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Background: Disproportionately enlarged subarachnoid-space hydrocephalus 
(DESH) is a key feature for Hakim disease (idiopathic normal pressure 
hydrocephalus: iNPH), but subjectively evaluated. To develop automatic 
quantitative assessment of DESH with automatic segmentation using combined 
deep learning models.

Methods: This study included 180 participants (42 Hakim patients, 138 healthy 
volunteers; 78 males, 102 females). Overall, 159 three-dimensional (3D) T1-
weighted and 180 T2-weighted MRIs were included. As a semantic segmentation, 
3D MRIs were automatically segmented in the total ventricles, total subarachnoid 
space (SAS), high-convexity SAS, and Sylvian fissure and basal cistern on the 
3D U-Net model. As an image classification, DESH, ventricular dilatation (VD), 
tightened sulci in the high convexities (THC), and Sylvian fissure dilatation (SFD) 
were automatically assessed on the multimodal convolutional neural network 
(CNN) model. For both deep learning models, 110 T1- and 130 T2-weighted MRIs 
were used for training, 30 T1- and 30 T2-weighted MRIs for internal validation, 
and the remaining 19 T1- and 20 T2-weighted MRIs for external validation. Dice 
score was calculated as (overlapping area)  ×  2/total area.

Results: Automatic region extraction from 3D T1- and T2-weighted MRI was 
accurate for the total ventricles (mean Dice scores: 0.85 and 0.83), Sylvian 
fissure and basal cistern (0.70 and 0.69), and high-convexity SAS (0.68 and 
0.60), respectively. Automatic determination of DESH, VD, THC, and SFD from 
the segmented regions on the multimodal CNN model was sufficiently reliable; 
all of the mean softmax probability scores were exceeded by 0.95. All of the 
areas under the receiver-operating characteristic curves of the DESH, Venthi, 
and Sylhi indexes calculated by the segmented regions for detecting DESH were 
exceeded by 0.97.
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Conclusion: Using 3D U-Net and a multimodal CNN, DESH was automatically 
detected with automatically segmented regions from 3D MRIs. Our developed 
diagnostic support tool can improve the precision of Hakim disease (iNPH) 
diagnosis.
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1 Introduction

Chronic hydrocephalus in adults is called “normal-pressure 
hydrocephalus (NPH)” because of the absence of intracranial 
hypertension symptoms, and has been largely classified into idiopathic 
NPH (iNPH) or secondary NPH (sNPH), which develops after 
subarachnoid hemorrhage, trauma or infection by Adams et al. (1965). 
Since international and Japanese guidelines for the management of 
iNPH were published and revised (Ishikawa and Guideline Committe 
for Idiopathic Normal Pressure Hydrocephalus, Japanese Society of 
Normal Pressure Hydrocephalus, 2004; Marmarou et al., 2005; Mori 
et al., 2012; Nakajima et al., 2021), there has been an increased focus 
on iNPH, which is known to present with a triad of symptoms: gait 
disturbance, cognitive dysfunction, and incontinence. Recently, an 
international collaborative group examining the contemporary 
classifications, terminology, and definitions of chronic hydrocephalus 
in adults proposed renaming iNPH to “Hakim disease” (Tullberg et al., 
2024), because many experts questioned the term iNPH, i.e., “normal 
pressure” indicates normal intracranial pressure and “idiopathic” 
implies unknown causes. If this condition is left untreated, symptoms 
gradually progress with a corresponding decrease in independence 
(Yamada et al., 2017c, 2021a), eventually leading to death (Andren 
et  al., 2020, 2021). Recently, Hakim disease (iNPH) has been 
recognized as a common disease among the elderly, with a large 
proportion of Hakim patients potentially present in a superaged 
society. Based on previous epidemiological studies (Iseki et al., 2009, 
2022; Jaraj et al., 2014; Kuriyama et al., 2017; Constantinescu et al., 
2023), however, the probability of Hakim patients receiving 
appropriate treatment is estimated to be less than 10% of all potential 
patients, and there are large regional differences. Since Hakim disease 
is still undetected or misdiagnosed in many countries, an easier and 
more reliable method to identify Hakim disease is desperately needed. 
The main reason for missed detection or misdiagnosis of Hakim 
disease, even when advanced imaging technologies are widely 
available, is that Hakim disease is often less prominent with ventricular 
dilatation (VD) and more prominent with Sylvian fissure dilation 
(SFD), which is also caused by medial temporal lobe atrophy, a well-
known imaging feature specific to Alzheimer’s disease and mild 
cognitive impairment (Coupe et  al., 2019; Wang et  al., 2022). 
Consequently, VD and SFD are easily misinterpreted as brain atrophy 
related to neurodegenerative diseases including Alzheimer’s disease 
(McCarty et al., 2019; Virhammar et al., 2021). To distinguish Hakim 
disease from focal cerebral atrophy, disproportionately enlarged 
subarachnoid space hydrocephalus (DESH) (Hashimoto et al., 2010; 
Shinoda et  al., 2017; Gunter et  al., 2019; McCarty et  al., 2019; 

