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Background: Vascular cognitive impairment (VCI) is a major cause of cognitive

impairment in the elderly and a co-factor in the development and progression

of most neurodegenerative diseases. With the continuing development of

neuroimaging, multiple markers can be combined to provide richer biological

information, but little is known about their diagnostic value in VCI.

Methods: A total of 83 subjects participated in our study, including 32 patients

with vascular cognitive impairment with no dementia (VCIND), 21 patients with

vascular dementia (VD), and 30 normal controls (NC). We utilized resting-state

quantitative electroencephalography (qEEG) power spectra, structural magnetic

resonance imaging (sMRI) for feature screening, and combined them with

support vector machines to predict VCI patients at different disease stages.

Results: The classification performance of sMRI outperformed qEEG when

distinguishing VD from NC (AUC of 0.90 vs. 0,82), and sMRI also outperformed

qEEG when distinguishing VD from VCIND (AUC of 0.8 vs. 0,0.64), but both

underperformed when distinguishing VCIND from NC (AUC of 0.58 vs. 0.56). In

contrast, the joint model based on qEEG and sMRI features showed relatively

good classification accuracy (AUC of 0.72) to discriminate VCIND from NC,

higher than that of either qEEG or sMRI alone.

Conclusion: Patients at varying stages of VCI exhibit diverse levels of brain

structure and neurophysiological abnormalities. EEG serves as an affordable

and convenient diagnostic means to differentiate between different VCI stages.

A machine learning model that utilizes EEG and sMRI as composite markers

is highly valuable in distinguishing diverse VCI stages and in individually

tailoring the diagnosis.
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1 Introduction

Vascular cognitive impairment (VCI) is a leading cause of
chronic progressive cognitive impairment in the elderly population
and is caused by cerebrovascular lesions and their associated
risk factors (Biesbroek and Biessels, 2023). Vascular cognitive
impairment (VCI) spans a spectrum including subjective cognitive
decline (SCD), vascular cognitive impairment with no dementia
(VCIND), and vascular dementia (VD). Today’s research has
shown that in people with vascular cognitive impairment (VCI),
many subtle changes in the structure and function of the brain
have taken place prior to the appearance of overt cognitive
impairment and clinical deficits (Sang et al., 2020; Yang et al.,
2022; Badji et al., 2023). Some of the most significant challenges
at present are to identify brain disorders that show VCI in the
early stages of the disease and, if possible, to identify those
that may progress to VD. However, to date, the structural
brain characteristics and electrophysiologic functional changes in
different stages of VCI have not been quantitatively distinguished
in any relevant study. Mechanical learning methods that combine
neuroimaging features have been utilized in recent years for early
VCI diagnosis, demonstrating significant potential (Lu et al., 2020;
Li et al., 2021). However, there has been relatively little study
on combined neuroimaging and neurophysiology. Due to the
limitations of unimodal studies, a combined multimodal analysis
that incorporates both neuroimaging and neurophysiology may
offer a novel approach for identifying the structural and functional
changes in the brains of VCI patients at different stages. This could
potentially serve as a biomarker for identifying the various stages of
VCI and pave the way to explore new therapeutic targets. This study
aimed at investigating precision of sMRI and resting-state EEG in
discriminating between different stages of VCI, and at integrating
both techniques in discriminating between VCI, VCIND, and
healthy elderly using a support vector machine classification.

2 Materials and methods

All participants with VCI in the study were patients who
visited the Memory Clinic and the Ward of the Department of
Neurology at Hongqi Hospital, Affiliated to Mudanjiang Medical
College, from September 2021 to October 2022, with the primary
complaint of memory loss. All participants without cognitive
impairment were recruited from the general community or from
physical examinations at memory clinics. All participants provided
informed consent prior to their inclusion in the study. The detailed
methodologies are described below and in Figure 1. The study
was conducted in adherence with the guidelines laid out in the
Declaration of Helsinki. The Ethical Review Committee of Hongqi
Hospital, affiliated with Mudanjiang Medical College, approved the
study (Ethics No. 2022011).

