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Introduction: Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder. Current core cerebrospinal fluid (CSF) AD biomarkers, widely employed

for diagnosis, require a lumbar puncture to be performed, making them

impractical as screening tools. Considering the role of sleep disturbances

in AD, recent research suggests quantitative sleep electroencephalography

features as potential non-invasive biomarkers of AD pathology. However,

quantitative analysis of comprehensive polysomnography (PSG) signals remains

relatively understudied. PSG is a non-invasive test enabling qualitative and

quantitative analysis of a wide range of parameters, o�ering additional

insights alongside other biomarkers. Machine Learning (ML) gained interest

for its ability to discern intricate patterns within complex datasets, o�ering

promise in AD neuropathology detection. Therefore, this study aims to

evaluate the e�ectiveness of a multimodal ML approach in predicting core AD

CSF biomarkers.

Methods: Mild-moderate AD patients were prospectively recruited for PSG,

followed by testing of CSF and blood samples for biomarkers. PSG signals

underwent preprocessing to extract non-linear, time domain and frequency

domain statistics quantitative features. Multiple ML algorithms were trained

using four subsets of input features: clinical variables (CLINVAR), conventional

PSG parameters (SLEEPVAR), quantitative PSG signal features (PSGVAR) and a

combination of all subsets (ALL). Cross-validation techniques were employed

to evaluate model performance and ensure generalizability. Regression models

were developed to determine the most e�ective variable combinations for

explaining variance in the biomarkers.

Results: On 49 subjects, Gradient Boosting Regressors achieved the best results

in estimating biomarkers levels, using di�erent loss functions for each biomarker:

least absolute deviation (LAD) for the Aβ42, least squares (LS) for p-tau and Huber

for t-tau. The ALL subset demonstrated the lowest training errors for all three

biomarkers, albeit with varying test performance. Specifically, the SLEEPVAR

subset yielded the best test performance in predicting Aβ42, while the ALL

subset most accurately predicted p-tau and t-tau due to the lowest test errors.
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Conclusions: Multimodal ML can help predict the outcome of CSF biomarkers

in early AD by utilizing non-invasive and economically feasible variables. The

integration of computational models into medical practice o�ers a promising

tool for the screening of patients at risk of AD, potentially guiding clinical

decisions.

KEYWORDS

Alzheimer’s disease, neurodegeneration, biomechanism, diagnosis, therapeutic target,

quantitative polysomnographic signal analysis, CSF biomarkers, Machine Learning

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that
severely affects cognitive function (Masters et al., 2015). Current
statistics on AD paint a concerning picture, with epidemiological
forecasts suggesting that by 2060, one in three individuals over
the age of 85 in the United States will be affected by the
disease (Rajan et al., 2021). AD typically begins to develop in
the elderly population a decade or more before clinical diagnosis
(Villemagne et al., 2013). This asymptomatic stage is followed
by a prodromal phase—or Mild Cognitive impairment (MCI)
due to AD—characterized by preserved baseline functionality
despite cognitive decline, which precedes the onset of established
dementia (Masters et al., 2015). Traditionally, a definitive diagnosis
of AD is established post-mortem via histological examination,
revealing the hallmark neuropathological features of the disease,
such as extracellular amyloid plaques and neurofibrillary tangles
(Masters et al., 2015; Jack et al., 2018). Remarkably, emerging
evidence strongly correlates CSF amyloidβ (Aβ42), phospho-tau
(p-tau), total-tau (t-tau) levels and AD neuropathological lesions,
establishing CSF biomarkers as critical for early AD detection
with high diagnostic accuracy (Masters et al., 2015; Jack et al.,
2018). It is known that AD progresses through multiple stages
characterized by neuropathological advancements throughout the
brain, with amyloid pathology preceding tau pathology, followed
by neurodegeneration (Jack et al., 2018). In this context, the
National Institute on Aging and Alzheimer’s Association (NIA-
AA) guidelines introduced in the year 2018 the AT(N) criteria
based on core fluid and neuroimaging biomarkers (Jack et al.,
2018), thus redefining the concept of the “Alzheimer’s continuum”
to represent the biological as well as the clinical progression of
the disease. This paradigm shift arises from evidence indicating
that the AD continuum encompasses a prolonged asymptomatic
phase characterized by sequential alterations in biomarkers (Aisen
et al., 2017; Jack et al., 2018). Biomarkers are grouped into three
categories based on the pathologic processes each one measures,
encompassing amyloid deposition (A), tau aggregates (T), and
neurodegeneration (N), with CSF Aβ42 and amyloid PET for
amyloid pathology (A); CSF p-tau and tau-PET of tau pathology
(T); atrophy in MRI, hypometabolism in FDG-PET, and CSF t-tau
for neurodegeneration (N; Jack et al., 2018). The AT(N) framework,
relying solely on CSF biomarkers, has shown 85–90% sensitivity
and specificity for AD, with combined assessments yielding greater
diagnostic accuracy than individual CSF markers (Grøntvedt et al.,

2020). Moreover, this approach is more cost-effective compared to
imaging biomarkers (Contador et al., 2023).

While neurodegeneration in AD is irreversible and lacks
definitive treatment (Conti Filho et al., 2023), early diagnosis can
enhance prognosis and improve disease management (Crous-
Bou et al., 2017). Consequently, primary intervention strategies
now focus on modifiable risk factors such as cardiovascular
health and lifestyle choices (Crous-Bou et al., 2017). Notably,
recent research has highlighted a history of disrupted sleep,
reported years before the onset of cognitive impairment, as a
potentially modifiable risk factor for AD (Macedo et al., 2017).
Sleep disturbances are connected to cognitive dysfunction and
AD pathogenesis, including the accumulation of amyloid proteins
and tau phosphorylation (Ahmadian et al., 2018). Chronic
partial sleep restriction in rodents has demonstrated an increase
in Aβ deposition. The mechanism behind this phenomenon
may involve reduced interstitial fluid volume during sleep
deprivation, potentially hindering Aβ clearance (Insel et al., 2021).
Additionally, acute sleep deprivation in humans has been shown to
elevate overnight CSF Aβ levels by 25–30% compared to sleeping
controls (Lucey et al., 2018). Loss of slow-wave sleep (SWS) due
to partial sleep deprivation has been associated with an acute
increase in next-morning CSF Aβ levels (Ju et al., 2017). It is
believed that SWS plays a critical role in Aβ turnover, potentially
due to increased glymphatic system activity in the brain during
this stage (Mander et al., 2015). On the other hand, concerning
tau pathology, cerebrospinal fluid tau levels increased by over
50% following sleep deprivation (Holth et al., 2019). Furthermore,
chronic sleep deficiency over 2 months has been linked to a
more than 50% increase in insoluble tau in the brains of AD
patients (Nunomura et al., 2001). These findings suggest that the
sleep-wake cycle plays a crucial role in regulating tau levels in
the brain, with sleep deprivation contributing to elevated cerebral
tau and its pathological spread (Holth et al., 2019). Moreover,
a meta-analysis has determined that patients with Obstructive
Sleep Apnea (OSA) have double the risk of cognitive decline
and/or AD compared to individuals without OSA (Bubu et al.,
2017). Additionally, multiple studies support the hypothesis that
the relationship between these conditions could be bidirectional
and may manifest before the clinical signs of AD become
apparent (Yaffe et al., 2011). Thus, identifying markers for sleep
disturbances in early AD stages could pave the way for developing
preventive strategies targeting neurodegeneration through
sleep intervention.
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Therefore, the challenge of diagnosing AD in its initial phases is
significant, necessitating the discovery of early biomarkers. Recent
studies affirm that core CSF biomarkers can identify preclinical AD
in asymptomatic individuals (Sabbagh and DeCourt, 2023), predict
progression to MCI, and distinguish AD from other dementias
(Hampel et al., 2004; De Leon et al., 2006). This underscores their
potential utility in clinical settings for diagnosing preclinical AD,
although currently core CSF AD biomarkers are not widely utilized
in clinical practice for these purposes (Sabbagh and DeCourt,
2023). Nevertheless, CSF collection requires a lumbar puncture,
an invasive procedure with contraindications for some individuals,
such as those on anticoagulant therapy (Kim, 2022). Additionally,
determining CSF biomarkers necessitates high-cost enzyme-linked
immunosorbent assay (ELISA) methods using specific antibodies
(Dakterzada et al., 2021). Thus, despite their diagnostic value,
these techniques may limit the feasibility of widespread screening,
highlighting the need for less invasive diagnostic methods.

In this regard, past studies have proposed that
electroencephalography (EEG) metrics may serve as predictive,
non-invasive biomarkers of AD (Babiloni et al., 2010). These
studies typically focus on analyzing awake resting-state EEG
signals for spectral content, complexity, and synchronization
(Gallego-Jutglá et al., 2015). Notably, certain EEG spectral power
profiles have been associated with traditional CSF biomarkers
in the early stages of AD (Chino-Vilca et al., 2022). Researchers
have increasingly shown interest in analyzing sleep EEG. EEG
changes associated with AD during sleep, such as REM sleep
slowing, reduced spindle and K-complex amplitude and duration
and disrupted slow-wave activity (SWA) during NREM sleep are
well-documented (Petit et al., 2004). Some of these alterations
were intriguingly linked to tau and amyloid protein accumulation
(Winer et al., 2019).

In recent years, advances in computational neuroscience have
been applied to the sleep EEG signal analysis in AD, based
on quantitative EEG (qEEG) feature extraction using diverse
algorithms (Geng et al., 2022; Azami et al., 2023). Notably, a
seminal study demonstrated that specific qEEG measures during
sleep could distinguish AD dementia patients from those with
MCI and healthy controls (HC), identifying these measures and
potential electrophysiological biomarkers of AD (Azami et al.,
2023). However, despite the acknowledged impact of sleep on
AD neuropathology (Yaffe et al., 2011; Ahmadian et al., 2018),
few studies extend these methods to polysomnography (PSG;
Khosroazad et al., 2023). PSG is a non-invasive examination that
allows for both qualitative and quantitative assessment of various
parameters (Berry et al., 2015), thus potentially offering additional
insights alongside other biomarkers. Given the complex nature of
AD, it is becoming increasingly clear that relying on a single type of
biomarker may not suffice for accurate diagnosis.