Virhammar et  al., 2021), including tightened sulci in the high 
convexities (THC) (Sasaki et al., 2008; Ishikawa et al., 2010; Narita 
et al., 2016; Yamada et al., 2016a, 2021b, 2023a; Yamada and Mase, 
2023), have recently been noted as the most important imaging 
features specific to Hakim disease. DESH refers to unbalanced CSF 
distribution in the subarachnoid space (SAS), i.e., simultaneous 
occurrence of SFD and THC. Although DESH is increasingly 
recognized as a neuroimaging hallmark of Hakim disease, subjective 
evaluation of DESH remains ambiguous and often confusing, with 
judgments differing among experts (Sasaki et al., 2008; Ishikawa et al., 
2010; Narita et al., 2016; Shinoda et al., 2017). Therefore, we aimed (a) 
to develop artificial intelligence (AI) to automatically and accurately 
extract volumes of interest (VOIs) from 3D T1-weighted or 
T2-weighted MRIs in Hakim patients and healthy subjects at an 
accuracy near, equal to or greater than that of expert evaluators, (b) to 
develop AI to automatically detect DESH as well as VD, SFD, and 
THC from VOIs, and (c) to establish that the newly defined indices 
related to DESH could accurately determine DESH.

2 Materials and methods

2.1 Study population

From our previous study using 3D T2-weighted MRI data 
acquired on MAGNETOM Skyra (Siemens AG, Munich, Germany) 
until September 2019 (Yamada et al., 2015, 2016a,b, 2017b, 2019), 14 
patients (10 Hakim patients and 4 volunteers) were included in this 
study. Subsequently, from our recent study (Yamada et  al., 2020, 
2021c, 2023a,b,c), 115 patients (26 Hakim patients and 89 volunteers) 
who had undergone 3D T1-weighted and T2-weighted MRIs on a 
Discovery MR 750 W (GE Healthcare, Milwaukee, Wisconsin, 
United States) from October 2019 to January 2022, and 51 participants 
(6 Hakim patients and 45 volunteers) on a Signa Architect 3.0 T (GE 
Healthcare) from February 2022 to May 2022 were enrolled in this 
study. Healthy volunteers aged ≥20 years, were recruited from among 
medical staff, students, and their family members by open recruitment. 
The inclusion criteria for this study were as follows: individuals with 
no previous history of brain injury, brain tumor, or cerebrovascular 
disease on brain MRI examinations, and individuals who had never 
undergone brain CT or MRI and had no neurological symptoms, 
including compromised cognitive function. Three volunteers were 
incidentally detected with small unruptured intracranial aneurysms, 
but they were included in this study because small unruptured 
intracranial aneurysms were unlikely to affect brain and CSF volumes. 
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One examination of 3D T1-weighted MRI in a healthy volunteer was 
excluded, because the MRI sequence and orientation differed 
completely from those of other images. Among 138 healthy volunteers, 
one was judged to have DESH, VD, and THC but not SFD, and was 
diagnosed with asymptomatic ventriculomegaly with features of iNPH 
on MRI (AVIM) (Iseki et al., 2009). All patients were diagnosed with 
or without Hakim disease, according to the third edition of the 
Japanese guidelines for management of iNPH (Nakajima et al., 2021). 
Among the 42 Hakim patients, 40 had triad symptoms of gait 
disturbance, cognitive impairment, and urinary incontinence, whereas 
two had very mild or no objective symptoms and did not undergo a 
CSF tap test or shunt surgery, and therefore would be classified as 
having AVIM. Overall, 18 patients (42%) underwent the CSF tap test, 
21 patients (50%) underwent CSF shunt surgery, and their symptoms 
improved by ≥1 point on the modified Rankin Scale and/or the 
Japanese grading scale (Nakajima et al., 2021). Finally, 138 volunteers 
and 42 patients diagnosed with Hakim disease were included in this 
study (Table 1).