2.1 Inclusion and exclusion criteria

All participants were sorted into three groups after undergoing
the Montreal Cognitive Assessment (MoCA) and the clinical
dementia rating scale (CDR) with physician supervision. These

groups consist of the NC group (n = 30), the VCIND group
(n = 32), and the VD group (n = 21). For the Montreal Cognitive
Assessment (MoCA) (Nasreddine et al., 2005), a cutoff value
of < 26 indicates cognitive impairment. Additionally, one point
is added to the raw MoCA score if the participant’s education
level is < 12. All participants in the study were right-handed
individuals of Han Chinese descent from northeastern China.
Enrollment requirements for the NC group included: (1) absence
of cognitive decline complaints; (2) a MoCA score of 26 or
higher and a CDR score of 0; (3) no identification of symptoms
or positive signs during the physical examination, and (4) no
significant anomalies found in the head magnetic resonance
imaging. Enrollment requirements for the VCIND group included
(Sachdev et al., 2014): (1) a complaint or evidence of cognitive
dysfunction from a knowledgeable source, with normal or slightly
impaired ability to perform daily activities; (2) a MoCA score less
than 26 and a CDR score equal to 0 or 0.5; and (3) an intracranial
lesion visible on imaging, meeting VCI diagnostic criteria and
clearly linked to cognitive decline. Enrollment requirements for
the VD group included (Erkinjuntti, 1994): (1) significant cognitive
impairment, reported by the patient or by an appropriate caregiver,
affecting activities of daily living, (2) MoCA score < 22 and CDR
score ≥ 1, and (3) cognitive impairment from VD confirmed
by imaging evidence of intracranial pathology meeting diagnostic
criteria and clearly associated with patient cognitive impairment.
Exclusion criteria: (1) The participant has a history of heart or
kidney disease, cancer, or other significant systemic illness. (2) The
cognitive decline is unrelated to cerebrovascular disease. (3) The
participant experiences progressive memory or cognitive decline
without associated imaging changes. (4) The participant is unable
to communicate due to severe impairment in hearing, vision,
or speech; (5) The participant displays symptoms of depression
and anxiety according to the Hamilton depression and anxiety
inventory; (6) The participant has a history of mental illness
or congenital developmental abnormalities; (7) The participant
refuses or is unable to undergo brain MRI and EEG; (8) The
participant experienced an acute cerebral infarction within the past
three months.

2.2 Neuropsychological tests

All participants underwent a thorough neuropsychological
evaluation, which assessed their verbal and visual situational
memory, attention, executive function, visuospatial skills, and
language proficiency. The evaluation utilized various specific tests,
such as the Montreal Cognitive Assessment (MoCA), shape trails
test (STT), shape trails test-A (STT-A), and shape trails test-B
(STT-B). The STT consisted of two components: shape trails test-
A (STT-A) and shape trails test-B (STT-B). All neuropsychological
assessments were performed under the guidance of a specialist
physician in neurology.

2.3 Acquisition of EEG data

Electroencephalography (EEG) data were collected early in
the morning, between 8:00 and 9:30 a.m., with patients awake,
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FIGURE 1

Data processing flow chart.

fasted, and in a quiet, closed-eye state. All EEG data were recorded
on the same digital EEG system (NicoletOneTM EEG system,
Natus Neurology Inc.), and a uniform signal acquisition standard
was used to eliminate bias caused by different EEG equipment
and parameters. Standardization of signal acquisition was used to
eliminate bias caused by different EEG equipment and parameters.
We collected data by placing a total of 16 electrodes (including
Fp1, Fp2, F7, F8, F3, F4, C3, C4, T3, T4, T5, T6, P3, P4, O1, and
O2) according to the international 10–20 standard lead system at a
sampling rate of 250 Hz, with the input impedance set to Z > 100
M�, and collected the EEG signals for at least 30 min.