Consequently, a multimodal approach that incorporates
various categories of data is needed and Machine Learning (ML)
technologies could address these challenges (Borhani et al., 2022).
ML is a subset of artificial intelligence, employing algorithms
to parse data and uncover underlying insights. Unlike classical
statistical methods, where the focus is on predetermined data
patterns, ML enables computational models to identify and learn
from data patterns that may otherwise go unnoticed (Bzdok et al.,

2018). Additionally, recent advancements in artificial intelligence
have made the analysis of large, multimodal datasets not only
more efficient but also more clinically relevant (Obermeyer
and Emanuel, 2016). Therefore, ML models hold promise in
sleep medicine, where vast amounts of electrophysiological
data are generated during PSG recordings (Obermeyer and
Emanuel, 2016; Khosroazad et al., 2023). This innovative approach
has been applied in AD research for diagnosis, progression
prediction or neurodegeneration detection, integrating various
potential biomarkers such as clinical and neuroimaging data,
neuropsychological test results and rest EEG spectral features
(Bandyopadhyay and Goldstein, 2023). Nevertheless, models that
incorporate sleep-related variables to detect AD neuropathology at
an early stage of the disease have not yet been fully explored.

Based on these considerations, we hypothesize that ML
techniques could enable us to identify, within a mild-moderate
AD population, a specific array of diverse non-invasive variables—
including those related to sleep—as potential indicators of AD
neuropathology. Our research is thus directed at developing
a multimodal ML model to serve as an early diagnostic
tool that can accurately and non-invasively predict levels of
CSF AD core biomarkers. This is critical for identifying AD-
specific neuropathological changes and providing novel insights
for a non-invasive clinical protocol to monitor AD-related
neuropathology. To this end, we will train various ML models
incorporating different subsets of non-invasive variables. These
include conventional PSG parameters, quantitative PSG signal
features and a range of clinical variables related to AD
pathogenesis, such as comorbidities, sociodemographic, and sleep-
related information.

2 Materials and methods

Figure 1 presents a flowchart outlining the study methodology
and the ML analysis process for predicting CSF biomarkers.

2.1 Study population

We performed an additional analysis based on the longitudinal
study NCT02814045, which monitored cognitive progression
in a cohort with mild-moderate AD. The study adhered to
the principles of the Declaration of Helsinki and received
approval from the ethics committee of Hospital Arnau de
Vilanova de Lleida (CE-1218). From 2014 to 2018, the Cognitive
Disorders Unit at Hospital Universitari Santa Maria (Lleida,
Spain) systematically enrolled patients who were over 60 years
old, drug naïve and diagnosed with mild-moderate AD. The
diagnosis of AD was formulated according to clinical criteria
established by the National Institute of Aging Alzheimer’s
Association (NIA-AA) guidelines (McKhann et al., 2011). We
employed the Mini-Mental State Examination (MMSE) tests
to assess the severity of cognitive impairment. Exclusively
patients exhibiting MMSE ≥ 20 were included (Folstein et al.,
1975; Perneczky et al., 2006; Lanctôt et al., 2024). Consent
for participation was obtained from the patients themselves,
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FIGURE 1

Flowchart of the proposed methodology for biomarker prediction. Our biomarkers are the concentration of Aβ42, t-tau, and p-tau proteins present

in the cerebrospinal fluid. The main steps of the proposed methodology are signal processing, feature extraction, dimensionality reduction, and the

prediction of biomarker levels using Machine Learning (ML) models. ALL, all the subsets combined; CLINVAR, clinical variables; KNN-R, k-nearest

neighbors; SLEEPVAR, conventional PSG parameters; PSG, polysomnography; PSGVAR, quantitative PSG signal measures.

their responsible caregivers, or legal guardians. Exclusion
criteria were set to omit individuals with any condition that
could interfere with adherence to the study protocols. These
exclusion criteria included the presence of sleep disorders,
unexplained daytime sleepiness; severe organic or psychiatric
conditions, alcohol consumption exceeding 280 g/week; significant
central nervous system disease other than AD; untreated
deficiencies in vitamin B12 or folate, and untreated thyroid
disease. Furthermore, patients who had taken medications such
as neuroleptics, hypnotics, antidepressants, or beta-blockers
within 15 days before actigraphy were also excluded from
the study. Eligible patients underwent thorough overnight
PSG assessments. Subsequently, CSF and blood samples were
collected the following morning to evaluate biomarker levels.
We gathered anthropometric and clinical data including
age, gender, body mass index, cardiovascular risk factors,
years of education, and toxic habits. Daytime sleepiness was
measured using the Epworth sleepiness Scale (ESS), with a
score greater than 10 indicating excessive drowsiness (Bzdok
et al., 2018). Supplementary Table 1 provides a detailed
listing of the sociodemographic, anthropometric, and clinical
characteristics collected.

2.2 Cerebrospinal fluid biomarkers and
ApoE genotyping

CSF samples obtained via lumbar puncture and amounting
to 8–10 mL, were centrifuged at low speed (2,000 x g for 10
min at 4◦C) to pellet any cellular elements. They were then
aliquoted in polypropylene tubes before being frozen and stored at
−80◦C. The samples were then processed for biomarker analysis.
Concentrations of CSF t-tau, threonine 181 p-tau, and Aβ42
were determined using enzyme-linked immunosorbent assays
(Innotest R©, Fujirebio, Belgium), as directed by the manufacturer.
All samples were tested in duplicate, and the results were given
in parts per million (pg/ml). IRBLleida Biobank (B.0000682)
and Plataforma Biobancos PT17/0015/0027 facilitated the sample
collection process. The Aβ42 cut-off values were 600 pg/ml, with
values below this suggesting amyloid deposition. The cut-off values
for t-tau and p-tau were set at 425 and 65 pg/ml, respectively. Values
exceeding these cut-offs indicated the presence of neurofibrillary
tangles. Concurrent with the CSF collection, blood samples were
drawn, processed immediately for analysis, and examined.

The ApoE genotype was determined using a Maxwell R© RCS
blood DNA kit (Promega, USA) and 20 µL of DNA from a 2 mL
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peripheral blood sample. Participants were categorized as either
homozygous or heterozygous carriers of the ApoE4 allele (noted
as ApoE4+), with phenotypes 2/4, 3/4, or non-carriers (noted as
ApoE4-), with phenotypes 2/2, 2/3, and 3/3.

2.3 Polysomnography

Overnight supervised PSG recordings were performed using
Philips Respironics Alice 6 equipment to determine sleep
parameters. The methodology for sleep recording, technical
specifications, and manual grading of raw data was established in
accordance with published standards (Berry et al., 2015). The PSG
study included the simultaneous recordings from the following
electrophysiologic channels: six electroencephalograms (EEG)
leads (F3-A2/F4-A1; C3-A2/C4-A1; O2-A1/O1-A2), two bilateral
electrooculographic leads (EOG), a single chin electromyogram
(EMG) channel, sensors for chest and abdominal respiratory
effort, airflow measurements (obtained through both an oral
and nasal thermocouple and nasal pressure records), pulse
oximetry, an electrocardiogram (ECG), body position sensor, a
snoring detection microphone and bilateral piezoelectric sensors
detect leg movement detection. Experts manually scored the raw
data, extracting sleep and respiratory parameters in line with
the established literature (Berry et al., 2015). The physicians’
annotations included details on any artifacts observed during
the recordings. Measures of sleep quality were determined and
included total sleep time (TST), sleep efficiency (SE)—calculated
as the percentage of TST relative to the time spent in bed (TIB)—
and arousal index (AI), defined as the total number of arousals per
hour of sleep. Apneas were identified using an oronasal thermal
sensor and defined as a reduction in the airflow sensor signal by
90% when compared to the pre-event baseline value for more than
10 s. Hypopneas were recognized as a decrease of at least 30% in
airflow, as measured by nasal pressure, persisting for over 10 s, and
associated with either arousal or a 3% decrease in oxygen saturation
from the pre-event baseline. The apnea–hypopnea index (AHI) was
defined as the average number of apnea and hypopnea episodes per
hour of TST. The oxygen desaturation index (ODI) is the average
number of instances per hour of sleep where oxygen saturation
decreases by 3% or more. The time with oxygen saturation below
90%, referred to as CT90%, is expressed as a percentage of the TST.
An AHI exceeding 15 events per hour is indicative of obstructive
sleep apnea (OSA).

2.4 Signal preprocessing

The MATLAB R© signal processing toolbox was used to
preprocess and analyze signal data offline. To standardize the
format of the signals across different PSG channels and to mitigate
the effects of the noise during the analysis phase, an initial
preprocessing was conducted. The preprocessing phase was divided
into three main steps:

• Resampling: due to varying sample rates across the channels
and subjects, signals were resampled for uniformity based

TABLE 1 Signal frequency ranges and filter settings: the original sample

rate (fs0), the target sample rate (fst), the output sample rate (fsf), and the

filter frequencies for the Electrooculogram (EOG), Electroencephalogram

(EEG), Electromyogram (EMG), Respiratory e�ort (E�ort), Airflow, Pulse,

Oxygen saturation (SpO2), Electrocardiogram (ECG), and Snore channels.

Signal fs0
(Hz)

fst
(Hz)

fsf
(Hz)

Filter
(Hz)

EOG 200–500 500 500 0.3–50

EEG 200–500 500 500 0.3–50

EMG 200–500 500 200 1–90

Effort 100 100 100 -

Airflow 100 100 100 0.1–15

Pulse 1 1 1 -

SpO2 1 1 1 -

ECG 200–500 500 200 0.3–50

Snore 500 500 500 1–100

on international guidelines (Bandyopadhyay and Goldstein,
2023), as is detailed in Table 1. Subsequently, each signal was
decomposed into five new signals corresponding to the sleep
phases: W, N1, N2, N3, and REM phases. Segments identified
as “Wake” were discarded. The remaining segments, identified
as the same sleep stage in their respective hypnogram, were
concatenated to form the new signals. These were then
resampled at a standard rate of 128 Hz to diminish their size.
The resampled signals were further divided into uniform 10-s
segments.

• Filtering: the channels were filtered with a fifth-order
bandpass digital Butterworth filter (Butterworth, 1930). The
cutoff frequencies for each channel were set in accordance
with the AASM guidelines (Berry et al., 2015), as specified
in Table 1, to ensure comparably meaningful spectral content
across channels.

• Artifact removal: based on the annotations provided by expert
physicians, segments containing artifacts were identified and
excluded from the signals.

2.5 Feature extraction

Utilizing various computational methods (Álvarez et al., 2012;
Alvarez et al., 2013; Umut, 2016), the preprocessed PSG signals
were parameterized with features from linear (time-domain and
frequency domain) and non-linear features. Each feature set
provides unique insights into the signals’ characteristics. Time-
domain statistics offer information on the signal amplitude,
while frequency-domain statistics leverage the spectral information
within the signals (Dressler et al., 2004). In contrast, non-linear
features shed light on the temporal complexity and regularity
of the signals (Abásolo et al., 2006; Furui et al., 2020). Features
were calculated as the mean across each sleep stage (N1, N2, N3,
and REM) for the entire duration of the overnight recording.
For segments annotated as distinct sleep stages, parameters were
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TABLE 2 Frequency domain statistics and spectral parameters computed

for Electrooculogram (EOG), Electroencephalogram (EEG),

Electromyogram (EMG), and the Airflow and Oxygen saturation (SpO2)

channels of the polysomnography.