2.2 Ethics approval

This study was approved by the ethics committees for human 
research at our institutes (IRB Number: 60-22-0083, R2019-227). 
Healthy volunteers provided written informed consent and underwent 
MRI examinations, after explaining the aim of this study and the 
potential for detection of diseases in the brain. Patients’ MRI data were 
obtained in an opt-out method, after their personal information was 
anonymized in a linkable manner.

2.3 Image acquisitions

The sequence parameters of T1-weighted 3D magnetization 
prepared rapid gradient echo (MPRAGE) were as follows: TR, 
2471 ms; TE, 3.13 ms; inversion time, 1,000 ms; flip angle, 8°; matrix 
256 × 256; voxel size, 0.9 × 0.9 × 0.9 mm; and acquisition time, 
approximately 4 min. The sequence parameters of 3D T2-weighted 
Cube were as follows: TR, 2000 ms; TE, 85.3 ms; matrix 288 × 288; 
voxel size, 0.8 × 0.8 × 0.8 mm; and acquisition time, approximately 
4 min. The sequence parameters of 3D T2-weighted sampling 
perfection with application optimized contrast using the variable flip-
angle evolution (SPACE) were as follows: TR, 2800 ms; TE, 286 ms; 
matrix 192 × 192; voxel size, 0.6 × 0.6 × 0.9 mm; and acquisition time, 
approximately 4 min.

2.4 Preparation for data processing of deep 
learning

As ground truth labels in our AI models, input image masks for 
volumetric semantic segmentation on the 3D T1-weighted MRI were 
created by combining manual segmentation with the 3D Viewer and 
fully automatic segmentation with the Brain Subregion Analysis 
applications (Figures 1A–C) on an independent 3D volume analyzer 
workstation (SYNAPSE 3D; FUJIFILM Corporation, Tokyo, Japan). 
In the Brain Subregion Analysis application, intracranial spaces were 
segmented fully automatically into 26 subregions including ventricles 
and SAS within 1 min (Yamada et al., 2023c). The input image masks 
from 3D T2-weighted MRI were also created using our original 
method, combining a simple threshold algorithm and manual 
segmentation (Figures 1D–F), as previously reported (Yamada et al., 
2015, 2016a,b). Total SAS were further segmented into the Sylvian 
fissure and basal cistern, and the high-convexity SAS, which was 
defined as the location above the body of the lateral ventricles, with 
the lateral end 3 cm from the midline, the posterior end in the bilateral 
posterior parts of the callosomarginal sulci, and the anterior end on 
the coronal plane perpendicular to the AC–PC line passing through 
the front edge of the genu of the corpus callosum (Figure  2; 
Supplementary Videos S1–S4) (Yamada et al., 2023a). All input image 
masks as the ground truth labels were transferred to the SYNAPSE 
Creative Space for cloud-based AI development service (FUJIFILM 
Corporation). All masks were processed and formatted into a form 
that could utilize the training or inference process. Regarding the 
output of the inference process, feature maps were obtained. Overall, 
159 T1-weighted images were assigned to 110 images for training, 30 
for internal and 19 for external validation (test), and 180 T2-weighted 
images were assigned to 130 images for training, 30 for internal 
validation and 20 for external validation. Inference was performed in 
the images for internal validation and external validation.

2.5 Deep learning tasks

We combined two deep learning models to employ a two-step 
method of automatic detection of DESH with segmented volumes and 
indices. In the first step, the volumetric semantic segmentation task 
employed a 3D U-Net with four layers, consisting of 3D convolution 
with a batch normalization layer, ReLU activation layer, max pooling 

TABLE 1 Clinical characteristics of the study population.

Total Skyra MR 
750  W

Architect

Siemens GE GE P

180 14 115 51

Hakim 

disease: 

volunteer

42: 138 10: 4 26: 89 6: 45 <0.001

Male: 