2.4 EEG data processing

(1) We used the EEGLAB toolkit1 based on matlab2019b2 to
localize electrodes, reject useless electrodes, and perform mean-
based data re-referencing for all EEG data. (2) Select low frequency
1HZ high frequency 30HZ to filter and save the file; (3) Two

1 https://sccn.ucsd.edu/eeglab/download.php

2 https://matlab.vmecum.com/

or more EEG experts visually analyze the data and remove
bad segments and artifacts; (4) Run the EEGLAB independent
component analysis (ICA) toolbox to analyze the data for principal
components and remove ICA-unusable components; (5) Extraction
of EEG power spectra in each frequency band based on short-
time Fourier transform. (6) Finally, 64 qEEG features (16 channels,
4 frequency bands) were extracted for each patient, and we
performed multivariate analysis of covariance (MANCOVA) with
age, sex, and education as covariates for the NC, VCIND, and
VD groups, followed by multiple comparisons to control for error
rates at the level of statistical significance (using Bonferroni-Holm
correction), and after Bonferroni-Holm correction, post-hoc tests
were performed and significance was determined at p < 0.05.

2.5 Nuclear magnetic resonance data
acquisition

Magnetic resonance imaging (MRI) data acquisition for all
subjects was performed on a Philips Achieva 3.0T MRI machine,
using an 8-channel head coil, performing routine cranial transverse
T1WI sequence scans. Scanning parameters: FOV = 256 mm× 256
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mm2, slice thickness = 1 mm, GAP = 0, number of slices = 192,
TR/TE/TI = 7/3.2/1,100 ms, 7◦ flip angle, matrix = 256× 256.

2.6 Magnetic resonance data processing

We used MRIcron, SPM12 and DPABI software package to
analyze the NMR data and calculate the gray matter volume
of the whole brain voxel. All of the above were run on
MatLab (R2019b). The main steps were as follows: (1) MRIcron
software was used to convert the MRI data DICOM files of all
participants into NIfTI files; (2) the NIfTI files were imported
into CAT12 in SPM12 for segmentation; (3) quality checks
were performed, and the segmented gray matter image was
smoothed; (4) the smoothed data were imported into DPABI
for statistical analysis and image presentation (all gray matter
structures were partitioned using Anatomical Automatic Labeling).
(5) Using DPABI, the significant brain regions obtained from
the Voxel-based morphometry (VBM) analysis were set as
regions of interest (ROI), and the gray matter volumes of the
ROI were obtained.

2.7 Machine learning feature filtering

In this study, a support vector machine (SVM) model is
constructed and the algorithm consists of two main steps: training
of the SVM classifier and evaluation of the model. We divided the
83 samples into a training set and a test set at a ratio of 8:2 to
ensure the generalization performance of the model. In the model
of the NC group with the VCIND group, 24 NC participants and
26 patients of the VCIND group were randomly selected as the
training set to build the SVM model, and the remaining 12 were
used as the test set; in the NC group and VD group model, 24 NC
participants and 17 VD group patients were selected at random
as the training set to build the SVM model, and the remaining 10
were used as the test set; and in the VCIND group and VD group
model, 26 VCIND patients and 17 VD patients were selected at
random as the training set, and the remaining 10 patients were
used as the test set. In this study, we performed quantitative
electroencephalogram (qEEG) power spectrum analysis and VBM
analysis on the test sets of the NC group vs. VCIND group,
the NC group vs. VD group, and the VCIND group vs. VD
group, and we selected statistically significant (p < 0.05) data
obtained from two-way comparisons as categorical features (qEEG
power spectra and volume of brain area corresponding to gray
matter atrophy).

Then the LibSVM toolbox3 in MATLAB is used for support
vector machine classification, the model has two key parameters:
the kernel function and the regularization parameter, to optimize
the model’s performance, we chose the radial basis function as
the kernel function and used the grid search method in quintuple
cross-validation to determine the regularization parameter. We
used the model on the training set to predict the diagnostic
results on the test set and evaluated the predictive ability of the

3 https://www.csie.ntu.edu.tw/$\sim$cjlin/libsvm/

model using the receiver operating characteristic (ROC) curve
and the area under the ROC curve (AUC-ROC). This approach
helps to prevent overfitting of the model on the training set and
thus allows for a more accurate assessment of the generalization
ability of the model.