Signal Components

EOG MF 0.5–30 Hz, DF 0.5–30 Hz, Pw 0.5–30 Hz (TotalPw)

EEG MF 0.5–30 Hz, DF 0.5–30 Hz, Pw 0.5–30 Hz (TotalPw),

Pw 0.5–4 Hz (delta), Pw 4–7 Hz (theta), Pw 8–12 Hz (alpha),

Pw 14–22 Hz (lowBeta), Pw 23–30 Hz (highBeta),

Pw 14–30 Hz (beta), Pw 31–40 Hz (gamma), Pw 12–14 Hz
(spindles)

EMG MF 0.5–30 Hz, DF 0.5–30 Hz, Pw 0.5–30 Hz (TotalPw)

Airflow MF 0.025–0.05 Hz, DF 0.025–0.05 Hz, Pw 0.025–0.05 Hz
(TotalPw)

SpO2 MF 0.014–0.033 Hz, DF 0.014–0.033 Hz, Pw 0.014–0.033 Hz
(TotalPw)

MF, mean frequency; DF, Dominant frequency; Pw, Power.

derived from the mean values within 2-min windows, employing a
50% overlap strategy.

For the time-domain analysis of all PSG signals, we calculated
four time domain and four non-linear parameters. Time domain
features included Root Mean Square, variance, skewness, kurtosis,
and maximum value (Álvarez et al., 2012; Alvarez et al., 2013; Gerla
et al., 2019). The non-linear parameters included Shannon Entropy
(ShanEnt), Sample Entropy (SampEnt), Lempel Ziv (LempZiv),
and Higuchi Fractal Dimension (HFD; Alvarez et al., 2006, 2013).
Frequency-domain statistics and spectral parameters (Dressler
et al., 2004; Alvarez et al., 2006; Pedregosa et al., 2011) were
explicitly calculated for the EOG, EEG, EMG, Airflow, and SpO2

channels (see Table 2). The spectral parameters were derived from
the Power Spectral Density (PSD) of each normalized 2-min
segment (Gerla et al., 2019). The estimates were obtained using
Welch’s averaged, modified periodogram method with a Hamming
window of 65,536 points for EOG, 32,768 for EMG signals, 16,384
for the airflow signals, and 128 for the SpO2 signal.

3 Statistical analysis

Statistical analyzes were conducted using R statistical software,
version 3.3.1. Descriptive statistics were calculated for both
normally and non-normally distributed quantitative data, with the
former presented as mean and standard deviation (SD), and the
latter as median with interquartile range (IQR). For categorical
variables, we reported absolute and relative frequencies. In the
case of quantitative variables, we computed Pearson’s correlation
coefficient to assess the relationship with the target biomarker.
For categorical features, a one-way ANOVA test was employed to
determine if there were significant differences between the means
of two or more groups. To eliminate irrelevant, correlated, and
noisy data, a feature selection process was undertaken. This step
aimed to reduce the dataset dimensionality with minimal loss of
significant information. We performed feature selection on the
training partition of the dataset, organizing the variables into four
subsets as follows:

• CLINVAR: sociodemographic, anthropometric, and clinical
variables.

• SLEEPVAR: conventional PSG parameters.
• PSGVAR: quantitative measure derived from PSG signals.
• ALL: a combination of all the above subsets.

For the CLINVAR, SLEEPVAR, and PSGVAR subsets, any
feature that was missing in more than 50% of the samples was
excluded. An initial feature selection was conducted by retaining
only those features that exhibited a correlation coefficient with
the target biomarker about 0.1 for CLINVAR and SLEEPVAR and
above 0.3 for PSGVAR. The ALL subset was then refined to include
only features meeting these criteria. Subsequently, we calculated
the correlation coefficient for each pair of features, opting to
retain only one variable from pairs where the correlation exceeded
0.9, to avoid redundancy. Further dimensionality reduction was
accomplished through principal component analysis (PCA). In this
process, we chose to retain enough components to explain 90%
of the variance, creating new subsets for CLINVAR, SLEEPVAR,
PSGVAR, and ALL based on the selected principal components.
Additionally, for each biomarker and subset, we identified the
features that most effectively explained the variance (PCA-selected
features, PCA-sel). Following this, we assessed whether the variance
chosen through the initial feature selection exhibited a statistically
significant linear relationship with the target biomarkers using
Pearson’s correlation and ANOVA tests as previously described.
For feature selection and ML analyzes, the data were divided into
training and testing subsets, with 25% of the data allocated to the
test partition. Moreover, all subsets were standardized using the
mean and standard deviation derived from the training data.

4 Machine Learning analyzes

ML analyzes were performed using the scikit-learn Machine
Learning library in Python (Pedregosa et al., 2011). We trained
several classical ML models using the four subsets of variables that,
according to the PCA, best explained the variance of the dataset.

Dimensionality reduction helped to remove irrelevant,
redundant, and noisy data, which in turn improved model
performance and the intelligibility of the results. Model
hyperparameters were fitted via five-fold cross-validation to
ensure robustness. The models’ effectiveness was assessed by
calculating the Mean Absolute Error (MAE in pg/ml) across both
the training and the test datasets. The MAE metric was preferred
over the commonly used root mean square error as it provides a
clearer and more direct measure of the average error, according to
some studies (Willmott and Matsuura, 2005).

A Regression model based on the k-nearest neighbors (KNN)
algorithm was trained, where the target prediction is based on
local interpolation from the nearest neighbors in the training
set. Additionally, we trained two Gaussian Process (GPs) models
employing a radial basis function (RBF) kernel and a Matern 3/2
kernel. These GP models were optimized 20 times using the GPy
framework in Python, with the optimal solution selected from these
iterations. For ensemble learners utilizing bagging techniques, we
optimized a Bagging Regressor (BR), a Random Forest Regressor
(RFR), and an Extra Trees Regressor (ETR). With regards to
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FIGURE 2

Histogram (purple) and density plots (dark blue) of the three biomarkers considered for the prediction on our dataset: (left) Aβ42; (center) p-tau; and

(right) t-tau.

boosting methods, we fitted three Gradient Boosting Regressors
(GBRs) with distinct loss functions: least squares (LS), least absolute
deviation (LAD), and a hybrid approach (Huber).

In terms of models with strong regularization policies, we fitted
a linear regression with L2-norm regularization, known as Ridge
Regression, and another with L1-norm regularization (Lasso).
Furthermore, we trained four Support Vector Regressions (SVRs)
using different kernels: linear (LIN), polynomial (POLY), radial
basis function (RBF), and sigmoid (SIG).

5 Results

5.1 Demographic and clinical
characteristics

A total of 61 subjects were recruited for this study. However,
three subjects that did not possess PSG recordings and 9 whose
biomarker measures were missing were excluded from the analysis,
reducing the dataset to 49 subjects.

The population was equally distributed by gender (females were
50.8%), and the median age of the study population was 75.0
[72.0; 78.0] years. The Body Mass Index (BMI) median was 28.0
[24.4; 31.1]. The most frequently associated comorbidities were
hypertension (63.9%), dyslipidemia (49.2%), heart disease (19.7%),
and diabetes mellitus (16.4%). Concerning global cognitive
dysfunction, the median MMSE score was 23.0 [21.0; 25.0]. Only
a few patients reported symptoms indicative of poor sleep quality,
such as insomnia, non-restorative sleep, nocturnal awakenings, and
daytime drowsiness. The cohort was free from significant subjective
daytime sleepiness, as indicated by a median score of 5.0 [3.0–8.0]
on the Epworth Sleepiness Scale.

The PSG data indicated a high prevalence of OSA, with 26
(42,62%) patients. The median (IQR) AHI was 27.0 events/hour
[15.4; 52.5]. The median ODI was 18.3 [12.6; 44.0] events/hour,
and a median T90 was 11.9% [0.7; 7.2]. On average, participants
slept (TST) 262.1 [203.5; 326.1] min. Sleep was highly fragmented,
with a median arousals index (AI) value of 36.1 [23.2; 49.5]
arousals per hour. In Figure 2, the density and histogram plots
of the three studied biomarkers are shown. We observe that t-
tau and p-tau shows a right skewed behavior while Aβ42 is closer
to symmetric. Table 3 presents a summary of the clinical and
demographic characteristics of the study population.

5.2 Correlations between CSF biomarkers
and selected variables of the four subsets

The statistical analysis conducted on various subsets of data
revealed specific correlations between sleep-related variables and
the levels of AD CSF biomarkers. The results of the statistical
analyzes for the quantitative features identified as relevant by PCA
are presented in Tables 4–6 for the CSF Aβ42, p-tau, and t-tau
biomarkers, respectively. Similarly, the results for the categorical
variables are shown in Tables 7–9.

Aβ42: For the Aβ42 biomarker, poorer sleep quality (rho
= -0.3853; p = 0.0062) and shorter sleep duration on holidays
(rho = -0.3981; p = 0.0046) within the CLINVAR subset were
linked to lower Aβ42 levels. Additionally, increased Aβ42
levels were found in individuals with sleep disturbances due to
heartburn (p = 0.0296) and those carrying the ApoE genotype
(p = 0.0123). In terms of polysomnography variables (PSGVAR),
certain EEG characteristics during different sleep stages and
while awake were positively correlated with Aβ42 levels such
as the skewness in the EEG O1-A2 channel during the N1
(EEGO1_A2_sk_N1) and N2 (EEGO1_A2_sk_N2) sleep stages
(rho = 0.3534, p = 0.0127 and rho = 0.3778, p = 0.0074,
respectively). Notably, the only sleep variable (SLEEPVAR) that
correlated positively with Aβ42 was the percentage of time spent
with oxygen saturation below 90% during sleep (rho = 0.3129,
p = 0.0322).

P-tau: Regarding the p-tau biomarker, increases were associated
with specific EEG patterns during certain sleep stages and
a negative correlation was found with the maximum chin
electromyography (EMG) value during the N1 sleep stage (rho =
–0.3147, p = 0.0276). In the clinical variables subset (CLINVAR),
arterial hypertension (p = 0.0127), pulmonary diseases (p = 0.0274),
and level of education (p = 0.0136) were significantly associated
with p-tau levels.

T-tau: For the t-tau biomarker, significant correlations were
identified with features derived from the thoracic effort channel
such as the Lempel Ziv during N2 sleep stages (rho = 0.4216, p
= 0.0025) and the Sample Entropy during N2 (rho = 0.3927, p =
0.0052), indicating a rise in t-tau levels. However, no significant
relationships were observed with the general sleep variables, while
the frequency of snoring was positively correlated with t-tau in the
CLINVAR subset (p = 0.0149).
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TABLE 3 Descriptive characteristics of the study population.

