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Objective: Ferroptosis is implicated in the pathogenesis of neurodegenerative 
disorders such as Alzheimer’s disease, Parkinson’s disease, and vascular 
dementia, implying that it may have a regulatory effect on the progression of 
these diseases. However, the specific role of ferroptosis-related genes (FRGs) in 
Alzheimer’s disease (AD) is not yet fully understood. The aim of the study was 
to detect ferroptosis related genes with regulatory functions in the disease and 
explore potential mechanisms in AD.

Methods: Hub FRGs were obtained through multiple algorithms based on the 
GSE5281 dataset. The screening process was implemented by R packages 
including limma, WGCNA, glm and SVM-RFE. Gene Ontology classification 
and pathway enrichment analysis were performed based on FRGs. Biological 
processes involved with hub FRGs were investigated through GSVA and 
GSEA methods. Immune infiltration analysis was performed by the R package 
CIBERSORT. Receiver operating characteristic curve (ROC) was utilized to 
validate the accuracy of hub FRGs. The CeRNA network attempted to find non-
coding RNA transcripts which may play a role in disease progression.

Results: DDIT4, MUC1, KLHL24, CD44, and RB1 were identified as hub FRGs. 
As later revealed by enrichment analysis, the hub FRGs had important effects 
on AD through involvement in diverse AD pathogenesis-related pathways such 
as autophagy and glutathione metabolism. The immune microenvironment 
in AD shows increased numbers of resting NK cells, macrophages, and mast 
cells, with decreased levels of CD8 T cells when compared to healthy samples. 
Regulatory T cells were positively correlated with MUC1, KLHL24, and DDIT4 
expression, while RB1 showed negative correlations with eosinophils and CD8 T 
cells, suggesting potential roles in modulating the immune environment in AD.

Conclusion: Our research has identified five hub FRGs in AD. We concluded that 
ferroptosis may be involved in the disease.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that affects the cerebral cortex 
and commonly occurs in older adults (Weller and Budson, 2018; Scheltens et al., 2021). Due 
to the aging population, the incidence of AD is increasing, making it a significant age-related 
health concern. AD typically presents with progressive memory loss, cognitive impairment, 

OPEN ACCESS

EDITED BY

Shahnawaz Ali Bhat,  
Aligarh Muslim University, India

REVIEWED BY

Minhong Neenah Huang,  
Mayo Clinic, United States
Daishi Chen,  
Jinan University, China
Leonard Ritter,  
Nürnberg Hospital, Germany

*CORRESPONDENCE

Yuting Sun  
 sunyuting1026@163.com  

Yu Xiao  
 xiaoy3@outlook.com

RECEIVED 11 January 2024
ACCEPTED 08 April 2024
PUBLISHED 22 April 2024

CITATION

Sun Y, Xiao Y, Tang Q, Chen W and 
Lin L (2024) Genetic markers associated with 
ferroptosis in Alzheimer’s disease.
Front. Aging Neurosci. 16:1364605.
doi: 10.3389/fnagi.2024.1364605

COPYRIGHT

© 2024 Sun, Xiao, Tang, Chen and Lin. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 22 April 2024
DOI 10.3389/fnagi.2024.1364605

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2024.1364605&domain=pdf&date_stamp=2024-04-22
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1364605/full
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1364605/full
https://orcid.org/0009-0004-3530-2313
https://orcid.org/0000-0003-2216-9686
mailto:sunyuting1026@163.com
mailto:xiaoy3@outlook.com
https://doi.org/10.3389/fnagi.2024.1364605
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2024.1364605


Sun et al. 10.3389/fnagi.2024.1364605

Frontiers in Aging Neuroscience 02 frontiersin.org

and motor dysfunction. Its underlying causes and mechanisms 
remain largely unknown, posing significant challenges for its 
prevention and treatment (Blennow and Zetterberg, 2018). The 
pathogenesis of AD is a complex multifactorial process that involves 
the interaction of several aspects such as abnormal protein 
deposition, neuronal damage, inflammatory response, and oxidative 
stress. The presence of beta-amyloid (Aβ) plaques in the brains of 
AD patients is one of the key features of the disease. These plaques 
interfere with signaling between neurons, leading to impaired 
neuronal function and death. Another important pathological 
feature is neurofibrillary tangle (NFTs), caused mainly by abnormal 
aggregation of Tau proteins. These tangles lead to structural damage 
to neurons and affect normal neuronal function. Inflammatory 
responses and oxidative stress also play an important role in the 
pathogenesis of AD. The inflammatory response can accelerate 
neuronal damage, while oxidative stress leads to cell membrane and 
DNA damage, exacerbating disease progression.