2.8 Data analysis

SPSS version 21 was used to analyze all clinical and
demographic data between groups. Count data are presented
as case numbers (proportion), and Fisher’s exact test was
used to analyze participant demographics. Normally distributed
data are presented as mean ± standard deviation, whereas
non-normally distributed data are presented as M (Q1, Q3).
Normally distributed data were analyzed by one-way analysis
of variance (ANOVA), and the least significant difference was
used for post-hoc testing. Non-normally distributed data were
tested using the Kruskal-Wallis H test, an independent-samples
non-parametric test (p < 0.05 was regarded as statistically
significant). All MRI image data were analyzed using DPABI.
Age, sex, education level, and total brain volume were used as
covariates, and the permutation test was used to correct for
multiple comparisons to analyze gray matter atrophy changes
in participants.

3 Results

3.1 Demographic and clinical
characteristics

The study included 83 subjects, and Table 1 displays their
demographic characteristics. The three patient groups differed
significantly in age, education level, history of hypertension, and
level of cognitive impairment (P < 0.05).

3.2 Results of sMRI

To reduce confounding, we used patient age, sex, education,
and intracranial volume as covariates and corrected for multiple
comparisons using the permutation test to analyze changes in
gray matter atrophy between participants. In our study, VBM
analysis showed significant differences only in gray matter in
the Putamen_L, Caudate_L, and Thalamus_R regions when
comparing the NC group with the VCIND group (as shown in
Figure 2 and Table 2), but differences in more extensive gray
matter atrophy were seen when comparing the VCIND group
with the VD group and the NC group with the VD group.
In the comparison between the VCIND group and the VD
group, it showed atrophy in 18 relevant brain regions including
Fusiform_L, Cerebelum_6_L, Cerebelum_4_5_R, Fusiform_R,
Lingual_R, Cerebelum_4_5_L, Cerebelum_6_R, and so on (as
shown in Figure 3 and Table 2); while the comparison between
NC and VD groups showed atrophy of 25 brain regions
including Thalamus_L, Thalamus_R, Fusiform_L, Olfactory_L,
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TABLE 1 Sample demographic and clinical characteristic.

NC (n = 31) VCIND (n = 32) VD (n = 21) F P

Sex (male)% 60.1 60.7 53 \ 0.089

Age 54.84± 7.82 59.41± 7.35 60.67± 10.93 3.586 0.032*

Education 10.53± 3.35 8.91± 3.55 7.24± 3.37 5.829 < 0.01**

Hypertension 5 21 13 20.232 < 0.01**

Coronary heart disease 2 3 2 0.092 0.912

Atrial fibrillation 2 0 0 0.056 0.946

Diabetes 8 11 6 2.311 0.106

Valvular heart disease 0 2 2 0.659 0.520

Smoking 12 10 6 0.690 0.505

MoCA 26± 2.4 22± 1.3 18.5± 4.4 \ < 0.01**

STT-A 45.6± 27.1 132.5± 3.3 181.7± 90.05 0.028*

STT-B 76.1± 38.4 157± 2.0 200.5± 2.2 \ < 0.01**

NC, healthy controls; VCIND, vascular cognitive impairment with no dementia; VD, vascular dementia; *p < 0.05; **p < 0.01.

FIGURE 2

The presence of gray matter atrophy in the VCIDS group compared to the NC group, indicated in blue, with a statistically significant difference
(p < 0.05).

Cerebelum_6_L, Cerebelum_4_5_R, Fusiform_R, and Lingual_R
(as shown in Figure 4 and Table 2).

3.3 EEG analysis results

In our experiment, the VCIND group exhibited an increase
in theta power in the O2 region and a decrease in beta power in
the O1-O2 region compared to the NC group. Three EEG power
spectra were statistically significant: the T3-O1 (Alpha1/Alpha2),
O2 (Beta1), and O2 (Theta) waves. As for the comparison between
the VD and VCIND groups, in addition to the power changes in
the O1-O2 region, it also showed an increase in theta in the frontal
and parietal lobes and a higher delta power in the F3-F4 region,
where the theta difference was most pronounced, and there were
a total of four power spectral features with statistically significant
differences, namely F4 (delta), O1-O2 (theta), T4 (beta2), and O2

(theta/gamma);The comparison of the NC and VD groups revealed
significant differences in six power spectra: P3 (Theta), F3 (Delta),
O1 (Alpha2), P4 (Theta/gamma), O2 (Alpha1/Alpha2), and O1-O2
(Beta1). Refer to Figure 5 and Table 2 for more details.