Feature Mean ± std

Sociodemographic data

Gender (women) 31 (50.8%)

Age (years) 75.0 [72.0; 78.0]

BMI, kg/m2 28.0 [24.4; 31.1]

Comorbidities

Hypertension 39 (63.9%)

Diabetes mellitus 10 (16.4%)

Dyslipidemia 30 (49.2%)

Heart diseases 12 (19.7%)

Hypertension 3 (4.9%)

OSA 26 (42.6%)

Alzheimer’s disease parameters

Mini-mental state examination 23.0 [21.0; 25.0]

Aβ42 (pg/ml) 515.0 [404.25; 614.25]

t-tau (pg/ml) 555.0 [327.5; 712.0]

p-tau (pg/ml) 82.0 [52.0; 98.75]

Polysomnographic parameters

Epworth sleepiness scale 5.0 [3.0; 8.0]

Time in bed (minutes) 420.1 [391.0; 446.1]

Total sleep time (minutes) 262.1 [203.5; 326.1]

Sleep efficiency (%) 66.4 [49.7; 79.4]

N1 stage (% TST) 11.96 [7.7; 18.4]

N2 stage (% TST) 23.1 [16.0; 35.1]

N3 stage (% TST) 13.6 [7.1; 22.4]

REM stage (% TST) 6.6 [3.3; 11.2]

REM sleep (% TST) 6.6 [3.3; 11.2]

Latency to N1 stage (minutes) 23.1 [11.9; 57.7]

Latency to REM sleep (minutes) 126.7 [85.1; 179.9]

AHI (events/hour) 27.0 [15.4; 52.5]

AI (events/hour) 36.1 [23.2; 49.5]

Mean SaO2 (%) 93.0 [92.0; 94.0]

CT90 (%) 1.9 [0.7; 7.2]

ODI (events/h) 18.3 [12.6; 44.0]

AHI, apnoea-hypopnea index; AI, arousal index; ApoE, apolipoprotein E; Aβ42, amyloid-

beta protein; BMI, body mass index; ESS, Epworth sleepiness scale; IQR, interquartile range;

ODI, oxygen-hemoglobin desaturation index; SaO2, oxygen-hemoglobin saturation; TST,

total sleep time; CT90, percent of TST spent below 90% oxygen-hemoglobin desaturation;

p-tau, phospho-tau; t-tau, total-tau.

5.3 Regression models

Table 10 presents the mean absolute error (MAE) of each
model family utilized in estimating the levels of CSF biomarkers.
Figures 3–5 provide more comprehensive information.

TABLE 4 Pearson’s correlation and the p-value between CSF Aβ42

biomarker and the quantitative variables that were considered relevant by

the PCA algorithm.

Variables Correlation
coe�cient

p-value

PSGVAR

EEGC3_A2_sk_N2 0.2630 0.0678

EEGO1_A2_sk_N1 0.3534 0.0127
∗

EEGO1_A2_sp_N1 0.3285 0.0211
∗

EEGO1_A2_sk_N2 0.3778 0.0074
∗

EEGO1_A2_alpha_N2 0.4105 0.0033
∗

EEGO1_A2_sp_N2 0.3563 0.0119
∗

SLEEPVAR

No Mixed Apnea 0.0826 0.5723

Mixed Apnea Index 0.1022 0.4843

No Arousals 0.1331 0.3619

Total Arousal Index 0.0802 0.5837

CT90 0.3129 0.0322
∗

SpO2min -0.1871 0.1978

CLINVAR

Sleep (0–10) -0.3853 0.0062
∗

Sleep duration (Holidays) -0.3981 0.0046
∗

Values in bold denote statistically significant correlations: ∗p < 0.05. alpha, alpha

band; CT90, the percentage of TST during which oxygen saturation was <90%; EEG,

Electroencephalogram; EMG, Electromyogram; N1, N1 sleep stage; N2, N2 sleep stage;

O2_A1, O2-A1 EEG channel; sk, skewness; sp, spindle; SpO2min, minimum oxygen

saturation.

For the Aβ42 biomarker, the test partition yielded higher
MAE values across all models, regardless of the subject of data
utilized. The performance in regression was comparable across
different model families. Notably, using solely quantitative PSG
signal parameters (PSGVAR), the training MAE was reduced
for ensemble models (50.6 ± 23.21) compared to regularized
regressions (103.54 ± 0.59), Gaussian Processes (GPs; 105.29
± 2.91), or Support Vector Regression (SVR; 118.42 ± 20.91).
The test MAE for ensemble models (164.88 ± 8.12), regularized
regressions (161.63 ± 0.54), GPs (157 ± 4.37), and SVR (155.30
± 10.32) showed minimal variation, with the ensemble models
even registering higher values. When incorporating the ALL
subset, which combines both PSGVAR and CLINVAR features,
a similar test performance was observed with a lower training
MAE compared to using only PSGVAR. However, employing solely
clinical features (CLINVAR) resulted in diminished performance
for the ensemble models, while the MAE for the other models
slightly decreased, leading to generally comparable results across
all models. Conversely, utilizing conventional sleep parameter
reports (SLEEPVAR) achieved the lowest test MAE, with all models
yielding values under 144. An individual assessment of each
model performance (Figure 3) reveals that, for Aβ42 biomarker
prediction, Gradient Boosting Regressors (GBRs) consistently
outperformed other models. The most efficient model, the GBR
employing the least absolute deviation loss (GBR_lad) trained with
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TABLE 5 Pearson’s correlation and the p-value between CSF p-tau

biomarker and the quantitative variables that were considered relevant by

the PCA algorithm.

Variables Correlation
coe�cient

p-value

PSGVAR

EEGF3_A2_theta_N2 0.2533 0.0790

EEGO2_A1_sk_N1 0.3077 0.0314
∗

EEGO2_A1_sk_N2 0.3736 0.0081
∗

EMGChin_ShanEnt_N3 0.2159 0.1541

EMG_Chin_max_N1 –0.3147 0.0276
∗

EMGChin_max_N2 –0.2305 0.1109

EffortTHO_LempZiv_N2 0.3148 0.0275
∗

Leg2_HDF_N2 0.1616 0.2671

Snore_HFD_N2 –0.1647 0.2579

SLEEPVAR

Mixed Apnea Index 0.1256 0.3898

No Mixed Apnea –0.1876 0.1966

Recording time 0.1439 0.3236

N3 Latency 0.2483 0.0852

SpO2min 0.1557 0.2850

CLINVAR

Weight (Kg) –0.2364 0.1057

Waist –0.2506 0.0892

BMI –0.2520 0.0839

Glucose –0.1892 0.2242

Insulin –0.2364 0.1316

Values in bold denote statistically significant correlations: ∗p < 0.05. BMI, Body Mass Index;

EEG, Electroencephalogram; EMG, Electromyogram; EffortTHO, Thoracic Effort; HFD,

Higuchi Fractal Dimension; LempelZiv, Lempel Ziv; max, maximum value; N1, N1 sleep

stage; N2, N2 sleep stage; N3, N3 sleep stage; O2_A1, O2-A1 EEG channel; ShanEnt, Shannon

Entropy; sk, skewness; sp, spindle; SpO2min, minimum oxygen saturation.

the SLEEPVAR subset, had the lowest training and test MAE (Train
MEA: 47.54, Test MAE: 141.8).

For predicting p-tau levels (Figure 4), the lowest MAE values
were achieved with the ALL subset and GBRs, particularly the
GBR_ls, which demonstrated an MAE of 0.02 for training and
14.12 for testing. However, when applying this same subset
(ALL) to optimize the rest of the ML models, there was a
decline in performance for both training and testing partitions.
This pattern was also observed in the PSGVAR subset, where
the ensemble models outperformed other model families during
training (7.81 ± 5.80), but their test performance did not
significantly differ. Conversely, models using the CLINVAR
and SLEEPVAR subsets generally underperformed compared
to those using the ALL or PSGVAR subsets, as summarized
in Table 10.

In the case of t-tau prediction, similar to p-tau, the lowest
MAE was recorded with the ALL subset and GBRs. However,
the GBRs using Huber loss function showed superior training

TABLE 6 Pearson’s correlation and the p-value between CSF t-tau

biomarker and the quantitative variables that were considered relevant by

the PCA algorithm.

Variables Correlation
coe�cient

p-value

PSGVAR

EffortTHO_SampEnt_N2 0.3927 0.0052
∗

EffortTHO_LempZiv_N2 0.4216 0.0025
∗

SLEEPVAR

Central apnea index 0.1724 0.2359

Recording time 0.1443 0.3225

Sleep efficiency –0.1029 0.4815

N3 latency 0.2097 0.1479

N3 time –0.1030 0.4811

% N3 –0.1407 0.3348

Time awake 0.1490 0.3067

CLINVAR

Waist –0.2420 0.1012

Insulin levels –0.2409 0.1242

Values in bold denote statistically significant correlations: ∗p < 0.05. EffortTHO, Thoracic

Effort; LempelZiv, Lempel Ziv; max, maximum value; N3, N3 sleep stage; SampEnt, Sample

Entropy.

performance (Train MAE: 7.33, Test MAE: 166.83), while the
best test performance was achieved using the LAD loss functions
(Train MAE: 19.55, Test MAE: 140.02), as shown in Figure 5.
On the other hand, the highest test errors occurred with models
trained solely on conventional sleep parameters (SLEEPVAR)
evaluated by trained physicians. For instance, the ensemble models’
test MAE using the SLEEPVAR subset was 212.37 ± 14.28,
compared to 159.90 ± 12 (63) with the CLINVAR subset, as
reported in Table 10. Conversely, for the training partition, a
different pattern emerges, with the CLINVAR subset presenting
a higher MAE (127.62 ± 42.83) compared to the SLEEPVAR
subset ii (99.80 ± 42.75). Notably, the Gradient Boosting
Regressors (GBRs) trained on the CLINVAR subset demonstrated
lower MAE values, as depicted in Figure 5. Furthermore,
models calibrated solely with the quantitative parameters derived
from PSG recordings (PSGVAR) displayed performance closely
paralleling those utilizing the CLINVAR subset, as indicated in
Table 10.

The models that yielded the most accurate estimations for
the levels of the three biomarkers were the GBRs, specifically
employing a least absolute deviation (LAD) loss for Aβ42, a
least squares (LS) loss for p-tau, and a Huber loss for t-
tau. The alternative ML models, in addressing the scarcity of
training data, employed regularization techniques to construct
simpler models, which resulted in higher training errors. For
all three biomarkers, minimal training errors were observed
when utilizing the comprehensive ALL subset, though the
test evaluations varied. In terms of test performance, for the
Aβ42 biomarker, the lowest MAE was recorded with the
SLEEPVAR subset, that is, the subset comprising only the standard
PSG parameters.