female
78: 102 10: 4 48: 67 20: 31 0.0887

Mean age 

(years)
55.2 ± 19.7 74.3 ± 9.7 49.3 ± 18.8 63.2 ± 17.7 <0.001

≦50 years 97 1 82 14 <0.001

60 years 28 0 13 15

≧70 years 55 13 20 22

DESH 43 10 26 7 <0.001

VD 45 10 25 10 <0.001

THC 42 10 25 7 <0.001

SFD 32 9 17 6 <0.001

AD 4 1 2 1 0.3413

P; probability values of the proportions among MRI machines based on the Chi-square test, 
and p value of the mean age were calculated by the Kruskal-Wallis test. DESH; 
disproportionately enlarged subarachnoid-space hydrocephalus, VD; ventricular dilatation, 
THC; tightened sulci in the high-convexity, SFD; Sylvian fissure dilation.
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layer, and 3D up-convolution layer (Figure 3A). Signal values were 
normalized by percentile (minimum 0.05, maximum 0.95) as a 
preprocessing step. To compensate for voxel detail, feature maps are 
concatenated from each encoding layer of feature extraction by 
downsampling to the corresponding decoding layer of feature 
assignment by upsampling. In the second step, the image classification 
task employed a multimodal convolutional neural network (CNN) 
(Figure 3B). As ground truth labels for the image classification task, 
the presence or absence of DESH, VD, THC, and SFD was determined 
by a neurosurgeon and a radiologist, both experts in imaging diagnosis 
of Hakim disease, through consensus reading. Input data included the 
presence of DESH, VD, THC, and SFD, in addition to age at MRI, 
gender, and the same image masks used in the first step volumetric 
semantic segmentation task (Figure 3B). For the output of the image 
classification task, the intracranial CSF space mask was used to 
determine the presence or absence of DESH, and the masks for the 
total ventricle, high-convexity SAS, and Sylvian fissure and basal 
cistern were used to determine the presence of VD, THC, and SFD, 
respectively. In the embedding layer, all input variables were 
transformed into feature maps. At the end of the last convolutional 
layer, the final feature maps were fed to a softmax activation function 
to generate a probability score for each class. Image intensities of input 
images were normalized to [0, 1] by their maximum and minimum 
values. Augmentations including rotation, scaling, and translation of 
the input image masks were made to improve generalizability and 

accuracy in the semantic segmentation and image classification tasks. 
The generalizability of these augmentations would help reduce effects 
from differences between manufacturers, imaging protocols or 
individuals, and increase the robustness of our AI model.

2.6 Three-dimensional volumetric index

The “DESH index” was defined as the combined volume of total 
ventricles and Sylvian fissure and basal cistern divided by the high-
convexity SAS volume. As supplemental indices for DESH, the “Venthi 
index” was defined as the total ventricular volume divided by the 
high-convexity SAS volume, and the “Sylhi index” was defined as the 
volume of the Sylvian fissure and basal cistern divided by the high-
convexity SAS volume. These three indices were calculated by the 
manually and automatically segmented volumes.

2.7 Statistical analysis

Mean age and segmented volumes were compared using the 
Mann–Whitney-Wilcoxon test. The chi-square test was used to 
compare the proportions between Hakim patients and healthy 
volunteers. To quantify the performance, e.g., the accuracy of the 
volumetric semantic segmentation, the Dice coefficient score for the 

FIGURE 1

Segmentation from three-dimensional T1- and T2-weighted MRI. The upper axial (A), sagittal (B), and coronal (C) images on 3D T1-weighted MRI show 
the results for fully automatically segmented regions, including total ventricles (green) and total subarachnoid spaces (marine blue) of a representative 
patient with Hakim disease and DESH, using the Brain Subregion Analysis application on the 3D volume analyzer SYNAPSE 3D workstation (FUJIFILM 
Corporation). The lower three-dimensional (D), sagittal (E), and coronal (F) images on 3D T2-weighted MRI show the results of manually segmented 
total ventricles (light blue in D) and total subarachnoid spaces (light green in E,F) of a representative healthy elderly volunteer.
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loss function was calculated as 2 * |X ∩ Y| + epsilon(1e-4)/
(|X| + |Y| + epsilon(1e-4)) in the validation study. X and Y were the 
prediction and correct, binary [0, 1] output per voxel. The relationships 
between the manually and automatically segmented volumes were 
also examined using Pearson’s correlation coefficient (r) and 95% 
confidential intervals (CIs). For the image classification task, the 
accuracy and softmax probability score for the detection of DESH, 
VD, THC, and SFD were analyzed. The area under the receiver-
operating characteristic curves (AUCs) and optimal thresholds with 
95% CIs for detecting DESH were calculated to maximize the sum of 
the sensitivities and specificities. All missing variables were considered 
deficit data, and no other variables were adjusted. A probability value 
(P) of <0.001 was considered to be statistically significant. R software 
(version 4.2.1, R Foundation for Statistical Computing, Vienna, 
Austria, http://www.R-project.org) was used for all statistical analyses.

3 Results

3.1 Dataset for deep learning models

We prepared 180 datasets of 3D T2-weighted MRIs and 159 
datasets of 3D T1-weighted MRIs. All 3D T1-weighted MRIs were 

MPRAGE sequence, and 166 3D T2-weighted MRIs were Cube 
sequence and 14 were SPACE sequence. For both deep learning 
models, 110 T1- and 130 T2-weighted MRIs were used for training, 
30 T1- and 30 T2-weighted MRIs for internal validation, and the 
remaining 19 T1- and 20 T2-weighted MRIs for external validation. 
The allocation of the number of DESH or non-DESH is shown in 
Table 2.

