured by the Y-maze, starting at 3-months
p.i. and continued to worsen over time. These mice showed a
progressive increase in pSyn accumulation compared to wildtype
mice injected with the PFFs. While the pSyn was primarily
contained to the hippocampus, hypothalamus, and cortex at 9-
months p.i. in wildtype mice, the pSyn load was already ubiquitous
throughout the brain at 4.5-months p.i. in the 5xFAD mice.
The PFF injected 5xFAD mice also displayed an increase Aβ

and hyperphosphorylated tau burden compared to PBS injected
5xFAD mice (Bassil et al., 2020). Even though tau has been
shown to co-localize with α-syn at presynaptic terminals, there
have been conflicting reports on the neuroprotective effects
of knocking out tau in the PFF model (Stoyka et al., 2021;
Pan et al., 2022) with one study suggesting a unidirectional
relationship with α-syn as a modulator of tau pathology (Bassil
et al., 2020). In the A53T transgenic model, knocking out tau
not only reduced neuronal loss but attenuated the memory
deficits associated with the model (Singh et al., 2019). Both
phosphorylated tau and pSyn have been shown to be upregulated
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TABLE 2 Summary of conditions and cognitive impairments in rodent preformed fibril models.

Brain Region Species Laterality Coordinates PFF Strain Test Time p.i. Result Reference

Striatum Mouse Unilateral AP: +0.2 mm, ML: +2.0
mm, DV :- 2.8mm

5 µg human α-syn Y-maze 6-months + Pan et al., 2022

Striatum Mouse (prenatal brain iron
enrichment study, not
significant if only 0 µg iron
groups analyzed)

Unilateral AP: +0.4 mm, ML: -1.8
mm, DV: -3.5 mm

5 µg human α-syn NOR 3-months + Dauer Née Joppe et al., 2021

Striatum Mouse Bilateral AP : +0.2 mm ML : ±2.0
mm DV : -2.6 mm

2 µl/side 300 µM mouse
α-syn

Tube test 6-months + Stoyka et al., 2020

Fear conditioning 6-months +

Striatum Mouse Bilateral AP : +1.0 mm ML : ±2.0
mm DV : -2.6 mm

2 µl/side 300 µM mouse
α-syn

Fear conditioning 6-months - Stoyka et al., 2021

Striatum
(dorsolateral)

Mouse Bilateral AP: +0.98 mm ML: ±2.2
mm DV: -2.6 mm

5 µg/side A53T human
α-syn

Satiety-based instrumental
training paradigms

3-months + He et al., 2022

Motor sequence learning +

Striatum
(dorsomedial)

AP: +0.98 mm ML: ±1.2
mm DV: -2.5 mm

5 µg/side A53T human
α-syn

Satiety-based instrumental
training paradigms

3-months +

Motor sequence learning -

Nigra AP: -3.16 mm ML:
±1.25mm DV: -4.0 mm

5 µg/side A53T human
α-syn

Satiety-based instrumental
training paradigms

1-month +

Motor sequence learning +

Striatum Mouse Bilateral AP: +0.8 mm ML: +2.0
mm DV: +2.6 mm

5 µg/side human
ATTO550-α-syn

Y-maze 1-month - Matsuo et al., 2021

NOR 1-month +

Barnes maze 2-months +

Passive avoidance step-through 2-months +

Hippocampus Mouse Bilateral AP: -2.2 mm ML: ±1.5
mm DV: -2.3 mm

5 µg/side A53T human
α-syn

Y-maze 2-months + Hu et al., 2016

Hippocampus Rat Bilateral AP: –3.6 mm ML = ±1.8
mm DV : –3.6 mm

7.5 µg/side mouse α-syn MWM 3- and 12-
months

- Kasongo et al., 2020

2-radial arm water maze 12-months +
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TABLE 2 (Continued)

Brain Region Species Laterality Coordinates PFF Strain Test Time p.i. Result Reference

Cortex (motor) Mouse Bilateral AP: –1.0 mm ML: ±1.5
mm DV: -0.3 mm

5 µg/side mouse α-syn MWM 3-months + Boutros et al., 2021

NOR 6-months +

Cortex (medial
prefrontal)

Mouse Bilateral AP: +1.8 mm ML: ± 0.5
mm DV: -1.8 mm

10 µg/ side human α-syn
& AAV-SNCA in medial
prefrontal cortex & VTA
& basal forebrain

interval timing 6-months - Zhang Q. et al., 2021

Cortex
(somatosensory) &
Striatum

Mouse Unilateral AP: +0.26 mm ML : +2.0
mm
DV: - 1.5 mm & -3.0 mm

5 µg human α-syn (total) MWM 6-months + Huang et al., 2023

Medial Forebrain
Bundle

Rat Unilateral AP: +4.0mm, ML: +1.2
mm DV: +7.5 mm (below
dura)