Frontiers in AgingNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1369545
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Gaeta et al. 10.3389/fnagi.2024.1369545

TABLE 7 ANOVA p-value categorical features that were considered

relevant by the PCA algorithm for predicting Aβ42 biomarker.

CLINVAR variable P-value

Physical activity 0.3624

Depression 0.2251

Epilepsy 0.2675

Pulmonary disease 0.1456

Non-restorative sleep 0.8501

Asphyxia crises 0.7328

Nocturia 0.6854

Headache 0.1863

Insomnia 0.1073

Cataplexy 0.1821

Real or vivid dreams 0.2154

Sleep interrupted by heartburn 0.0296
∗

APOE4+ 0.0125
∗

Nap 0.6240

Values in bold indicate statistically significant correlations: ∗p < 0.05.

TABLE 8 ANOVA p-value categorical features that were considered

relevant by the PCA algorithm for predicting p-tau biomarkers.

CLINVAR variable P-value

Scholarship 0.0136
∗

Depression 0.1557

Arterial hypertension 0.0127
∗

Pulmonary disease 0.0274
∗

Snore 0.1058

Asphyxia crises 0.8299

Insomnia 0.1476

Memory disorder 0.2441

Concentration disorder 0.1147

Cataplexy 0.1151

Grind teeth 0.2325

Nap 0.5223

APOE4+ 0.1613

Values in bold indicate statistically significant correlations: ∗p < 0.05.

6 Discussion

In this study, we trained various ML models to evaluate
which combination of selected subsets of non-invasive variables
could accurately predict CSF Aβ42, p-tau, and t-tau biomarker
levels in a cohort of patients with mild-moderate AD(AD).
The subsets included clinical variables (CLINVAR) previously
established as relevant to AD pathogenesis, conventional PSG
parameters (SLEEPVAR), quantitative PSG features (PSGVAR)
derived from advanced signal analysis, and a combination of all
these variables (ALL). Variable selection was performed using a

TABLE 9 ANOVA p-value categorical features that were considered

relevant by the PCA algorithm for predicting t-tau biomarkers.

CLINVAR variable p-value

Sex 0.3163

Arterial hypertension 0.0523

Heart disease 0.0905

Epilepsy 0.2752

Snore 0.0149
∗

Memory disorder 0.5125

Cataplexy 0.1596

Grind teeth 0.2824

Nap 0.2119

Values in bold indicate statistically significant correlations: ∗p < 0.05.

range of statistical approaches, with an emphasis on those with
the highest discriminating power. These newly curated subsets,
containing only relevant variables, were then used as input for
the models.

Moreover, we investigated the correlations between the
selected relevant variables and the CSF biomarkers to determine
the nature of their relationships, linear or otherwise. The Gradient
Boosting Regressors (GBRs) emerged as the most effective models
in estimating the levels of the three biomarkers. In summary,
the lowest training errors for all three biomarkers were observed
when employing the ALL subset, although the test evaluations
showed differing results. Regarding test performance, for the
Aβ42 biomarker, the lowest mean average error (MAE) was
achieved using the subset consisting solely of conventional PSG
parameters, which was thereby identified as the best predictor
of the CSF Aβ42 levels. Furthermore, it was found that the
combination of clinical variables, conventional PSG parameters,
and quantitative PSG features most effectively predicted
CSF p-tau and t-tau levels. Interestingly, not all the selected
variables demonstrated linear relationships with the biomarkers
in question.

6.1 Best data subset for CSF Aβ42
prediction

According to our ML models, the most significant variables
for predicting CSF Aβ42 levels were standard PSG parameters
(SLEEPVAR), which included CT90, minimum SaO2, the number
of Mixed Apneas, Mixed Apnea Index, the number of arousals, and
Total Arousal Index.

The influence of hypoxemia on CSF Aβ42 is not unexpected,
as numerous studies have indicated that cerebral hypoxia can
escalate amyloid deposition. This is achieved through both genetic
and epigenetic modifications by influencing the expression levels
of enzymes critical for protein synthesis and degradation (Lall
et al., 2019). Furthermore, hypoxia has been linked to calcium
dysregulation in neurons and glial cells. This occurs through the
formation of calcium-permeable pores, disruption of glutamate
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TABLE 10 Mean and standard deviation of the mean average error (MAE) of Machine Learning (ML) models for the prediction of Aβ42, p-tau, and t-tau,

biomarkers grouped by the family of models (EM, Ensemble models; RLR, Regularized Linear Regressions; GP, Gaussian Processes; KNR, regression

based on k-nearest neighbors; SVR, Support Vector Regression).

Aβ42

CLINVAR SLEEPVAR PSGVAR ALL

Train Test Train Test Train Test Train Test

EM 62.22± 7.33 170.43± 6.41 88.28± 32.71 143.5± 11.42 50.6± 23.21 164.88± 8.12 40.88± 18.72 160.67± 10.63

RLR 81.21± 0.16 154.33± 0.41 116.78± 1.12 142.35± 2.14 103.54± 0.59 161.63± 0.54 84.65± 10.74 154.97± 11.92

GP 91.08± 0.58 152.98± 0.41 115.44± 0.04 140.37± 0.05 105.29± 2.9 157± 4.37 77.02± 4.16 150.96± 1.91

KNR 93.86 168.58 119.59 147.13 94.67 142.83 109.03 146.15

SVR 78.52± 10.66 151.65± 5.68 111.73± 2.64 138.64± 2.4 120.73± 20.91 155.3± 10.32 91.12± 20.03 158.32± 14.96

p-tau

CLINVAR SLEEPVAR PSGVAR ALL

Train Test Train Test Train Test Train Test

EM 16.22± 3.97 21.63± 4.06 12.65± 6.51 24.34± 2.47 7.81± 5.8 24.69± 3.42 6.95± 5.63 18.06± 2.9

RLR 19.01± 0.18 18.87± 0.02 25.49± 0.49 24.77± 0.05 16.75± 0.77 24.15± 3.74 19.64± 6.95 25.24± 3.15

GP 20.68± 0.02 15.61± 0.06 27.96± 0.02 22.93± 0.09 11.35± 5.4 29± 2.56 9.62± 6.03 20.16± 1.07

KNR 28.03 18.01 28.55 21.27 15.98 26.66 16.93 17.65

SVR 20.06± 5.97 18.21± 0.75 23.05± 15.47 24.8± 4.07 15.07± 5.09 23.5± 1.5 11.31± 6.72 26.39± 1.76

t-tau

CLINVAR SLEEPVAR PSGVAR ALL

Train Test Train Test Train Test Train Test

EM 127.62± 42.83 159.9± 12.63 99.8± 42.75 212.37± 14.28 135.38± 43 182.84± 36.33 71.86± 57.53 176.69± 22.85

RLR 188.72± 12.03 140.95± 16.46 200.41± 3.55 202.34± 4.99 176.73± 0.05 154.43± 0.02 125.48± 4.63 177.74± 2.86

GP 191.49± 25.43 156.53± 34.57 225.73± 0.56 170.56± 12.81 190.18± 0.02 154.97± 0.19 168.32± 11.96 146.72± 21.1

KNR 226.55 158.10 152.89 196.31 203.38 189.49 159.87 161.65

SVR 193.99± 30.78 139.78± 8.45 188.53± 53.44 227.01± 34.48 172.85± 14.93 165.94± 15.26 116.96± 38.37 188.48± 0.6

We tried with four different datasets: CLINVAR, clinical variables; SLEEPVAR, conventional sleep parameters assessed by expert physicians; PSGVAR, Parameters that were computed over the

PSG signals; ALL, the three previous ones combined.

transmission, malfunction of intracellular calcium stores, and
neuroinflammation (Lall et al., 2019). More closely, while the
relationship between SaO2 min and Aβ42 is not linear, our results
revealed a positive correlation between CSF Aβ42 and CT90,
surprisingly indicating that more severe hypoxemia is associated
with higher CSF Aβ42 levels. This finding could be underpinned by
the protective effect of hypoxic preconditioning (Shah et al., 2013),
a phenomenon known to activate endogenous neuroprotective
mechanisms inmodels of cerebral hypoxic and ischemic conditions
(Wang et al., 2017). In line with our observations, animal studies
have suggested that hypoxic preconditioning can mitigate memory
impairment and Aβ pathology (Zhang et al., 2020). However,
these findings need to be corroborated with alternative analytical
approaches and through longitudinal follow-up of our cohort.

Additionally, our research indicates that the Mixed Apnea
Index is another standard PSG parameter that is predictive of
CSF Aβ42 levels, once again with low correlation coefficients.
This highlights the importance of specifically characterizing
respiratory events that compose the AHI to predict various

outcomes and develop customized therapeutic strategies accurately.
Incorporating both apneas and hypopneas into a single measure,
such as the AHI, for diagnosing and evaluating the severity of
OSA, implies that these events are equivalent in their clinical
implications. However, the existing evidence is not univocal
(Kulkas et al., 2017; Spector et al., 2019). Interestingly, recent
research appears to support our hypothesis, showing that in
a population with mild-to-moderate AD, hypopnea and apnea
events are distinctively associated with sleep architecture, levels of
pathological ADmarkers, and cognitive decline (Targa et al., 2023).

Similarly, the predictive role of the AI for CSF Aβ42 that we
identified—despite the association not being linear—underscores
the importance of detailed and personalized sleep analysis in early
AD. Corroborating our findings, studies have demonstrated that
arousals differ in their oscillatory composition and have various
associations with early AD-related amyloid neuropathology and
cognitive function (Chylinski et al., 2021). Future studies are
essential to explore these observations further and to determine if
there are causal relationships.
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FIGURE 3

Mean average error (MAE) of Machine Learning (ML) models for the prediction of Aβ42. The results are shown for three di�erent subsets. All of the

models were optimized and evaluated using the PCA transformed subsets, except a Bagging Regressor that was trained using only the features

considered by the PCA algorithm as relevant. The models evaluated were: a Bagging Regressor (BR), an Extra Trees Regressor (ETR), a Random Forest

Regressor (RFR), a Gradient Boosting Regressor with a least absolute deviation loss (GBR_lad), a least squares loss (GBR_ls) and a Huber loss

(GBR_hb), a Ridge Regression (RR), a Lasso Regression (LR), a Gaussian Process with a radial basis function kernel (GP_rbf) and a Matern 3/2 kernel

(GP_m32), k-nearest neighbors regression (KNR), Support Vector Regression with a linear (SVR_lin), polynomial (SVR_poly), radial basis function

(SVR_rbf), and sigmoid (SVR_sig) kernels.

6.2 Best data subset for CSF p-tau

The most effective combination of feature groups for
predicting CSF p-tau levels overall included quantitative PSG
features, conventional PSG parameters, and clinical variables
(ALL subset).