3.2 Volumetric semantic segmentation

Training and internal validation of the 3D U-Net model for 
semantic segmentation were repeated over 1,000 times (Figures 4–7; 
Supplementary Figures S1, S2). Overall, the intracranial CSF space, 
total ventricles, total SAS, Sylvian fissure and basal cistern, and the 
high-convexity SAS were segmented fully automatically from 3D 
T1-weighted (Figure 8) and T2-weighted MRIs (Figure 9). There was 
no significant difference between manually and automatically 
segmented volumes of the total ventricles, total SAS, high-convexity 
SAS, and Sylvian fissure and basal cistern (Table  3). Among the 
segmented regions, the mean Dice scores for the total ventricles were 
highest (0.85 from T1 and 0.83 from T2), those for the Sylvian fissure 
and basal cistern were second highest (0.70 and 0.69), and those for 

FIGURE 2

Input image masks as the ground truth labels transferred to the cloud-based AI development service. The upper axial (A), sagittal (B), and coronal 
(C) images on 3D T1-weighted MRI in the same Hakim patient as the upper panel of Figure 1 show the input image masks including total ventricles 
(green), Sylvian fissure and basal cistern (purple), high-convexity part of the subarachnoid space (yellow), and the other subarachnoid spaces (marine 
blue). The lower axial (D), sagittal (E), and coronal (F) images on 3D T2-weighted MRI in the same healthy volunteer as the lower panel of Figure 1 show 
the input image masks for deep learning including total ventricles (light green), Sylvian fissure and basal cistern (pink), high-convexity part of the 
subarachnoid space (yellow), and the other subarachnoid spaces (light blue).
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the high-convexity SAS were lowest (0.68 and 0.60). The mean Dice 
coefficient scores for all of the regions segmented from the 
T1-weighted image were superior to those from the T2-weighted 
image. The mean differences between the manually and automatically 
segmented volumes of the high-convexity SAS were smaller (T1 and 
T2; 3.6 mL and 4.2 mL) than those of the Sylvian fissure and basal 
cistern (5.3 mL and 8.3 mL).

3.3 Automatic quantitative assessment of 
DESH using image classification

The inference results of the presence or absence of DESH, VD, 
THC, and SFD with softmax probability scores are summarized in 
Table 4. All mean softmax probability scores were exceeded by 
0.99, except for THC detection from the T1-weighted image (0.95) 

FIGURE 3

Two combined deep learning models; and multimodal convolutional neural network for image classification. (A) 3D U-Net model with four layers for 
volumetric semantic segmentation task. Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on front of 
the box. White boxes indicate copied feature maps. The color arrows indicate each process: light blue arrows indicate convolution (Conv) with kernel 
size (3, 3, 3) in addition to batch normalization (BN) and rectified linear unit (ReLU) activation layer; red arrows indicate max-pooling with kernel size (2, 
2, 2); green arrows indicate up-convolution (Up-Conv) with kernel size (3, 3, 3) and dilation rate (2, 2, 2) in addition to BN and ReLU; and gray arrows 
indicate direct concatenation from each encoding layer of feature map extracted by downsampling to the corresponding decoding layer of feature 
map by upsampling. Signal values were normalized by percentile (minimum 0.05, maximum 0.95) as a preprocessing step. (B) Multimodal 
convolutional neural network for image classification task. Each blue box corresponds to a multi-channel feature map with the number of channels 
denoted on the front of the box. The color arrows indicate each process: purple arrows indicate convolution (Conv) with kernel size (3, 3, 3) in addition 
to batch normalization (BN), rectified linear unit (ReLU) activation, self-attention, and pooling layer; turquoise blue arrows indicate global average 
pooling (GAP) or fully connection (FC) layer. In the embedding layer, all input variables were transformed into the feature maps. At the end of the last 
convolutional layer, the final feature maps were fed to a softmax activation function to generate a probability score for each class. The image 
intensities of input images were normalized to [0, 1] by their maximum and minimize values.
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and SFD detection from the T2-weighted image (0.98). Among 99 
images (49 T1 and 50 T2), only one T1-weighted image of a 
volunteer was judged by AI to have DESH, but the expert judged 
the subject to have no DESH (Figure  10). In addition, the 
discrepancy between the AI and expert determinations from 
T1-weighted MRIs was one for VD, one for THC, and three for 
SFD. However, AI determinations from T2-weighted MRIs were 
almost perfectly consistent with expert determinations, with only 
one discrepancy in VD determination. The accuracies for the 
determinations of DESH, VD, THC, and SFD by AI were 1.0, 1.0, 
1.0, and 0.97 from T1-weighted MRIs, and 1.0, 1.0, 1.0, and 0.93 
from T2-weighted MRIs, respectively.