Ferroptosis is a novel form of iron-dependent cell death that 
differs from traditional cell death such as apoptosis and necrosis 
(Dixon et  al., 2012). This process involves a complex regulatory 
network. Ferroptosis is characterized by the accumulation of 
intracellular iron leading to increased oxidative stress, which 
ultimately triggers lipid peroxidation and cell death (Cao and Dixon, 
2016). Cellular scavenging of lipid peroxides relies primarily on the 
action of glutathione peroxidase 4 (GPX4), a glutathione peroxidase 
that is an important antioxidant enzyme within the cell. Cells take 
up cystine from outside the cell via the cystine/glutamate antiporter 
(System Xc-), and cystine is an important raw material for the 
intracellular biosynthesis of the reducing substance glutathione 
(GSH). GPX4 can protect cell membranes from oxidative damage by 
using glutathione as a substrate to reduce lipid peroxides to normal 
phospholipid molecules. When System Xc- is inhibited, GSH is 
depleted, ultimately leading to inactivation of the GPX4, resulting in 
the accumulation of lipid peroxidation and ferroptosis (Wei et al., 
2020). During the ferroptosis, mitochondria in ferroptosis show 
smaller size, wrinkled membranes, reduced or absent cristae, and 
fragmented outer membranes. Nuclear morphology changes are not 
prominent. Additionally, there is an association between ferroptosis 
and neurodegenerative diseases such as Alzheimer’s disease, 
Huntington’s disease and Parkinson’s syndrome (Cardoso 
et al., 2017).

It has been shown that GSH/GPX4 is involved in ferroptosis 
in AD. Decreased GSH levels in the hippocampus and frontal 
cortex are associated with severe cognitive impairment, suggesting 
that GSH may be  a biomarker for AD (Ayton et  al., 2020). 
However, oral GSH supplementation is difficult to restore brain 
GSH levels because GSH is easily hydrolyzed and difficult to cross 
the blood–brain barrier. N-acetyl-L-cysteine (NAC) can efficiently 
cross the blood–brain barrier to enter the brain. In an animal 
model of AD, NAC modulates brain GSH levels to exert an anti-
lipid peroxidative effect. The use of NAC can enhance the 
permeability of cell membrane and mitochondrial membrane, 
thereby increasing the level of GSH, inhibiting ferroptosis and 
exerting neuroprotective effects. Furthermore, ferroptosis 
interacts with Aβ and amyloid precursor protein (APP) (Tardiolo 
et al., 2018; Terluk et al., 2019). Aβ reduces Fe3+ to Fe2+, leading to 
the generation of free radicals and damage to neurons. APP is a 
precursor of Aβ. If cleaved by β-secretase, it produces neurotoxic 

Aβ. Furin regulates the activity of secretase. Iron overload inhibits 
the expression of Furin and enhances the activity of β-secretase, 
which increases Aβ production (Ward et al., 2014). In addition, 
ferroptosis interacts with tau proteins and NFTs. Dysregulation of 
brain iron homeostasis is closely related to tau proteins and NFTs. 
Tau proteins are hyperphosphorylated and aggregated into NFTs. 
Iron regulates tau protein phosphorylation, which affects iron 
efflux. This leads to the vicious cycle of neuronal iron deposition 
and formation of NFTs (Wang and Mandelkow, 2016). Given the 
interplay between ferroptosis and AD, exploring potential links 
between the two might identify novel therapeutic targets for 
treatment. The objective of this work was to explore whether 
ferroptosis-related genes could play a key role in AD and analyze 
their effects on the immune microenvironment and pathways 
using bioinformatics.

2 Materials and methods

2.1 Data acquisition and processing

GSE5281 was retrieved from the Gene Expression Omnibus 
(GEO) database.1 The GSE5281 dataset embodied a total of 161 
samples, including 74 healthy samples and 87 AD samples. This 
dataset was considered as a training set for analysis by the main body 
of this research. The limma R package was used to remove sample 
differences. The FRGs (n = 259) used in this study were obtained from 
FerrDb.2

2.2 Differential expression analysis

The GSE5281 series matrix files were annotated with an official 
gene symbol using the data table from the microarray platform, and 
then gene expression matrix files were obtained. FactoMineR and 
factoextra R packages were used to analyze and draw the plot. 
Principal component analysis (PCA) was conducted using the whole 
gene list. Limma R package was used to remove batch effects and 
conduct DEG analysis. The threshold of DEGs was set as |log2(fold-
change)| > 1 and p  < 0.05. GO function and KEGG pathway 
enrichment analyses were conducted to explore the core mechanism 
and pathway of genes obtained through the above process. R package 
clusterProfiler was used to conduct GO and KEGG pathway 
enrichment analysis. The R package ggplot2 was adopted to visualize 
the results of functional enrichment analysis. Statistical significance 
was set at adjusted-p < 0.05.

2.3 Co-expression network construction 
by WGCNA

The “WGCNA” R package was used to construct a 
co-expression network for all genes in AD and healthy brain 

1 https://www.ncbi.nlm.nih.gov/geo/

2 http://www.zhounan.org/ferrdb/current/
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tissue samples. Genes with the top 25% mean were filtered by the 
algorithm for further analysis. First, the hclust function 
was utilized for sample clustering to eliminate outlier samples, 
with the parameter “method = average” set for distance 
calculation. GSM119676 was deleted to ensure that the results of 
the network construction were reliable. 73 AD samples and 87 
healthy samples were involved in WGCNA analysis. Then, the 
number 7 was selected as the soft threshold for network 
construction by function pickSoftThreshold. The gene network 
was constructed by the one-step method. Second, after 
transforming the adjacency matrix into a topological overlap 
matrix (TOM), a hierarchical cluster tree of genes was generated 
by hierarchical clustering. The identification of highly correlated 
co-expressed gene modules was made by the dynamic tree cut 
method, and the connection between the module eigengene (ME) 
and disease was analyzed using the Pearson correlation 
coefficient. Finally, yellow module genes were derived as DRGs 
for further analysis.