3.4 Feature extraction and selection

Based on the results of the VBM analysis, we labeled
voxels suggesting statistical significance, calculated the volume
of brain regions in their areas, and analyzed them (see Table 2
for details). We believe that since some features are useless,
irrelevant or redundant for classification, too many features
can lead to “overfitting,” so eliminating useless features and
selecting meaningful ones not only simplifies the classification
model, but also improves the classification accuracy. In the
training set, we selected 3 power spectral features and 2 sMRI
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TABLE 2 Feature extraction and selection.

NC (n = 31) VCIND (n = 32) VD (n = 21) p

Intracranial volume 1,319.24± 136.50 1,331.75± 169.48 1,358.54± 151.86 0.667

Gray matter volume 549.41± 42.43 533.39± 54.83 494.82± 58.84 0.002**

White matter volume 470.39± 44.78 473.00± 62.44 428.33± 70.52 0.017*

Cerebelum_Crus2_Lbc 2.70± 0.76 2.82± 0.76 2.37± 0.96 0.133

Cerebelum_8_Lc 3.11± 1.03 3.18± 0.90 2.53± 1.07 0.051

Cerebelum_6_Lbc 4.80± 0.48 4.71± 0.61 4.36± 0.63 0.023*

Fusiform_Lbc 4.39± 0.43 4.24± 0.51 3.86± 0.52 0.001**

Thalamus_Rabc 5.55± 0.47 5.57± 0.78 4.50± 0.82 0.000**

Thalamus_Lbc 5.24± 0.40 5.30± 0.77 4.46± 0.95 0.000**

Cerebelum_6_Rbc 4.60± 0.57 4.56± 0.62 4.10± 0.57 0.007**

Lingual_Rbc 3.26± 0.36 3.22± 0.34 2.98± 0.37 0.013*

Cerebelum_4_5_Rbc 4.74± 0.58 4.59± 0.71 4.39± 0.67 0.179

Cerebelum_4_5_Lbc 4.26± 0.48 4.18± 0.63 3.91± 0.60 0.089

Fusiform_Rbc 4.37± 0.54 4.26± 0.48 3.95± 0.59 0.021*

Lingual_Lbc 3.41± 0.33 3.35± 0.34 3.16± 0.45 0.053

ParaHippocampal_Rbc 4.43± 0.49 4.33± 0.46 4.03± 0.50 0.015*

Hippocampus_Rc 4.97± 0.46 4.94± 0.49 4.30± 0.56 0.000**

Hippocampus_Lc 5.10± 0.50 5.00± 0.56 4.40± 0.64 0.000**

Cingulum_Ant_Lbc 3.82± 0.48 3.74± 0.51 3.47± 0.60 0.062

Olfactory_Lc 5.43± 0.74 5.26± 0.69 4.83± 0.85 0.022*

Temporal_Inf_Lbc 3.84± 0.39 3.81± 0.43 3.41± 0.58 0.002**

ParaHippocampal_Lbc 4.11± 0.40 4.07± 0.41 3.87± 0.52 0.123

Amygdala_Rc 5.74± 0.58 5.67± 0.61 5.16± 0.69 0.003**

Amygdala_Lc 6.39± 0.67 6.29± 0.71 5.66± 0.88 0.002**

Rectus_Rbc 4.26± 0.55 4.21± 0.55 3.86± 0.59 0.032*

Olfactory_Rbc 5.49± 0.68 5.37± 0.69 4.99± 0.89 0.057

Vermis_4_5bc 3.36± 0.37 3.12± 0.44 3.11± 0.44 0.036*

Insula_Lc 4.76± 0.53 4.72± 0.50 4.27± 0.69 0.006**

Putamen_La 5.89± 0.65 5.94± 0.69 5.39± 1.12 0.038*

Caudate_La 4.91± 0.70 5.06± 0.93 4.63± 1.30 0.288

Thetaabc 0.23± 0.02 0.18± 0.02 0.31± 0.0 < 0.01**

Deltabc 0.41± 0.05 0.14± 0.03 0.26± 0.17 0.020*

Alpha2c 0.20± 0.01 0.21± 0.17 0.21± 0.29 0.023*

Theta/gammabc 0.14± 0.12 0.24± 0.05 0.17± 0.10 0.044*

Alpha1/Alpha2ac 0.37± 0.28 0.17± 0.21 0.22± 0.17 0.032*

Beta1ac 0.23± 0.14 0.20± 0.08 0.30± 0.07 0.018*

Beta2bc 0.31± 0.22 0.11± 0.22 0.28± 0.12 0.007*

aDenotes relevant brain regions with significant gray matter atrophy or power spectra with significant differences in the comparison between the NC and VCIND groups.
bDenotes relevant brain regions with significant gray matter atrophy or power spectra with significant differences in the comparison between the VCIND and VD groups.