3.4 DESH detection from 3D volumetric 
indices of automatically segmented 
regions

All DESH, Venthi and Sylhi indices, calculated by the manually 
and automatically segmented volumes on T1-weighted and 
T2-weighted MRIs, had sufficiently high AUCs (>0.996), specificities 
(>0.944), and sensitivities (>0.923) (Table  5). However, optimal 
thresholds calculated to maximize the sum of sensitivities and 
specificities for detecting DESH differed between manually and 
automatically segmented volumes and between T1-weighted and 
T2-weighted MRIs.

TABLE 2 Assignment of MRI datasets for deep learning.

3D T1-WI MRI 3D T2-WI MRI

Total MR 750  W Architect Total Skyra MR 750  W Architect

Training 110 72 38 130 8 77 45

(DESH: non-DESH) 15: 95 12: 60 3: 35 28: 102 5: 3 16: 61 7: 38

Internal validation 30 20 10 30 4 20 6

(DESH: non-DESH) 8: 22 5: 15 3: 7 10: 20 3: 1 7: 13 0: 6

External validation (test) 19 16 3 20 2 18 0

(DESH: non-DESH) 4: 15 3: 13 1: 2 5: 15 2: 0 3: 15 0

DESH; disproportionately enlarged subarachnoid-space hydrocephalus. Non-DESH; absence of DESH.

FIGURE 4

Results of training for deep learning of the semantic segmentation. The Dice scores (emerald green line), loss (lime green line), precision 
(blue), and recall (purple) for the automatically segmented volumes of the total ventricles (A,B), total subarachnoid spaces (C,D), high-
convexity part of the subarachnoid space (E,F), and Sylvian fissure and basal cistern (G,H) on 3D T1-weighted (A,C,E,G) and T2-weighted MRIs 
(B,D,F,H).
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4 Discussion

In this study, we developed an automatic quantitative assessment 
of DESH from 3D T1-weighted or T2-weighted MRIs, supplementally 
measuring segmented volumes and indices related to DESH by using 
two combined AI models: a 3D U-Net for semantic segmentation, and 
a multimodal CNN for image classification. A previous study on 
automatic region extraction from 3D MRI using AI in hydrocephalus 
have involved the automated extraction of ventricles, subarachnoid 
space, and intracranial CSF space (Grimm et al., 2020). However, 
there have been no previous reports on AI-based detection of DESH, 
including VD, THC, and SFD, from these automatically extracted 
regions. Currently, DESH, VD, THC, and SFD are evaluated 
subjectively and evaluators often differ in judgment (Sasaki et al., 
2008; Ishikawa et al., 2010; Narita et al., 2016; Shinoda et al., 2017). 
This ambiguity is often influenced by a patient’s background, e.g., 
living and family environment or co-morbidities. Although the typical 
Hakim patient presents with the triad of cognitive decline, gait and 
balance impairment, and urinary incontinence, there are actually 
many Hakim patients who have only cognitive decline or only gait and 
balance impairment (Yamada et al., 2017a, 2021a, Nakajima et al., 
2021). Many of these patients might not be diagnosed with Hakim 
disease due to overlooked DESH on CT scan or MRI, and are often 
misdiagnosed for years as having Alzheimer’s disease (Yamada et al., 
2016b; Irie et al., 2020; Nakajima et al., 2021; Luca et al., 2023) or 
Parkinson’s disease (Stolze et al., 2001; Picascia et al., 2019; Mostile 
et al., 2023) leading to progression of these symptoms. Therefore, the 
AI-based decision support tool can be expected to give patients with 

Hakim disease a better chance of receiving appropriate treatment 
earlier, to reduce ambiguity in the interpretation of DESH, and to 
decrease potential anchoring bias. Quantitative measurements and 
indices ensure objectivity and allow for easier interpretation of 
classification results, especially in cases where the clinical diagnosis is 
not clear.