2.4 Identification of hub FRGs for AD

The least absolute shrinkage and selection operator (LASSO) 
algorithm was applied with the glmnet package to reduce 
the dimensions of the data. The DRGs and DEGs between 
AD patients and healthy samples were identified with the 
LASSO algorithms. Response type was set as binomial and 
alpha was set as one. Meanwhile, a support vector machine-
recursive feature elimination (SVM-RFE) model was established 
with a SVM package, which was compared by the average 
misjudgment rates of their 10-fold cross-validations. Finally, hub 
ferroptosis-related genes for AD were identified by overlapping 
genes derived from the two algorithms. Venn diagrams 
were drawn using the jvenn plug-in online.3 To evaluate the 
diagnostic performance of each selected gene, we calculated the 
receiver operating characteristic (ROC) curve and determined 
the corresponding area under the curve (AUC) accuracy, 
sensitivity, and specificity. This process was implemented through 
R package glm.

2.5 Single-gene gene set enrichment 
analysis enrichment analysis

This analysis is implemented in the GSEA package in R. To 
further explore the related pathways of the five hub ferroptosis-
related genes, we  calculated the correlation between the hub 
ferroptosis-related genes and all other genes in the GSE5281 
dataset. Subsequently, all genes were sorted according to their 
correlations from high to low, and these sorted genes were 
considered to be the gene set to be tested. Meanwhile, the KEGG 
signaling pathway set was invoked as a predefined set to detect 
its enrichment in the gene set. A p-value of less than 0.05 was 
deemed statistically significant.

3 https://www.bioinformatics.com.cn/static/others/jvenn/example.html/

2.6 Single-gene gene set variation analysis 
enrichment analysis

GSVA is a gene set variation analysis. This analysis was 
implemented in the GSVA package in R. In this study, we utilized the 
median of hub FRGs expression and divided them into high- and 
low-expression groups. Then, we used the KEGG pathway set as the 
background gene set to perform GSVA analysis on each hub of 
ferroptosis-related genes. Simultaneously, we  applied the limma 
package to analyze the difference in GSVA scores of the hub FRGs’ 
high-expression group samples. The difference screening condition 
was t > 0, p < 0.05. We demonstrated the top 10 GSVA-KEGG pathways 
through a visual plot.

2.7 Immune infiltration analysis

The proportion of 22 types of infiltrating immune cell types in 
each tissue from the GSE5281 dataset was predicted using the R 
package CIBERSORT. The correlation between hub FRGs and 
immune cells was calculated using the R package GSVA. The 
correlation plot was displayed using the R package pheamap.

2.8 Construction of ceRNA network

The relationship between mRNAs and miRNAs was predicted on 
the basis of four databases: MirGeneDB2.1, miRDB, miRBase, and 
miRWalk. We selected the miRNAs which appeared in more than two 
databases. The relationship between miRNAs and lncRNAs was 
predicted on the basis of the ENCORI database. Subsequently, 
we integrated the interaction between mRNAs, miRNAs and lncRNAs 
to construct a ceRNA regulatory network. Cytoscape (version 3.10.1) 
was used to visualize the ceRNA network.

2.9 Statistical analysis

All data processing and analyses were done using R software 
(version 4.3.0). To compare the two groups of continuous variables, 
the statistical significance of normally distributed variables was 
assessed using an independent Student’s t-test. For non-normally 
distributed variables, differences were analyzed using the Mann–
Whitney U test (Wilcoxon rank sum test). The Chi-square test or 
Fisher’s exact test was utilized to compare and evaluate the statistical 
differences between the two groups of categorical variables. All 
p-values were two-tailed, and a threshold of p < 0.05 was considered 
statistically significant.

3 Results

3.1 Identification of DEGs in GSE5281

The workflow of this study is shown in Figure  1. In our 
analysis of the GSE5281 dataset, we utilized principal component 
analysis (PCA) to reduce the dimensions of the expression profiles 
and assess the variability in sample grouping. The result showed 
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that the first principal component (Dim1) accounted for 10.7% of 
the total variance. The second principal component (Dim 2) 
accounted for an additional 6.8% of the total variance (Figure 2A). 
The PCA plot showed that the variation between the AD and 
healthy groups was comparatively significant. Furthermore, 
we identified a total of 1,187 differentially expressed genes (DEGs) 
in the GSE5281 dataset through the Limma R package. Among 
these DEGs, 642 were found to be upregulated, while 545 were 
downregulated. To visualize the distribution of these DEGs, 

particularly in relation to Alzheimer’s disease (AD), we depicted 
a volcano plot in Figure 2B.