Regarding the role of quantitative PSG signal features
(PSGVAR), our findings underscored the significance of the
skewness of the EEG signal from the O1-A2 channel during the
N1 and N2 sleep stages. We noted a significant positive linear
correlation with p-tau levels.

Levels of p-tau have been shown in previous studies to correlate
well with the spread of tau pathology from temporal regions to

other areas of the brain. Tau pathology, more than amyloid, is
closely associated with observed atrophy in MRI, hypometabolism
in FDG-PET, and cognitive symptoms in AD (Jack et al., 2018).
Additionally, tau pathology typically spreads from the temporal to
more posterior structures, particularly the parietal regions (Masters
et al., 2015). Consequently, we hypothesize that higher levels of p-
tau may correlate with increased tau pathology in these posterior
structures. Moreover, skewness, as a measure of asymmetry in the
probability distribution of a signal (Xiang et al., 2020), may reflect
this increased pathology, potentially resulting in more pronounced
alterations in EEG signals from these regions. This could render the
signal more unpredictable and with distinct spatial patterns, given
the positive correlation between the two variables.
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FIGURE 4

Mean average error (MAE) of Machine Learning (ML) models for the prediction of p-tau. The results are shown for three di�erent subsets. All the

models were optimized and evaluated using the PCA transformed subsets, except a Bagging Regressor that was trained using only the features

considered by the PCA algorithm as relevant. The models evaluated were: a Bagging Regressor (BR), an Extra Trees Regressor (ETR), a Random Forest

Regressor (RFR), a Gradient Boosting Regressor with a least absolute deviation loss (GBR_lad), a least squares loss (GBR_ls) and a Huber loss

(GBR_hb), a Ridge Regression (RR), a Lasso Regression (LR), a Gaussian Process with a radial basis function kernel (GP_rbf) and a Matern 3/2 kernel

(GP_m32), k-nearest neighbors regression (KNR), Support Vector Regression with a linear (SVR_lin), polynomial (SVR_poly), radial basis function

(SVR_rbf), and sigmoid (SVR_sig) kernels.

This discovery may represent one of the most significant and
unforeseen findings of our study, suggesting specific quantitative
PSG features, such as sleep EEG, could serve as potential
early biomarkers of AD. Prior research has supported the
potential of EEG recordings for the early detection of AD.
Furthermore, in line with our findings, other studies (Jeong, 2004;
Ghorbanian et al., 2015; Liu et al., 2016) have indicated that a
characteristic EEG abnormality in AD patients is a generalized
slowing of the rhythms and a reduction in complexity across
various brain regions. Interestingly, these EEG abnormalities
in AD have been correlated with disease severity, as they
directly reflect the anatomical and functional changes in the
cerebral cortex that are affected by the disease (Kowalski et al.,
2001).

Among the conventional PSG variables (SLEEPVAR), we find it
noteworthy to highlight that ourmodels selectedminimum SaO2 as
one of the parameters predictive of CSF p-tau levels, suggesting that
more severe hypoxemia may lead to an increase in CSF p-tau levels,
given the positive relationship. This finding aligns with previous
results indicating that hypoxia triggers tau hyperphosphorylation
and memory deficits in rats (Zhang et al., 2014).

Besides, our results regarding the clinical variables subset
(CLINVAR) appear to corroborate existing evidence that arterial
hypertension is a statistical predictor of p-tau accumulation, in line
with previous findings, suggesting that hypertension may elevate
the risk for AD (Lennon et al., 2021). Meanwhile, our data also
indicate that metabolic clinical markers, including BMI, waist
circumference, and serum insulin and glucose levels, are implicated
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FIGURE 5

Mean average error (MAE) of Machine Learning (ML) models for the prediction of t-tau. The results are shown for three di�erent subsets. All the

models were optimized and evaluated using the PCA transformed subsets, except a Bagging Regressor that was trained using only the features

considered by the PCA algorithm as relevant. The models evaluated were: a Bagging Regressor (BR), an Extra Trees Regressor (ETR), a Random Forest

Regressor (RFR), a Gradient Boosting Regressor with a least absolute deviation loss (GBR_lad), a least squares loss (GBR_ls) and a Huber loss

(GBR_hb), a Ridge Regression (RR), a Lasso Regression (LR), a Gaussian Process with a radial basis function kernel (GP_rbf) and a Matern 3/2 kernel

(GP_m32), k-nearest neighbors regression (KNR), Support Vector Regression with a linear (SVR_lin), polynomial (SVR_poly), radial basis function

(SVR_rbf), and sigmoid (SVR_sig) kernels.

in the prediction of p-tau protein levels in the CSF in AD, as
explored in previous studies (Gonçalves et al., 2019; Lee et al.,
2023). However, in our study, these relationships did not follow a
linear pattern.

6.3 Best data subset for CSF t-tau

As observed for the prediction of CSF p-tau, the ALL
subset also emerged as the best subset of variables for CSF
t-tau levels.

Interestingly, regarding the PSGVAR subset, we found that the
Lempel-Ziv and Sample Entropy—both of which are measures of
signal complexity (Grassberger and Procaccia, 1983)—are pertinent
to predict t-tau levels. Our results indicated that the complexity of

the thoracic effort signals, increases with the levels of t-tau during
NREM sleep.

Increased complexity of the thoracic effort signal may be
associated with OSA syndrome, which is highly prevalent in
our study population (Gaeta et al., 2020). It is known that
increased respiratory effort against collapsed airways leads to
elevated intrathoracic disturbances (Farré et al., 2004; Sánchez-de-
la Torre et al., 2013). Consequently, a higher complexity in the
thoracic effort signal may imply a more severe manifestation of
OSA, thus, the positive correlation between Lempel-Ziv complexity
and Sample Entropy of thoracic effort and tau CSF biomarkers
could indicate an indirect link between OSA syndrome and the
advancement of AD tau pathology. However, we did not find any
correlation between t-tau and the AIH, affirming the hypothesis
that a more precise definition of sleep-related breathing disorders
in AD is necessary, as previously discussed (Targa et al., 2023).
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Several mechanisms have been proposed to explain this
phenomenon (Andrade et al., 2018). Previous investigations
suggest that the effort to breathe against a collapsed upper airway
during obstructive sleep apnea episodes may cause repetitive
high-pressure fluctuations, potentially impacting the glymphatic
system, thereby altering the concentration of CSF metabolites and
biomarkers (Andrade et al., 2018). The glymphatic system operates
optimally during SWA, facilitating the removal of Aβ and other
metabolites from the interstitial space. Studies conducted with
mouse models of AD have demonstrated that sleep deprivation
acutely increases soluble Aβ levels and promotes chronic amyloid
deposition (Ju et al., 2017). In human subjects, sleep deprivation
has been observed to elevate cerebrospinal fluid (CSF) Aβ levels.
Consequently, it has been theorized that frequent arousals in
obstructive sleep apnea (OSA) contribute to reduced SWA, leading
to elevated Aβ levels and ultimately increasing Aβ aggregation
into amyloid, thereby heightening the risk of AD (Ju et al., 2016).
Furthermore, persistent sleep fragmentation resulting from OSA
disrupts CSF-ISF (Interstitial Spinal Fluid) exchange, leading to an
accumulation of Aβ (Ju et al., 2016).

Nonetheless, contradictory findings have been documented
in the literature. For example, Ju et al. (2016) observed lower
concentrations of Aβ42, tau, and other derived metabolites in the
CSF of patients with OSA. However, they noted that total protein
levels, which are primarily derived from blood albumin, did not
decrease in patients with severe OSA compared to control subjects
(Ju et al., 2016), suggesting that glymphatic clearance processes may
be compromised in OSA (Aspelund et al., 2015). This discrepancy
underscores the need for future research that includes larger
populations to compare OSA patients with non-OSA individuals.

We hypothesize that akin to the effect on CSF amyloid,
the increased intrathoracic and intracranial pressures induced
by OSA acutely and repeatedly may hinder the circulation of
brain metabolites from ISF into CSF, thereby fostering tau
accumulation. Our hypothesis is supported by prior studies
revealing compromised CSF-ISF exchange polarization in a mouse
model of tauopathy, indicating the potential of this clearance
pathway to worsen or even initiate pathogenic tau accumulation
(Harrison et al., 2020). Comprehensive analyzes are required.

Moreover, regarding the predictive value of the conventional
PSG parameter (SLEEPVAR subset), our findings concur with
earlier research, which has shown a negative association between
tau pathology and time spent in N3 sleep stage. Remarkably, SWA
during N3 sleep is widely reported to be disrupted in AD (Mander
et al., 2015). Furthermore, consistent with our findings, has been
demonstrated an inverse correlation between SWA and the AD tau
pathology, as evidenced by PET imaging and CSF tau biomarker
levels in the early stages of the disease (Lucey et al., 2019).

On the other hand, the results concerning the CLINVAR
subset, while not displaying a significant linear correlation, overlap
with those observed for p-tau, confirming the importance of
metabolic measures, particularly insulin levels, in tau pathology.
Insulin, a key regulator of glucose homeostasis and metabolism,
plays a critical role in various brain functions, including synaptic
plasticity, learning, and memory. Besides its traditional function
as a microtubule-stabilizing protein, tau also serves as a scaffold
protein interacting with components of the brain’s insulin signaling

pathway (Gonçalves et al., 2019). Impairment in brain insulin
signaling has been consistently linked to cognitive decline in
animal models and humans. Insoluble fractions of post-mortem
AD and other tauopathies have revealed hyperphosphorylated
tau-containing neurons with accumulated insulin oligomers
(Gonçalves et al., 2019). While the exact influence of tau pathology
on insulin signaling remains unclear, it’s established that insulin
resistance can lead to tau hyperphosphorylation and cognitive
decline in both human and animal models (Gonçalves et al.,
2019). However, the negative relationship between insulin serum
levels and CSF t-tau we observed, remains to be more extensively
investigated.

6.4 Related works

In light of the existing body of research, our study is among
the first to evaluate a variety of ML models trained to non-
invasively predict AD neuropathology by integrating sleep data,
clinical variables crucial for AD development, conventional PSG
parameters, and a broad spectrum of quantitative signal features
from sleep data. Our approach stands out by employing a
multi-domain quantitative signal feature analysis, encompassing
both linear and non-linear aspects, which extends beyond the
conventional spectral features typically utilized in prior studies.
Additionally, our analysis encompasses the entirety of PSG signals
and is not limited solely to EEG data. The landscape of ML
applications in AD diagnosis and progression encompasses a
diverse range of techniques and input variables. To illustrate,
Table 11 presents a summary of pertinent studies, highlighting
the ML techniques and proposed biomarkers at various stages of
AD diagnosis. Key variables such as educational level, professional
experience, social engagement, dietary habits, APOE genotype, and
age have been identified as significant predictors for the conversion
to MCI in a substantial elderly cohort over a 5-year timeframe,
utilizing Random Forest and permutation-basedMachine Learning
methods (Gómez-Ramírez et al., 2020).