This study has some limitations. First, for training and 
validation datasets, the predefined subregions of the ventricles, 
high-convexity SAS, and Sylvian fissure and basal cistern were 
manually segmented. In our previous reports (Yamada et al., 2015; 
Yamada and Mase, 2023), however, the reproducibility and validity 
of our 3D manual segmentation method were verified. Second, 
domain shift, differences in imaging among facilities that lower 
performance, is a common but critical issue in AI based 
segmentation and detection (Takahashi et al., 2021). Therefore, our 
deep learning models used two different sequences of 3D T2 Cube 
and SPACE on three different MRI equipment devices (GE 
Healthcare and Siemens AG). Third, the control group in this study 
was significantly younger than the patient group. To address this 
issue, we used covariates (such as age and gender) as input to the 
multimodal CNN model.

For future perspectives, we plan to develop a new app based on 
the results of this study in the near future. In addition, using this app, 
we are prepared to conduct the next study to validate its accuracy and 
determine appropriate cutoff values for the segmented regions and 
DESH, Venthi, and Sylhi indices in other large cohorts, including 
elderly community-dwelling populations and Hakim patients with or 
without Alzheimer’s disease.

FIGURE 7

Inference results for internal validation of the image classification. The loss (green line) for the detection of disproportionately enlarged subarachnoid 
space hydrocephalus (DESH: A,B), ventricular dilatation (VD: C,D), tightened sulci in the high convexities (THC: E,F), and Sylvian fissure dilation (SFD: 
G,H) on 3D T1-weighted (A,C,E,G) and T2-weighted MRIs (B,D,F,H).
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5 Conclusion

Our combined deep learning models could automatically detect 
DESH, which is the key imaging marker for Hakim disease (iNPH) from 
3D T1- or T2-weighted MRI with automatically segmented volumes. The 
results of the AI-based segmentation seemed to outperform the manual 

segmentation by experts. Our AI-based diagnostic imaging support with 
quantitative assessment of DESH might contribute to improved diagnostic 
accuracy of Hakim disease (iNPH), might certainly reduce the number 
of missed and misdiagnosed Hakim disease (iNPH), and could be applied 
in future multicenter collaborative studies. The social implementation of 
AI-based diagnostic imaging support systems and medical software is 

FIGURE 8

Comparison between manually and automatically segmented regions from 3D T1-weighted images. 3D T1-weighted images in a representative 
healthy volunteer (A–F) and a representative patient with Hakim disease and DESH (G–L): manually segmented (A–C,G–I) and automatically 
segmented (D–F,K–L) volumes of the total ventricles (green); Sylvian fissure and basal cistern (purple); high-convexity part of the subarachnoid space 
(yellow); other subarachnoid spaces (marine blue) from 3D T1-weighted images.
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advancing rapidly, but regulatory and ethical aspects need to 
be carefully considered.

Data availability statement

The datasets presented in this article are not readily available 
because the MRI data in this study is not available to the 

community via any open repositories, because the ethics 
committees have approved the sharing of the MRI data in this 
research with collaborative institutes and does not allow its being 
provided to other institutions. The data will be available only on 
the condition that the ethics committees approve any 
new participation in the collaborative research. Requests to 
access the datasets should be directed to SY, shigekiyamada393@
gmail.com.

FIGURE 9

Comparison between manually and automatically segmented regions from 3D T2-weighted images. 3D T2-weighted images in a representative 
healthy volunteer (A–F) and a representative patient with Hakim disease and DESH (G–L): manually segmented (A–C,G–I) and automatically 
segmented (D–F,K–L) volumes of the total ventricles (green); Sylvian fissure and basal cistern (purple); high-convexity part of the subarachnoid space 
(yellow); other subarachnoid spaces (marine blue) from 3D T2-weighted images.
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TABLE 3 Comparison between mean (± standard deviation) automatically segmented and manually segmented volumes.

Hakim disease Normal

MRI A-volume M-volume A-volume M-volume
Dice 
score

r P-A P-M

Total ventricles
T1 129.2 ± 35.1 127.8 ± 35.5 26.9 ± 19.4 26.8 ± 18.9 0.85 ± 0.07 0.999 <0.001 <0.001