3.2 WGCNA of GSE5281

We conducted a WGCNA analysis on the GSE5281 dataset to 
explore the disease-related genes (DRGs). For sample quality control, 
we performed sample clustering and identified an outlier, GSM119676, 

FIGURE 1

Work flow.

FIGURE 2

Identification of DEGs in the GSE5281 dataset. (A) Principal component analysis (PCA) shows a significant difference between healthy and AD groups. 
(B) Volcano plot for DEGs analysis between healthy and AD groups.
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which was subsequently removed (Figure 3A). The WGCNA analysis 
included 87 AD samples and 73 healthy human samples, comprising 
a total of 23,521 genes. We selected the top 5,880 genes based on their 
mean values for WGCNA analysis in this study. In order to achieve 
scale-free networks, we set the threshold as R2 = 0.85. The optimal soft-
threshold power of 7 was selected (Figures  3B,C) to construct 
hierarchical clustering trees using the WGCNA R packages 
(Figure 3D). Subsequently, we constructed co-expression networks to 
investigate the associations between clinical features and these 
modules (Figure 3E). Analysis of the results revealed that the yellow 
module, containing 267 genes, showed a strong positive correlation 
with AD (Cor = 0.53, p = 9.7e−21) (Figure 3F).

3.3 Ferroptosis-related genes identification 
in AD

We first obtained ferroptosis-related genes by overlapping the 
differentially expressed genes (DEGs) and (disease-related genes) 
DRGs with the FerrDb database separately (Figures 4A,D). To visually 
represent the expression differences, we generated a heatmap for the 
DE-FRGs and the DR-FRGs (Figures 4B,E). In total, we obtained 24 
ferroptosis-related genes (FRGs) that consisted of both the DE-FRGs 
and DR-FRGs. A total of 24 ferroptosis-related genes (FRGs) are 
shown in Supplementary Table S4. To gain further insights into the 

potential functions of these FRGs at the biological level, we performed 
GO and KEGG enrichment analyses. The GO enrichment analysis 
revealed that the FRGs were significantly enriched in 39 biological 
processes (BPs) and 9 molecular functions (MFs). Notably, the most 
prominent projects included the glutamate metabolic process, 
intrinsic apoptotic signaling pathway in response to DNA damage by 
p53 class mediator, carboxylic acid biosynthetic process, organic acid 
biosynthetic process, and six other GO terms (Figure  4C). 
Furthermore, the KEGG enrichment analysis showed that the FRGs 
were involved in various pathways related to ferroptosis and other 
biological processes (Figure 4F). These pathways included glutathione 
metabolism, cysteine and methionine metabolism, p53 signaling 
pathway, and several other KEGG pathways. In summary, through 
overlapping the DEGs and DRGs with FerrDb, we obtained a set of 
FRGs that were further analyzed for their biological functions using 
GO and KEGG enrichment analyses. This analysis revealed their 
involvement in numerous biological processes and pathways related 
to ferroptosis and other cellular functions (See Figure 5).

3.4 Hub FRGs were identified for AD

In order to assess the regulatory potential of the ferroptosis-
related genes (FRGs) in Alzheimer’s disease (AD), we applied two 
machine learning algorithms (LASSO and SVM-RFE) to the GSE5281 

FIGURE 3

WGCNA analysis for disease-related genes (DRGs). (A) Samples clustering to detect the outliers. (B) The corresponding scale-free topological model fit 
indices at different soft threshold powers. (C) The corresponding mean connectivity values at different soft threshold powers. (D) Cluster dendrogram 
of genes. (E) Correlations between different modules and clinical traits. (F) Correlation of module membership and gene significance in the yellow 
module.
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dataset to identify hub FRGs that could distinguish AD patients from 
healthy individuals. First, we utilized the LASSO logistic regression 
algorithm with penalty parameter tuning conducted by 10-fold cross-
validation. This analysis narrowed down the FRGs to a set of 
AD-related features (Figures 6A,B). Next, we applied the SVM-RFE 
algorithm to further filter the initial set of 24 FRGs and identify the 
optimal combination of featured genes. Through this process, 
we identified 6 genes (with a maximal accuracy of 0.882 and minimal 
RMSE of 0.118) as optimally featured genes (Figures  6C,D). The 
results obtained from the LASSO and SVM-RFE models were then 
intersected to identify the overlap of key FRGs. In this analysis, 5 hub 
FRGs (DDIT4, MUC1, KLHL24, CD44, and RB1) were identified as 
the most relevant genes for distinguishing AD from healthy 
individuals (Figure 6E). These 5 hub FRGs can serve as potential 
biomarkers or therapeutic targets for further analysis and investigation 
in the context of AD (Supplementary Table S1). We utilized a logistic 
regression model based on the 5 hub FRGs mentioned above. The 
resulting ROC curves demonstrated that our logistic regression 
model, incorporating five hub FRGs, exhibited a high discriminatory 
ability between healthy and AD samples, with an AUC of 0.968 
(Figure 6F). Furthermore, to assess the individual gene performance 
in distinguishing AD from healthy samples, we generated ROC curves 
for each of the five hub FRGs. Figure 6G illustrates that all genes 
achieved an AUC greater than 0.6. Collectively, these findings indicate 
that the logistic regression model outperforms individual marker 

genes in terms of accuracy and specificity when distinguishing AD 
samples from healthy samples.