Recent studies have increasingly focused on sleep-related
variables, parameters, and quantitative signal features, utilizing
techniques. However, many of these studies did not simultaneously
incorporated various types of sleep measures, where not conducted
explicitly on AD populations, or limited their quantitative signal
analysis to resting state EEG data. For example, one study employed
advanced ML models to assess the impact of sleep disturbances on
the development of AD and the transition from normal cognitive
(NC) functioning to MCI. Employing Random Tree classifiers, the
most effective model achieved a 70% accuracy rate in predicting
the transition from MCI to AD, with factors such as caregiver
distress, frequency of sleep disturbances, and excessive daytime
sleepiness playing significant roles. Logistic regression and KNN
models predicted with 60% accuracy re-conversion from MCI to
NC, with caregiver distress, sleep disturbance frequency, and OSA
most pronounced among males (Bonfa et al., 2023).

Moreover, research has confirmed the link between dementia
and sleep disturbance, with gradient boosting emerging as the most
accurate method, boasting a 92.9% accuracy rate, and F1-score of
0.926, and ROC AUC of 0.974, and a Brier score of 0.056. The
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TABLE 11 Relevant studies on biomarkers and Machine Learning (ML) models of Alzheimer’s disease (AD).

References Proposed AD
biomarkers/
input
variables

Machine Learning
models

Results Normal
cognition/
Alzheimer’s
disease stage

Gómez-
Ramírez et al.
(2020)

Clinical variables Random Forest (RF)
Permutation-based Machine
Learning (PBML)

Educational level, working experience, social life, subjective
cognitive decline, diet rich in sweets, APOE and age have been
selected as some of the most important variables for MCI
conversion in a large elderly population, using RF that showed a
high predictive performance with an accuracy of 0.851

Conversion from NC to
MCI

Bonfa et al.
(2023)

Sleep disturbances Random Tree classifiers
Logistic regression
K-nearest neighbors (KNN)

Based on Random Tree classifiers, the best model predicted a 70%
accuracy change fromMCI to AD, with caregiver distress, sleep
disturbance frequency, and excessive daytime sleepiness playing
significant roles. Logistic regression and KNNmodels predicted
with 60% accuracy re-conversion from MCI to NC, with caregiver
distress, sleep disturbance frequency, and OSA most pronounced
among males.

Conversion from NC to
MCI and fromMCI to
other stages of AD

Nyholm et al.
(2024)

Sleep and clinical
variables

Gradient Boosting (GB)
Logistic regression
Gaussian naive Bayes (GNB)
Random Forest (RF)
Support Vector Machine
(SVM)

GB resulted the most accurate method, with 92.9% accuracy,
0.926 f1-score, 0.974 ROC AUC, and a Brier score of 0.056.
Sleeping more than 2 h per day, gender, education level, age,
waking up throughout the night, and snoring were the variables
with the greatest feature importance across all ML algorithms.

Age > 60 years from the
Swedish National Study
on Aging and Care
(SNAC) including NC,
MCI and moderate
dementia

Abate et al.
(2020)

Clinical variables
and plasma p53

Regression Tree (RT) Plasma p53 was found more relevant for identifying accurately
classify (AUC = 0.92) Aβ+/amnestic Mild Cognitive Impairment
(aMCI) patients who will develop AD.

MCI

Chang et al.
(2021)

Plasma
D-glutamate

Support Vector Machine
(SVM)
Logistic regression
Random Forest (RF)
Naïve Bayes

The naïve Bayes model and RF model were the best models for
determining MCI and AD susceptibility based on D-glutamate,
respectively (area under the receiver operating characteristic
curve: 0.8207 and 0.7900; sensitivity: 0.8438 and 0.6997; and
specificity = 0.8158 and 0.9188, respectively).

MCI
Others stages of AD

Jo et al. (2020) Tau- Positron
Emission
Tomography (PET)

Convolutional Neural
Network (CNN)
Layer-wise relevance
propagation (LRP) algorithm

Deep learning-based classification model framework combining
3D CNN and LRP algorithms of AD from NC yielded an average
accuracy of 90.8%

Alzheimer’s Disease
Neuroimaging Initiative
(ADNI) cohort including
HC, MCI and others AD
stages

Popuri et al.
(2020)

Magnetic
Resonance Images
(MRI)
t-tau Aβ1-42 CSF

Ensemble-learning
(Multi-Kernel classifier,
Variational Bayes Probabilistic
Multi-Kernel Learning)

MDART (MRI-based on Dementia Alzheimer’s type DAT) score
achieved a classification performance on stable vs. progressive
MCI groups with an AUC of 0.81 for TTC of 6 months and 0.73
for TTC of up to 7 years

NC
MCI and others AD
stages

Pirrone et al.
(2022)

Resting-state EEG
power spectral
density features

Decision Trees (DT)
Support Vector Machines
(SVM)
K-nearest neighbor (KNN)

K-NN was the best classification algorithm as concerning the
accuracy reaching 97, 95, and 83% accuracy when considering
binary classifications (HC vs. AD, HC vs. MCI, and MCI vs. AD)
and an accuracy of 75% when dealing with the three classes (HC
vs. AD vs. MCI).

HC, MCI, others stage
AD

Kim et al.
(2023)

Resting-state EEG
power spectral
density features

Support Vector Machine
(SVM)
Logistic regression
K-nearest neighbors (KNN)
Gaussian Naive Bayes (GNB)
Random Forest (RF)
AdaBoost (Ada)
GBMBoost (GBM)
XGBoost (XGB)

The best model demonstrated 90.9% sensitivity, 76.7% specificity,
and 82.9% accuracy in MCI+SCD (33 Aβ+ , 43 Aβ−). Limited to
SCD, 92.3% sensitivity, 75.0% specificity, and 81.1% accuracy (13
Aβ+ , 24 Aβ−). 90% sensitivity, 78.9% specificity, and 84.6%
accuracy for MCI (20 Aβ+ , 19 Aβ−).

Subjective cognitive
decline (SCD), MCI

Kim et al.
(2021)

Resting-state EEG
power spectral
density features

Multi-Model Ensembles
Genetic Algorithms
Support Vector Machine
(SVM)

Genetic Algorithm Heuristic achieved 85.7% sensitivity, 89.3%
specificity, and 88.6% accuracy in (SCD) amyloid
positive/negative classification, and 83.3% sensitivity, 85.7%
specificity, and 84.6% accuracy in MCI amyloid positive/negative
classification.

Subjective cognitive
decline (SCD), MCI

Gaubert et al.
(2021)

Clinical variables
Resting-state EEG
power spectral
density features
(qEEG)
Magnetic
Resonance Imaging
(MRI)

Random Forest (RF)
Logistic regression
Support Vector Machine
(SVM)

qEEG was the strongest predictor of neurodegeneration, with
82% negative predictive value (NPV), 38% positive predictive
value (PPV), 77% specificity and 45% sensitivity. The
combination of demographic, neuropsychological data, ApoEǫ4,
and MRI hippocampal volumetry most strongly predicted
amyloid (80% NPV, 41% PPV, 70% specificity, 58% sensitivity)
and most strongly predicted decline to prodromal AD at 5 years
(97% NPV, 14% PPV, 83% specificity, and 50% sensitivity).

French INSIGHT-preAD
cohort, which includes
baseline data cognitively
normal individuals,
between 70 and 85 years
old, with subjective
memory complaints but
unimpaired cognition,
prodromal AD

(Continued)
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TABLE 11 (Continued)

References Proposed AD
biomarkers/
input
variables

Machine Learning
Models

Results Normal
cognition/
Alzheimer’s
disease stage

Geng et al.
(2022)

Sleep slow-waves
and spindles data,
spectral and
complexity features
from sleep EEG.

Support Vector Machine
(SVM)
Gate Recurrent Unit network
techniques (GRU)

The MCI classification accuracy of the GRU network based on
features extracted from sleep EEG was the highest at 93.46%.

MCI, HC

Khosroazad
et al. (2023)

Power Spectral
Density features
from PSG

Neural Networks (NN)
Kernel algorithms

Time-Lag (TL), extracted from high-frequency movements and
respiratory alterations during sleep early detect MCI in AD,
resulting in high sensitivity (86.75% for NN and 65% for Kernel),
specificity (89.25 and 100%), and accuracy (88 and 82.5%).

NC, MCI

Ada, AdaBoost; AD, Alzheimer’s Disease; AUC, Area under curve; CNN, Convolutional Neural Network; DT, Decision Trees; EEG, Electroencephalography; GNB, Gaussian Naive Bayes; GRU,

Gate Recurrent Unit network techniques; GBM, GBMBoost; GB, Gradient Boosting; KNN, K-nearest neighbors; LRP algorithm, Layer-wise relevance propagation; MRI, Magnetic Resonance

Images; MCI, Mild Cognitive Impairment; NPV, Negative predictive value; NN, Neural Networks; NC, normal cognition; PBML, Permutation-based Machine Learning; PET, Positron Emission

Tomography; PSG, Polysomnography; PPV, Positive predictive value; RF, Random Forest; RT, Regression Tree; SCD, Subjective cognitive decline; SVM, Support Vector Machine; SNAC,

Swedish National Study on Aging and Care; TL, Time-Lag; XGB, XGBoost.

relevant factors differed amongst ML algorithms, while sleeping
more than 2 h per day, gender, education level, age, waking up
throughout the night, and snoring were the variables with the
greatest feature importance across all ML algorithms (Nyholm
et al., 2024).

Interestingly, Kim et al. (2021) developed a spectral qEEG-ML
algorithm to predict AD defined by Aβ-PET positivity among
patients with subjective cognitive decline (SCD) and MCI.
Genetic Algorithm Heuristic achieved 85.7% sensitivity, 89.3%
specificity, and 88.6% accuracy in SCD amyloid positive/negative
classification, and 83.3% sensitivity, 85.7% specificity, and
84.6% accuracy in MCI amyloid positive/negative classification,
confirming previous results. The authors used other types of
EEG-ML algorithms to detect brain Aβ pathology validated with
Aβ PET. The best model demonstrated 90.9% sensitivity, 76.7%
specificity, and 82.9% accuracy in MCI + SCD (33 Aβ+, 43 Aβ−),
suggesting that qEEG could serve as a promising biomarker for Aβ

amyloid pathology (Kim et al., 2023).
Furthermore, Gaubert et al. (2021) evaluated the efficacy of an

ML approach in achieving early AD diagnosis based on Aβ-PET
and MRI measurement, introducing a multimodal non-invasive
biomarker strategy. Importantly, qEEG was the strongest predictor
of neurodegeneration, with 82% negative predictive value, 38%
positive predictive value, 77% specificity, and 45% sensitivity.
Besides the combination of demographic, neuropsychological data,
ApoEǫ4 and MRI hippocampal volumetry most strongly predicted
amyloid (80% NPV, 41% PPV, 70% specificity, and 58% sensitivity).