30 µg MWM 4-months - Pang et al., 2022

Pyloric Stomach and
Duodenum

Mouse - - 25 µg mouse α-syn MWM 7-months + Kim et al., 2019

Y-maze 7-months +

NOR 7-months +

Step-through passive avoidance 7-months +

AP, Anterior-posterior; ML, Medial-lateral; DV, Dorsal-ventral; AAV, Adeno-associated virus; SNCA, α-synuclein gene; VTA, Ventral tegmental area;MWM, Morris Water Maze; NOR, Novel Object Recognition; p.i., Post injection; PFF, Preformed fibrils, PFF.
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in the MPTP model of neurodegeneration (Hu et al., 2020).
Finally, two separate studies have demonstrated a modulatory
effect of APOE genotype on α-syn pathology. While APOE2
showed a neuroprotective effect compared to APOE3 and even
APOE KO, APOE4 exacerbated α-syn pathology burden, both in
the A53T mouse (Davis et al., 2020) and in the AAV-induced
overexpression model (Zhao et al., 2020). The α-syn APOE4 mice
also demonstrated a faster cognitive decline compared to the other
APOE genotypes.

Confounding factors and potential explanations
of discrepancies

The discrepancies in results between studies may be attributed
to one of several factors. The strain of PFFs used, which is
dictated by the aggregating conditions and specific α-syn variant
(mouse vs human, wildtype vs familial-associated point-mutations
(A53T, A30P, etc.), may influence outcome. Although many groups
use the same behavioral tests, the protocols for these tests (for
instance, whether they are performed during the light or dark
cycle) and therefore also the readouts vary between groups.
The number and sex of animals used also affects whether any
potential impairment reaches statistical significance, which in turn
affects how differences in behavior are reported. Additionally,
the timepoint at which the cognitive behaviors are evaluated can
influence what is observed. If a late timepoint is used, many areas
of the brain may be burdened with pSyn and as such conclusions
about the studied pathway can be confounded. If an early timepoint
is used, however, the pSyn pathology may be restricted to the
area of injection and closely connected pathways, but the acute
inflammation accompanying the injections may confound any
observed cognitive impairment. While cholinergic pathology is
thought to underlie cognitive impairments in humans, many mouse
models have failed to recapitulate cholinergic degeneration in
mice. This could be due to the key differences in cholinergic
neurons in terms of distribution, functionality and structural
roles in rodents as compared to primates (Disney and Robert,
2019). Acute systemic inflammation is known to cause reversible
cognitive impairments (Skelly et al., 2019) but inflammation has
also been suggested as a key driver in α-syn pathology (Kim et al.,
2022).

Conclusion

In this review, we have explored the clinical manifestations
and underlying pathologic mechanisms of Lewy Body Dementia,
encompassing both Parkinson’s Disease Dementia and Dementia
with Lewy Bodies. Additionally, we have assessed the different
strategies by which researchers have attempted to emulate the
cognitive deficits of these diseases in animal models. The cognitive
decline in Lewy Body Dementia emerges from a complex
interplay of α-syn propagation, concomitant AD-like Aβ and tau
pathology, and loss of neurotransmitter tone, which may work
in an additive or synergistic manner. While these pathologic
hallmarks are diffuse by the time cognitive decline becomes
evident, careful investigations highlight pivotal regions that drive
the progression to dementia, including the pre-frontal cortex,
temporal neo-cortex, hippocampus, and cholinergic neurons of the
basal forebrain.

While the discrepancies in reported pathology in the different
animal models pose challenges to researchers, it is important
to remember that the symptomatology of PDD and LBD
patients can also vary widely. An enhanced understanding of the
pathophysiology of these diseases as well as the now large repertoire
of animal models available to researchers should aide in developing
breakthrough treatments if used correctly. Improved testing will
also be key in elucidating relevant cognitive impairments and
potential therapies for them. Tests for higher executive cognitive
function, such as attentional set shifting tasks and odor span tasks,
have not been routinely performed but would be interesting in light
of the specific executive dysfuntion seen in patients.

As of now, there is no ultimate animal model—the choice
to be made depends on the question to be answered with each
model having a unique profile. The tools to study these challenging
disorders continue to evolve, and the emergence of multiple
hit models offer the promise to better replicate PDD and LBD
pathology in a near-physiologic manner.
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