3.5 GSVA and GSEA analysis of hub FRGs

To explore the potential functions of hub FRGs, we conducted a 
single-gene GSEA-KEGG pathway analysis. The top  10 pathways 
enriched for each marker gene were illustrated in Figures 6A–E. After 
a comprehensive analysis, we found that hub FRGs were enriched in 
neurodegenerative disorders including Amyotrophic lateral sclerosis, 
Huntington’s disease, Prion disease, Parkinson’s disease, Alzheimer’s 
disease and Spinocerebellar ataxia. Moreover, we found that the hub 
FRGs were also enriched in “focal adhesion”, “hippo signaling 
pathway”, “PI3K − AKT signaling pathway”, “carbon metabolism”, 
“oxidative phosphorylation”, “ubiquitin mediated proteolysis” and 
“proteasome”. Besides, we found that CD44 was closely related to virus 
infection including Coronavirus (also enriched in DDIT4), Epstein-
Barr virus, Hepatitis B and Human papillomavirus. RB1 was related 
to many kinds of cancer such as prostate cancer, small cell lung cancer 
and hepatocellular carcinoma. CD44 and RB1 were related to the 
FoxO signaling pathway which is a reported regulator of cell 
senescence. Similarly, GSVA analysis suggested that overexpression of 
hub FRGs can induce AD by regulating various pathways and 
interactions (Figures 7F–J).

FIGURE 4

Identification of DE-FGs and DR-FGs. (A) Venn diagram for DE-FGs in DEGs and FerrDb (B) Heatmap plot for DE-FGs in FerrDb and DEGs (C) GO 
enrichment analysis for FRGs (D) Venn diagram for DR-FGs in DRGs and FerrDb (E) Heatmap plot for DR-FGs in DRGs and FerrDb (F) KEGG enrichment 
analysis for FRGs.
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3.6 Immune cell infiltration analysis

The immune microenvironment has been found to be closely 
linked to Alzheimer’s disease (AD). In order to investigate the 
differences in the immune microenvironments between AD 

patients and healthy samples, we  utilized the CIBERSORT 
algorithm. Figure 8A demonstrates that AD samples have a higher 
proportion of resting natural killer (NK) cells, macrophages, and 
mast cells compared to healthy samples. Conversely, CD8 T cells 
were found to be  expressed at lower levels in AD samples. 

FIGURE 5

Identification of hub FRGs. (A,B) SVM-RFE algorithm to identify the optimal combination of feature genes. Finally, 6 genes (maximal accuracy  =  0.882, 
minimal RMSE  =  0.118) were identified as the optimal feature genes. (C,D) By LASSO logistic regression algorithm, with penalty parameter tuning 
conducted by 10-fold cross-validation, was used to select 24 FRGs. (E) The 5 hub FRGs obtained from the LASSO and SVM-RFE models. (F) Logistic 
regression model to identify the AUC of disease samples. (G) ROC curves for each hub FRGs.

FIGURE 6

Single-gene GSEA-KEGG pathway analysis in CD44 (A), DDIT4 (B), KLHL24 (C), MUC1 (D), RB1 (E).
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Furthermore, we conducted a Pearson correlation analysis and 
discovered that regulatory T cells were positively correlated with 
the expression of MUC1, KLHL24, and DDIT4 (Figure  8B). 
Figure  8B illustrates that the expression of RB1 is negatively 
correlated with eosinophils and CD8 T cells. This suggests that 
RB1 may also play a role in modulating the immune 

microenvironment in AD. CD44 had strong positive and negative 
correlations with gamma delta T cells and macrophages, 
respectively. Overall, these findings provide evidence for the 
involvement of the immune system in AD pathogenesis and 
highlight the potential role of hub FRGs in shaping the immune 
microenvironment of AD patients.

FIGURE 7

Single-gene GSVA-KEGG pathway analysis in CD44 (A), DDIT4 (B), KLHL24 (C), MUC1 (D), RB1 (E).

FIGURE 8

Immune cell infiltration analysis. (A) The CIBERSORT algorithm was utilized to investigate variances in the immune microenvironment between AD and 
healthy samples. (B) Pearson correlation analysis revealed that immune cells correlated with hub FRGs. (*p  <  0.05 and **p  <  0.01).
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3.7 Construction of the ceRNA network