Remarkably, innovative research utilizing Support Vector
Machine classifiers and Gate Recurrent Unit network techniques
has demonstrated the potential of sleep EEG data, including
slow waves and spindles, to distinguish MCI from HC with high
accuracy (Geng et al., 2022). The MCI classification accuracy of
the GRU network based on features extracted from sleep EEG was
the highest at 93.46%. Their experimental findings demonstrate
that, as compared to awake EEG, sleep EEG can give more helpful
information for identifying MCI and HC.

Additionally, pioneering work has proposed a novel diagnostic
approach for MCI in AD, combining sleep-related movements with
advanced signal processing and ML techniques (Khosroazad et al.,

2023). This approach, which explores the relationship between
high-frequency movements and respiratory changes during sleep,
highlights the potential of advanced quantitative sleep signal
feature analyzes in a multimodal ML setting for early detection of
AD neuropathology. The approach employs Neural Networks and
Kernel algorithms, resulting in high sensitivity (86.75% for NN and
65% for Kernel), specificity (89.25 and 100%), and accuracy (88 and
82.5%) for early detection of MCI in AD.

Despite these advancements, the extensive exploration of
advanced quantitative sleep signal features to no invasively detect
the AD neuropathology within a multimodal ML framework
remains a promising area for future research.

6.5 Strengths and limitations of the study

To our knowledge, our study for the first time integrated
clinical variables, conventional PSG parameters, and quantitative
PSG signal features for the non-invasive prediction of core CSF
biomarkers of AD using various ML models.

This study is novel in that it applies computational engineering
to extract a wide range of quantitative signal features from
thoroughly preprocessed PSG signals, identifying potential
biomarkers for the early detection of AD. To date, no research has
delineated the relationship between these specific quantitative PSG
features and AD-related CSF biomarkers of neurodegeneration,
suggesting that sleep qEEG could demonstrate a topographic
specificity in their associations. Our approach involved working
with spectral, time-domain, and non-linear parameters directly
extracted from electrophysiological signals, indicating that PSG
recordings may contain additional crucial information for the
diagnosis of AD.

A significant aspect of this research is the rigorous cross-
validation ML methodology employed. We trained multiple ML
models to determine which could deliver the best performance
for our outcomes. The models most effective at addressing the
overfitting issue were Gradient Boosting Regressors, utilizing a
least absolute deviation loss function for Aβ42, a least squares
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loss for p-tau and a Huber loss for t-tau. The other optimized
ML models generally handled the scarcity of training data by
using regularization to construct simpler models that accept higher
training errors.

Moreover, in assessing correlations between the selected
variables and the CSF biomarkers, we found that not all variables
showed significant linear associations with the targets. This
demonstrates how ML facilitates the exploration of non-linear
relationships that may not be detectable using conventional
statistical methods, in addition to providing several other
advantages like as fault tolerance and real-time operation, making
them suitable for complex applications (Chang et al., 2021). In
the realm of modeling, linearity denotes a system or model’s
characteristic where the output varies directly with the input,
while non-linearity suggests a more intricate relationship between
input and output, eluding simple linear expressions attainable
through conventional statistical means. ML prioritizes precise
predictions, while traditional statistical models concentrate on
uncovering interrelations among variables. ML offers advantages in
flexibility and scalability over conventional statistical techniques,
rendering it suitable for diverse tasks such as diagnosis,
classification, and survival prognosis. A fundamental disparity
between ML and traditional statistical methods lies in their
primary objectives: the former emphasizes predictive accuracy,
while the latter focuses on deducing relationships among variables.
Additionally, ML adeptly addresses interactions, which are difficult
to investigate with traditional statistical methods that primarily
handle interactions between the principal determinant and single
potential confounders (Rajula et al., 2020).

We acknowledge the limitations of our study, which are
important to consider when interpreting the results. One of the
primary limitations is the reliance on a relatively small sample
size of 49 participants, which may limit the generalizability of
our findings. Furthermore, ethical considerations prevented us
from conducting a comparative analysis with a control group. The
absence of neuroimaging assessments, such as MRI, which are
known to correlate with disease progression and serve as critical
predictive markers for AD in patients with MCI (Jack et al., 2018),
is another limitation that merits attention. Moreover, we recognize
a notable limitation in our study, as patients were included solely
based on the 2011 NIA-AA clinical criteria (McKhann et al.,
2011), without considering the updated 2018 biological criteria
(Jack et al., 2018), due to the trial registration in 2016. This
approach may not fully capture the evolving understanding of the
disease, where biomarkers exhibit changes years before symptom
onset. The presence of normal biomarker levels, especially amyloid
pathology, in individuals with dementia suggests the potential for
an alternative diagnosis (Jack et al., 2018). Given these limitations,
we recommend a cautious interpretation of our results, although
we believe they contribute valuable insights.

The models that excelled in predicting the levels of the three
biomarkers were the Gradient Boosting Regressors, which utilized a
LAD loss for Aβ42, an LS loss for p-tau, and a Huber loss for t-tau.
These are among the most common loss functions for regression
challenges. The distinctions between them are as follows:

1. LAD loss is less sensitive to outliers but backs a closed-form
solution due to its non-continuous derivatives;

2. LS loss, on the other hand, penalizes large deviations more
severely, making it less robust to outliers, yet it tends to yield
more stable solutions (Natekin and Knoll, 2013);

3. The Huber loss integrates aspects of both LAD and LS losses
(Natekin and Knoll, 2013).

For instance, in predicting Aβ42 levels, outliers could be
disregarded with relative safety. In contrast, outliers played a
more critical role in optimizing the models for the tau-related
biomarkers. Examining Figure 1 reveals that p-tau and t-tau have
similar density distributions. Additionally, boosting techniques are
generally recognized for their low bias, which is the discrepancy
between the average prediction of the model and the actual value.
Put simply, a high-bias model tends to be overly simplistic and does
not fit the training data well, leading to significant errors in both the
training and the test datasets. However, it is essential to consider
that a low-bias model often has high variance, increasing the risk of
overfitting the training data.

Thus, despite the Gradient Boosting Regressors achieving some
of the lowest training errors, their MAEs on the test set were
still considerable. This suggests that, even with cross-validation to
fine-tune the models for an optimal balance in the bias-variance
trade-off, the models may still not generalize well beyond the
training data. In terms of ensemble models employing bagging
techniques, they typically displayed test errors comparable to those
of boosting methods but with increased training errors. Models
such as the Bagging Regressor (BR), Random Forest Regressor
(RFR), and Extra Trees Regressor (ETR) function by aggregating
the decisions for T individual decision trees, each trained on a
bootstrapped subset of the data. The final prediction is the majority
vote across these T trees. This approach reduces the variance
associated with single decision trees, resulting in a model that is
less prone to overfitting and demonstrates improved generalization.
Furthermore, decision trees, like those in a random forest,
provide insight into the importance of features during training.
However, the application of PCA for dimensionality reduction,
while preventing noise overfitting, obscures the interpretability
of model decisions. Other models generally address overfitting
by deliberately allowing higher training errors, thereby enhancing
their generalization capabilities to new data at the expense
of complexity.

Gaussian Process (GP) models, in contrast, exhibited higher
training errors than test errors, signifying potential underfitting.
This could indicate that the selected kernel was insufficient in
capturing the complexity of the data, potentially necessitating
a more sophisticated kernel for optimization. Although GPs
can assess feature importance through kernel length scales, this
interpretability is lost when PCA is applied. Support Vector
Regressors (SVRs) struck a better balance between training and
test errors, often with training errors marginally exceeding those
of other models. The K-Nearest Neighbors Regressors (KNR) also
managed the bias-variance trade-off effectively, sometimes with a
training error even surpassing the test error.

Regarding the analysis of the three biomarkers, the
lowest training errors were associated with the “ALL” subset
(incorporating clinical, PSG, and quantitative PSG-derived
variables), though test evaluations varied. This could be attributed
to the retention of a greater number of principal components
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for the “ALL” subset compared to others, potentially facilitating
overfitting. Additionally, the principal components of the “ALL”
subset represent linear combinations of a broader range of features,
thus encapsulating more detailed information about each sample.
For the Aβ42 biomarker, the “SLEEPVAR” subset—comprising
solely sleep parameters evaluated by experts-yielded the lowest
MAE during testing. However, it is important to note that none
of the models achieved optimal performance. Therefore, while
the findings are significant, they should be interpreted with
caution. To ensure the robustness of our findings across various
populations, we advocate for subsequent validation studies to
be conducted with independent cohorts of cognitively normal
subjects. Additionally, enhancing the predictive accuracy of our
models through incorporating data from multiple preclinical
cohorts and applying longitudinal, multimodal measures within a
nested cross-validation framework represents a promising avenue
for future research.

An intriguing prospect for further investigation is the
integration of neuropsychological assessments and MRI data as
well as blood biomarkers into our analytical framework. This
approach would allow for a thorough longitudinal evaluation of
the clinical progression toward prodromal AD, leading to a deeper
comprehension of neurodegenerative mechanisms. Additionally, it
would improve the predictive accuracy of our models and provide
less invasive methods for early AD detection. Upon validation of
our initial results, a critical next step would be to identify the most
predictive set of features for neurodegeneration, using performance
metrics as a guide. Advanced artificial intelligence techniques could
then be employed to determine the ability of these features to
differentiate between AD, MCI and HC groups. Moreover, the
exploration of automated analysis of PSG recordings through
neural network integration into our model offers a promising
direction. Such automation could potentially eliminate the need for
manual annotation by enabling the automatic detection of artifacts
and sleep stages.

7 Conclusions

This study highlights the potential of ML to assess
asymptomatic individuals at risk for AD through the analysis
of non-invasive and cost-effective biomarkers, underscoring
the ability of ML to uncover complex non-linear relationships
within intricate datasets, that may elude traditional statistical
methods. This could offer supplementary insights alongside other
biomarkers, hinting at AD pathology in asymptomatic individuals,
or functioning as an additional diagnostic tool for those ineligibles
for CSF biomarkers determination.

Ours results also suggest that relying solely on a single type
of biomarker may not suffice for a reliable AD early detection.
Notably, we emphasize the importance of specific quantitative PSG
signal features such as EEG skewness, Lempel Ziv and Sample
Entropy of thoracic effort signals, as reliable markers for predicting
neurodegeneration, along with conventional PSG parameters. The
utilization of portable PSG devices may establish a groundwork for
their utilization in clinical environments.

The demonstration of the viability of these innovative
approaches underlines their potential contribution to the early

diagnosis of AD, particularly through the prediction of core CSF
biomarkers and the exploration of their relationships with sleep
patterns.
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