cDenotes relevant brain regions with significant gray matter atrophy or power spectra with significant differences in the comparison between the NC and VD groups.
*p < 0.05; **p < 0.01.

features that were statistically significant in the NC group
compared with the VCIND group (see Table 2 for details, the
upper right corner is labeled as a); 4 power spectral features
and 11 sMRI features that were statistically significant in the
VCIND group compared with the VD group (see Table 2

for details, the upper right corner is labeled as b); 6 power
spectral features and 16 sMRI features that were statistically
significant in the NC group compared with the VD group
(see Table 2 for details, the upper right corner is labeled
as c).
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FIGURE 3

The presence of gray matter atrophy in the VD group compared to the VCIND group, indicated in blue, with a statistically significant difference
(p < 0.05).

FIGURE 4

The presence of gray matter atrophy in the VD group compared to the NC group, indicated in blue, with a statistically significant difference
(p < 0.05).

3.5 Machine learning models

Our study shows that sMRI has better classification ability
than qEEG in distinguishing VD from cognitively normal people.
The area under the ROC curve of the sMRI-based support vector
machine learning model is AUC = 0.90, and the area under the ROC
curve of the machine learning classification model based on the
qEEG features is AUC = 0.82. The “composite marker” model that
combines sMRI and qEEG achieves the best classification results,
with an area under the ROC curve of AUC = 0.98 (Table 3 and
Figures 6A–C). When distinguishing between VD and VCIND
populations, sMRI demonstrated better classification ability than
qEEG. The machine learning model based on sMRI had an area
under the ROC curve of AUC = 0.80, while the machine learning
classification model based on qEEG features had an AUC of only
0.64. The composite marker model, which combined sMRI and
qEEG, achieved optimal classification results with an ROC curve

AUC of 0.92 (Table 3 and Figures 6D–F). When using only sMRI
or qEEG features to differentiate between VCIND patients and NC,
both methods had poor classification ability, with an area under the
ROC curve of 0.56 for sMRI features and 0.54 for qEEG features.
However, the “composite marker” model, which combines both
sMRI and qEEG features, achieved relatively good classification
ability with an area under the ROC curve of 0.72 (Table 3 and
Figures 6G–I).

4 Discussion

This study applies a machine learning method that combines
sMRI with qEEG to compare the classification ability of single-
mode markers of qEEG or sMRI and composite markers of
qEEG+sMRI for VCIND and VD. We found that EEG performed
well in differentiating between VD and NC, with an AUC score
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FIGURE 5

Graph (A) represents the difference in EEG power spectra between NC and VD groups, graph (B) represents the difference in EEG power spectra
between VD and VCIND groups, and graph (C) labels the difference in EEG power spectra between VCIND and NC groups.

TABLE 3 Projected results.