Finally, we constructed a ceRNA network based on 5 hub FRGs 
through multiple non-coding RNA databases. The network included 
746 nodes (4 hub FRGs, 123 miRNAs and 619 lncRNAs) and 1,601 
edges (Figure 9). In detail, we found that a total of 241 lncRNAs could 
competitively bind hsa-miR-1180-5p, hsa-miR-143-3p, hsa-miR-
296-5p, hsa-miR-3121-3p, hsa-miR-3126-5p, hsa-miR-4766-5p, 
hsa-miR-670-3p, hsa-miR-7151-5p and hsa-miR-513a-5p regulated 
CD44. For DDIT4, we  found that 7 lncRNAs could regulate the 
expression of DDIT4 through competitive binding with 11 miRNAs. 
Among them, AL031282.2 was observed to competitively bind with 
hsa-miR-1306-5p, while AL391244.1 exhibited competitive binding 
with hsa-miR-30a-5p, hsa-miR-30c-5p, hsa-miR-30b-5p, hsa-miR-
30e-5p, and hsa-miR-30d-5p. In the ceRNA network of KLHL24, there 
were 7 lncRNAs that could competitively bind 8 miRNAs and regulate 
the gene. Among these lncRNAs, AL139220.2 could competitively 
bind hsa-miR-124-3p and hsa-miR-506-3p. We identified a total of 12 
lncRNAs that could competitively bind with 13 different miRNAs to 
influence the expression of the RB1 gene. Within this group, the 
shared lncRNA LINC01128 demonstrated competitive binding with 
hsa-miR-520a-5p and hsa-miR-525-5p. MUC1 was not found to 

be associated with regulatory non-coding RNAs through database 
searches. More details of the ceRNA network are shown in 
Supplementary Tables S2, S3.

4 Discussion

4.1 Conclusion

In this study, we conducted an analysis to investigate the role of 
certain genes related to ferroptosis in Alzheimer’s disease (AD). 
Specifically, we identified five genes (CD44, DDIT4, KLHL24, MUC1, 
and RB1) that are significantly associated with ferroptosis in AD, and 
are up-regulated in disease. Among these genes, DDIT4 and KLHL24 
serve as markers for ferroptosis, while CD44, MUC1, and RB1 act as 
suppressors. To begin, we utilized bioinformatics to identify DEGs 
and DRGs in AD. Next, we compared these genes with the FerrDb 
database to identify FRGs in AD. We then performed GO and KEGG 
enrichment analysis to gain insights into the potential biological 
functions of FRGs. Additionally, using two machine learning 
algorithms, we identified hub FRGs. To further understand the gene 
function of these hub FRGs, we conducted single-gene GSEA and 

FIGURE 9

ceRNA networks based on hub FRGs.
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GSVA-KEGG analysis. We focused on the top 10 KEGG pathways to 
explore the involvement of hub FRGs in biological pathways. 
Furthermore, we utilized the CIBERSORT algorithm to investigate the 
relationship between immune cells and AD. We found that resting NK 
cells, macrophages, CD8 T cells, and mast cells were associated with 
the disease. This suggests that immune cells may play a role in the 
development of AD. Lastly, we  constructed a ceRNA network to 
uncover non-coding RNA molecules that regulate the hub FRGs.

4.2 Overview of hub FRGs

In our study, we have found that hub FRGs play a crucial role in the 
development of AD and are up-regulated in disease. CD44 is a widely 
expressed cell surface adhesion molecule. The protein is a glycoprotein 
that spans the cell membrane and is composed of three domains: an 
extracellular domain, a transmembrane domain, and an intracellular 
domain (Chen et al., 2020). CD44 undergoes intramembrane proteolysis, 
resulting in the liberation of its intracellular domain and secretion of an 
Aβ-like peptide. There is evidence suggesting that Aβ-like peptides may 
contribute to the progression of Alzheimer’s disease by promoting 
neuroinflammation and neuronal loss (Lammich et al, 2002). Later 
research has demonstrated that splice variants of CD44, including 
CD44V3, CD44V6, and CD44V10, were significantly higher in AD 
patients compared to non-AD controls (Pinner et al., 2017). Additionally, 
increased CD44 gene expression was observed in lymphocytes taken from 
AD patients, with significantly increased levels of the unfolded p53 
isoform expressed in the same cells. Correlations between p53 and CD44 
expression have been established in cancer cells, suggesting that mutant 
p53 might be able to target CD44 as a gene, leading to the progression of 
AD via the regulation of neuronal ferroptosis (Uberti et al., 2010). 
Interestingly, CD44 is listed as one of the suppressors in the FerrDb 
database, and typically plays a negative regulatory role in biological 
processes. Several pieces of research have highlighted the role of 
ferroptosis in AD, with an increase in CD44 expression believed to 
be involved in the development of disease through this pathway (Bian et 
al., 2023; Ye et al., 2023). However, the precise mechanism of CD44 
mediated AD by ferroptosis is still a controversial topic. We  plan to 
investigate this further in our future work.