T2 150.3 ± 45.2 150.1 ± 47.3 25.5 ± 9.9 25.2 ± 9.8 0.83 ± 0.06 0.997 <0.001 <0.001

Total 

subarachnoid 

space

T1 331.0 ± 35.7 329.9 ± 38.7 280.6 ± 60.6 287.4 ± 55.3 0.72 ± 0.04 0.980 <0.001 0.004

T2 288.4 ± 53.2 298.5 ± 53.8 218.9 ± 57.7 247.3 ± 53.6 0.64 ± 0.06 0.867 <0.001 0.008

High-convexity 

part of 

subarachnoid 

space

T1 17.9 ± 3.7 21.5 ± 4.7 42.5 ± 12.1 42.2 ± 13.4 0.68 ± 0.07 0.900 <0.001 <0.001

T2 7.3 ± 4.2 11.5 ± 5.2 32.2 ± 12.8 36.5 ± 11.0 0.60 ± 0.11 0.959 <0.001 <0.001

Sylvian fissure 

and basal cistern

T1 90.2 ± 12.0 95.5 ± 12.8 42.9 ± 10.3 45.6 ± 11.8 0.70 ± 0.05 0.969 <0.001 <0.001

T2 88.6 ± 9.0 96.9 ± 17.9 37.7 ± 8.9 40.8 ± 9.9 0.69 ± 0.06 0.966 <0.001 <0.001

A-volume: automatically segmented region volumes with the 3D U-Net model. M-volume: manually segmented volume. Dice score; (overlapping 3D spaces) × 2/total area. The total area is 
defined as the sum of the ground truth image segmentation area (manually segmented) and the predicted area using the 3D U-Net model. r; Pearson’s correlation coefficient, to assess the 
correlations between volumes segmented manually and those segmented automatically by the 3D U-Net model. P-A; probability value of A-volume in Hakim disease vs. normal volunteer. 
P-M; probability value of M-volume in Hakim disease vs. normal volunteer.

TABLE 4 Softmax probability score for disproportionately enlarged subarachnoid-space hydrocephalus (DESH), ventricular dilatation (VD), tightened 
sulci in the high convexities (THC), and Sylvian fissure dilatation (SFD).

3D T1-WI MRI 3D T2-WI MRI

Total number 49 50

Male: female 24: 25 25: 25

Hakim disease: normal 12: 37 15: 35

Expert AI Probability score Expert AI Probability score

DESH 12 13 0.997 ± 0.020 15 15 0.991 ± 0.059

VD 14 13 0.999 ± 0.006 14 15 0.991 ± 0.060

THC 12 11 0.946 ± 0.121 15 15 1.000 ± 0.002

SFD 9 12 0.992 ± 0.039 12 12 0.981 ± 0.060

Expert; two experts in the imaging diagnosis of Hakim disease reached judgments through consensus reading. AI; judgments were automatically assessed using the multimodal CNN.

FIGURE 10

A case of discrepancy in DESH determination between AI and expert. MRI of an 84-year-old male volunteer, who claimed no specific history of head 
trauma showed a signal deficit (white arrow) in the left frontal region due to a metal artifact. The AI automatically judged the presence of DESH 
(softmax probability score: 1.0), VD (1.0), SFD (0.75), and the absence of THC (0.84), while the expert judged the presence of VD but not DESH, THC, or 
SFD. This case should have been excluded from the study.
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TABLE 5 Area under the receiver-operating characteristic curve (AUC) and optimal thresholds with 95% confidential interval (CI) for detecting DESH.

MRI AUC (95% CI) Specificity (95% CI) Sensitivity (95% CI) Optimal threshold

Automatically segmented region volumes with the 3D U-Net model

DESH index T1 0.996 (0.986–1.00) 0.944 (0.861–1.00) 1.00 (1.00) 2.563

DESH index T2 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 7.578

Venthi index T1 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 1.573

Venthi index T2 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 3.370

Sylhi index T1 0.966 (0.898–1.00) 1.00 (1.00) 0.923 (0.769–1.00) 3.083

Sylhi index T2 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 4.046

Manually segmented volumes

DESH index T1 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 3.980

DESH index T2 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 5.678

Venthi index T1 0.999 (0.986–1.00) 0.992 (0.977–1.00) 1.00 (1.00) 1.681

Venthi index T2 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 2.760

Sylhi index T1 1.00 (0.999–1.00) 0.977 (0.992–1.00) 1.00 (1.00) 2.157

Sylhi index T2 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 2.771

DESH index: total ventricular volume and Sylvian fissure and basal cistern volume divided by the high-convexity part of the subarachnoid space volume. Venthi index: Ventricular volume 
divided by the high-convexity part of the subarachnoid space volume. Sylhi index: Sylvian fissure and basal cistern volume divided by the high-convexity part of the subarachnoid space 
volume.
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FIGURE 5

Inference results for internal validation of the semantic segmentation and image classification. The Dice scores (emerald green line), loss (lime green 
line), precision (blue), and recall (purple) for the automatically segmented volumes of the total ventricles (A,B), total subarachnoid spaces (C,D), high-
convexity part of the subarachnoid space (E,F), and Sylvian fissure and basal cistern (G,H) on 3D T1-weighted (A,C,E,G) and T2-weighted MRIs 
(B,D,F,H).
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