Feature Accuracy% Sensitivity% Specificity% AUC

VD vs. HC sMRI 82.10 83.33 77.34 0.9

qEEG 64.28 58.21 71.28 0.82

sMRI+qEEG 86.28 88.31 79.79 0.98

VD vs. VCIND sMRI 62.31 60.23 68.36 0.8

qEEG 60.14 57.28 61.24 0.64

sMRI+qEEG 84.10 82.35 74.38 0.92

VCIND vs. HC sMRI 54.10 53.18 55.85 0.56

qEEG 51.03 50.64 53.18 0.54

sMRI+qEEG 73.85 69.24 70.01 0.72

NC, healthy controls; VCIND, vascular cognitive impairment with no dementia; VD, vascular dementia.
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FIGURE 6

(A) shows the accuracy of distinguishing VD group from NC group by qEEG feature model in support vector machine machine learning model; (B)
shows the accuracy of distinguishing VD group from NC group by sMRI feature model in support vector machine machine learning model; (C)
shows the accuracy of distinguishing VD group from NC group by composite markers to distinguish the accuracy of VD group from NC group; (D)
shows the accuracy of distinguishing VD group from VCIND group by qEEG feature model in support vector machine machine learning model; (E)
shows the accuracy of distinguishing VD group from VCIND group by sMRI feature model in the support vector machine machine learning model;
(F) shows the accuracy of distinguishing VD group from VCIND group by composite markers in the support vector machine machine learning
model; (G) shows the accuracy of distinguishing VCIND group from NC group by qEEG feature model in the support vector machine machine
learning model; (H) shows the accuracy of distinguishing VCIND group from NC group by sMRI feature model in the support vector machine
machine learning model. (H) represents the accuracy of distinguishing VCIND group from NC group by sMRI feature model in the machine learning
model of support vector machine. (I) shows the accuracy of distinguishing VCIND group from NC group by composite markers in the support
vector machine machine learning model.

of 0.82. One of the strongest predictors was elevated theta
power, and this effect was similarly demonstrated in several
regions, such as P3, O1, and O2 electrodes. In contrast, the EEG
model exhibited lower accuracy in classifying the VCIND group
compared to the NC group, with an AUC score of only 0.54.
The optimal EEG features for classification differed from those
used to differentiate between VD-NC, mainly in the form of an
increase in theta power at the O2 electrode and a decrease in
Beta power in the O1-O2 region, as was also found in a previous
study (Babiloni et al., 2021). Throughout history, fluctuations
in theta power have been associated with learning and memory
(Herweg et al., 2020). Theta power has been linked to the exchange

of information between hippocampus, entorhinal, perirhinal, and
parahippocampal cortices and the memory of constituent events
(Mayes et al., 2007). Previous studies have confirmed that an
increase in theta power correlates with the severity of vascular
injury (Herweg and Kahana, 2018). Additionally, a decrease in
beta power has been found to correlate with dementia (Giustiniani
et al., 2023). The neurophysiologic changes associated with VCI
are primarily characterized by damage to the neurovascular unit
(NVU). The neurovascular unit (NVU) is a complex anatomical
structure composed of blood-brain barrier-specialized endothelial
cells surrounded by the basal lamina and interacting with neurons,
astrocytes, microglia, pericytes, and extracellular matrix (Iadecola,
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2017; Zanon Zotin et al., 2021; Rundek et al., 2022). Damage to the
NVU in the early pathogenic stages may lead to impaired regulation
of cerebral blood flow, vascular permeability, immune transport,
and waste removal. Reduced perfusion flow to brain tissue and
vascular risk factors, such as hyperlipidemia, hyperglycemia, and
hyperuricemia, due to intracranial atherosclerosis, stenosis, and
occlusion, have superimposed effects that significantly increase
the production of pro-inflammatory molecules and cytokines.
This leads to increased neuroinflammation, damage to axons,
and consequent slowing of neural conduction, ultimately resulting
in altered rhythms of electrophysiological activity in the brain
(Torres-Simón et al., 2022). Previous studies have demonstrated
that an increase in slow-wave activity (delta and theta) and a
decrease in fast-wave activity (alpha and beta) reflects the loss
of synaptic innervation during the progression of the disease
(Musaeus et al., 2018). Our experiments have yielded similar
results. Theta power is widely regarded as the most reliable
predictor of patient status. An increase in theta is one of the
earliest neurophysiological changes observed in mild cognitive
impairment (Chino-Vilca et al., 2022). In our study, the most
significant difference in theta was observed between the VCIND
group and the NC in the posterior head region, specifically O1-
O2. In addition to the posterior head region, the VD group with
the VCIND group also showed increased theta power in the frontal
and parietal lobes and higher delta power in the F3-F4 region.
These changes may reflect broader cerebral cortex changes during
the later stages of VCI. The delta power changes occur at a later
stage.