Our study investigated the protein DDIT4, also known as 
RTP801/REDD1, which is involved in regulating cellular growth, 
mitochondrial function, oxidative stress, and apoptosis (Pérez-Sisqués 
et al., 2021). Although, recent research has indicated that timely 
expression of REDD1 can limit energy consumption during metabolic 
stresses and prevent energy depletion, chronic expression of RTP801 
has been linked to the pathogenesis of several diseases. Aβ-responsive 
genes were identified through cDNA microarray technology, and 
RTP801 emerged as a key regulator of Aβ toxicity. The results 
demonstrated that aberrant expression of RTP801 increased neuronal 
sensitivity to Aβ, leading to neuronal death, while down-regulation 
attenuated the cytotoxicity of Aβ (Kim et al., 2003). Further evidence 
came from a study demonstrating increased RTP801 levels in 
postmortem hippocampal samples from AD patients, with protein 
levels correlating with both Braak and Thal stages of the disease (Britto 
et al., 2020). Interestingly, the mouse model exhibited unexpected 
recovery of several gliosis hallmarks and key inflammasome proteins 
with neuronal downregulation of RTP801. These findings suggest that 
RTP801 may serve as a potential biomarker of neuroinflammation and 

neurotoxicity severity in Aβ-related neurodegenerative diseases, and 
may represent a viable target for AD prevention and treatment 
(Newcombe et al., 2018). Moreover, one study reported that hypoxic 
conditions and high cell density-induced DDIT4 expression are 
mediated by coactivation of molecules downstream in the PI3K/Akt 
signaling pathway. It is noteworthy that severe hypoxia can induce 
ferroptosis in cells (Jin et al., 2007). Thus, some molecules in the PI3K/
Akt signaling pathway may activate ferroptosis, leading to the 
progression of AD.

The RB1 protein serves multiple functions in regulating the cell 
cycle, cell proliferation, and differentiation. It also acts as a crucial 
tumor suppressor gene, maintaining normal cellular function and 
inhibiting tumorigenesis (Dick et al., 2018). However, there have been 
limited direct studies linking RB1 to AD. One study reported an 
upregulation of mir-26b in AD, which has been shown to activate cell 
cycle entry, tau protein phosphorylation, and apoptosis in late mitotic 
neurons. The research further identified RB1 as a principal target that 
mediates the effects of miR-26b. Overexpression of miR-26b and 
inhibition of RB1 led to the activation of cyclin-dependent kinase 5 
and an increase in tau phosphorylation at AD-relevant epitopes. This 
was followed by apoptosis and neurodegeneration in culture (Absalon 
et al., 2013). Additionally, RB1 may play a role in suppressing disease 
progression through ferroptosis, although the exact mechanism 
requires further investigation. In summary, while RB1 is primarily 
known for its involvement in cell cycle regulation and tumorigenesis, 
emerging research suggests its potential relevance in the context of 
AD. The upregulation of miR-26b and its impact on RB1 and 
downstream pathways provide insights into the role of RB1  in 
AD-related processes, such as tau phosphorylation and neuronal 
apoptosis. Further studies are needed to elucidate the exact 
mechanisms by which RB1 exerts its influence in AD.

4.3 Potential mechanism in AD

AD is characterized by a multifaceted pathogenesis encompassing 
a myriad of intricate biological processes and pathways. From the 
aggregation of amyloid-beta plaques to the hyperphosphorylation of 
tau proteins, the pathophysiology of AD unfolds through a cascade of 
events involving neuroinflammation, oxidative stress, synaptic 
dysfunction, and neuronal loss. These processes intertwine in a 
complex network, influencing each other and contributing to the 
progressive cognitive decline seen in AD patients. The results 
we obtained in our research may provide some new insights into the 
study of disease mechanisms. The results showed that autophagy and 
other pathways are involved in the progression of AD. Autophagy is a 
process of cellular self-degradation, through which cells are able to 
clear or recover damaged or excess components from within, in order 
to maintain the stability of the cellular environment (Li et al., 2023). 
One study suggested that autophagy reduces abnormal levels of β 
Starch-like protein deposition in the brain. LC3 (microtubule 
associated proteins 1A/1B light chain 3B) is a key molecule in the 
process of autophagy, playing an important role in the formation of 
autophagosomes and the regulation of autophagy. Researchers have 
found that the LC3/GABARAP family of proteins binds to the inner 
membrane through LC3 related endocytosis, assisting in the clearance 
of β Starch-like protein deposition and prevention of excessive 
inflammatory responses and neurodegeneration in the absence of 
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microglia (Lipinski et al., 2010; Lee et al., 2023). Therefore, the 
imbalance of autophagy may lead to deposition of β-amyloid protein 
and thus, disease propagation. In addition, studies have found that 
glutathione, an antioxidant, is reduced in the AD brain when 
compared to healthy aging brains (Mandal et al., 2015). This also 
indirectly proves that brain oxidative stress and iron death are 
important pathological mechanisms in AD. Autophagy and ferroptosis 
are two mechanisms of cell death, and there is a certain mutual 
relationship and regulatory effect between them. But so far, no 
research has elucidated their regulatory relationship. Therefore, 
we  deem it necessary to investigate the regulatory relationship 
between autophagy and ferroptosis in AD, in order to better 
understand the pathological processes involved in AD. This will 
be our next research direction.

4.4 Immune infiltration

The immune system is designed to defend us against external 
pathogens using an army of specialized cells. For a long time, the 
central nervous system was thought to be isolated from the rest 
of the body’s immune system by the blood brain barrier. Several 
important studies have revealed that T cells infiltrate different 
regions of the brains of individuals with AD and are positively 
associated with phosphorylated tau protein in two of these studies 
(van Olst et al., 2022). However, one study discovered decreased 
T cell numbers in the cortex and hippocampus of AD patients 
(Jevtic et al., 2017). Additionally, ex vivo-cultured human 
regulatory T cells are capable of modifying neuroinflammation in 
a preclinical model of AD (Faridar et al., 2022). These studies 
have been confirmed in part of our analysis. Our immunocyte 
infiltration analysis revealed that resting NK cells, M1 
macrophages, and resting mast cells were highly expressed in the 
AD group, while CD8+ T-cells were lower compared to the 
healthy group. NK cells, M1 macrophages and mast cells in AD 
have not yet been reported. In addition, among different hub 
FRGs, MUC1 was found to be  negatively associated with the 
activation of CD4 memory T cells. Although MUC1 is primarily 
known as an epithelial antigen, a study as early as 1998 suggested 
that it can also serve as an immunomodulatory molecule for 
human T lymphocytes (Agrawal et al., 1998). Further 
investigations have identified several peptide and glycopeptide 
epitopes of MUC1 that can bind to activated T cells and inhibit 
their proliferation (Agrawal  and Longenecker, 2005). 
Additionally, MUC1 expression was found to be  significantly 
upregulated in activated CD4 T cells (Konowalchuk and Agrawal, 
2012). Whether the observed negative correlation between MUC1 
and activated CD4 T cells in Alzheimer’s disease patients is valid, 
warrants further investigation. REDD1 is a stress response protein 
that is conserved across species and is known to be upregulated 
in response to a variety of cellular stressors including hypoxia, 
DNA damage, energy stress, ER stress and nutrient deprivation 
(Zhidkova et al., 2022). Our research has identified a positive 
correlation between DDIT4 expression and resting CD4 memory 
T cells, regulatory T cells, and CD8 T cells. Interestingly, previous 
studies have demonstrated that REDD1 is upregulated following 
T cell activation (Reuschel et al., 2015), suggesting that it may 
play a role in regulating the immune response. However, the 

relationship between T cell subtype and the expression of MUC1 
remains unexplored, representing an exciting area for 
future investigation.

4.5 CeRNA network

Non-coding RNA refers to RNA molecules that do not encode 
proteins in cells, including miRNAs, lncRNAs, and circRNAs. 
Non-coding RNA regulates gene expression at the transcriptional and 
post-transcriptional levels in various diseases, serving as a biomarker 
and potential therapeutic target. An increasing number of studies have 
found that non-coding RNA is associated with pathogenic 
mechanisms in AD (Olufunmilayo and Holsinger, 2023). Our research 
found non-coding RNAs through the ceRNA network. With previous 
research, miR-143-3p is upregulated in the serum of AD patients, and 
inhibition of miR-143-3p promotes neuronal survival by targeting 
neuregulin-1 in an in vitro cell model (Sun et al., 2020). Additionally, 
hsa-miR-1306-5p in exosomes from serum has been shown to provide 
a protein-miRNA signature for differentiating between normal 
individuals, patients with mild cognitive impairment or vascular 
dementia, and sporadic AD patients in a pilot study (Li et al., 2020). 
The ubiquitous calpain-1, found in most tissues and organs, including 
the brain, is necessary for initiating synaptic plasticity and promoting 
neuroprotection. MiR-124-3p, a calpain-1 targeting miRNA previously 
reported to be downregulated in AD, functionally inhibited calpain-1 
translation in a human neural cell line, HCN-2 (Zhou et al., 2019). In 
combination with these results, it appears that miR-143-3p, hsa-miR-
124-3p and miR-1306-5p may serve as potential biomarkers for the 
diagnosis of AD. AL031282.2 and AL139220.2 may also be potential 
regulators impacting progression of AD.

4.6 Significance of the study

Through the application of bioinformatic methods, we  have 
successfully identified five hub genes that connect iron metabolism 
and Alzheimer’s disease (AD). Our investigation also encompasses an 
exploration of the biological processes and pathways in which these 
genes are implicated, providing valuable insights into the development 
of AD. Furthermore, our findings indicate associations between these 
hub genes and various immune factors, pointing towards potentially 
significant roles within the immune microenvironment. Non-coding 
RNA molecules that target the hub FRGs could be  utilized as 
promising indicators for the diagnosis of AD. In summary, this study 
offers a fresh perspective on understanding the pathological 
mechanisms involved in AD.

4.7 Limitation

One limitation of our study was the relatively small number of 
datasets. The restricted size of datasets constrained the depth and 
robustness of our findings. Furthermore, due to constraints in funding 
and human resources, we were unable to provide experimental data 
to support our hypotheses and conclusions. This lack of experimental 
data hindered the ability to validate our theoretical framework and 
explore causal relationships more comprehensively. Despite these 
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limitations, we strived to maximize the utility of the existing data and 
employed rigorous analytical methods to draw meaningful insights 
within the confines of the available resources. We will address these 
limitations in future research by expanding the dataset size and 
ensuring sufficient resources for experimental validation, thereby 
improving the reliability and applicability of research results.
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