In the present study, we also evaluated the early predictive
value of qEEG and sMRI in patients with VCI. In the qEEG
study, we found that increased theta power in the posterior head
showed the best results in differentiating the VD-NC group,
suggesting that theta power may be an early clinical manifestation
of neurodegeneration, and Chen et al. (2008) also concluded
that changes in theta power are associated with dysfunction of
brain networks, and that the elevation of theta power in fMRI
in corresponding brain regions is inversely proportional to the
BOLD signal (Laufs, 2008), which further supports our view. In
addition, animal studies have shown that theta waves are generated
in the hippocampus and are associated with functional changes in
the hippocampus (Fox et al., 1986). Accordingly, we propose that
changes in theta power in the early stages of vascular cognitive
impairment may be a marker of hippocampal impairment and
disruption of functional brain network connectivity in patients
with VCI. Cognitive impairment in VCI has long been reported in
previous studies (Hajjar et al., 2015; Boomsma et al., 2022), mainly
including executive function (Hajjar et al., 2009; Degen et al.,
2016), visuospatial function (Degen et al., 2016), and situational
memory (Song et al., 2020), and these cognitive alterations are
inextricably linked to structural changes in the brain of VCI
patients. In our experiments, the sMRI model outperformed EEG
in distinguishing VD from NC and VCIND participants. Both
achieved high classification accuracy with VD vs. HC: AUC = 0.9
and VD vs. VCIND: AUC = 0.8. However, sMRI performed
poorly in distinguishing between VCIND and NC participants
(AUC = 0). In the VCIND population, model features only
included Putamen_L and Thalamus_R, indicating that extensive
gray matter atrophy has not yet developed and structural changes
in the brain are not yet evident. This is consistent with previous

studies (Frantellizzi et al., 2020). The decrease in gray matter in
the thalamic region among VCIND patients may be linked to a
decline in executive function, as previously demonstrated by Cao
et al. (2010). The VCIND group exhibited impairments in various
cognitive domains, ranging from 17 to 66%, with the lowest rate in
the Clock Plotting Trial and the highest in the STT-A. Additionally,
there were significant reductions in regional cerebral blood flow
(rCBF) bilaterally in the thalamus compared to NC. Our EEG
model is comparable to previous studies in terms of classification
rate (Al-Qazzaz et al., 2018; Torres-Simón et al., 2022), achieving
approximately 85–90% accuracy in distinguishing between the VD
and NC groups, but only 60% accuracy in distinguishing between
the VCIND and NC groups. The better performance of sMRI
in categorizing VD versus NC compared with resting-state EEG
may demonstrate that anatomical information captured by sMRI
features is more sensitive than the neurophysiological information
provided by EEG. The study found that models using only EEG
or sMRI features had low accuracy in distinguishing between
VCIND and NC groups. However, the “composite marker” model,
which combined both features, achieved a classification accuracy
of 72%. This discovery could potentially lead to earlier detection
and intervention in more patients with early, undetectable VCIND,
ultimately reducing the growth rate of VD.

Our study combines qEEG with sMRI to build a support
vector machine classification model, which not only highlights the
advantages in early identification of patients with VCI, but also
helps to explore biomarkers with significant differences between
patients with VCI and normal subjects. The discovery of these
biomarkers may help to understand the biological mechanisms of
the disease and may also contribute to the search for potential
therapeutic targets for VCI.

Our study has limitations. It is important to note that these
limitations do not invalidate the results of our study. We did
not follow the participants longitudinally, and we did not validate
the predictive power of the “composite marker” model of EEG
and sMRI for disease progression in patients with VCI. Future
studies should expand the sample size, extract more accurate EEG
and sMRI features, and conduct longitudinal studies to clarify the
biological features related to the progression of patients with VCI.
This will help establish a prediction model for the progression
of VCI, accurately identifying and predicting the progression of
patients with VCIND in the early stages when symptoms are
not significant.
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