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Introduction: Cognitive impairment (CI) due to Alzheimer’s disease (AD) 
encompasses a decline in cognitive abilities and can significantly impact an 
individual’s quality of life. Early detection and intervention are crucial in managing 
CI, both in the preclinical and prodromal stages of AD prior to dementia.

Methods: In this preliminary study, we investigated differences in resting-state 
functional connectivity and dynamic network properties between 23 individual 
with CI due to AD based on clinical assessment and 15 healthy controls (HC) 
using Independent Component Analysis (ICA) and Dominant-Coactivation 
Pattern (d-CAP) analysis. The cognitive status of the two groups was also 
compared, and correlations between cognitive scores and d-CAP switching 
probability were examined.

Results: Results showed comparable numbers of d-CAPs in the Default Mode 
Network (DMN), Executive Control Network (ECN), and Frontoparietal Network 
(FPN) between HC and CI groups. However, the Visual Network (VN) exhibited 
fewer d-CAPs in the CI group, suggesting altered dynamic properties of this 
network for the CI group. Additionally, ICA revealed significant connectivity 
differences for all networks. Spatial maps and effect size analyses indicated 
increased coactivation and more synchronized activity within the DMN in HC 
compared to CI. Furthermore, reduced switching probabilities were observed 
for the CI group in DMN, VN, and FPN networks, indicating less dynamic and 
flexible functional interactions.

Discussion: The findings highlight altered connectivity patterns within the DMN, 
VN, ECN, and FPN, suggesting the involvement of multiple functional networks 
in CI. Understanding these brain processes may contribute to developing 
targeted diagnostic and therapeutic strategies for CI due to AD.
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1 Introduction

Cognitive impairment (CI) is a decline or impairment of 
cognitive abilities, encompassing memory, attention, language, and 
perception. In aging populations, CI can be  attributed to many 
different etiologies, including neurodegenerative diseases such as 
Alzheimer’s disease (AD), vascular disease, and even 
neuropsychiatric disorders. Of these, AD is the most common form 
of dementia, currently affecting 5.7 million people in the 
United States (Weiner et al., 2015, 2017). On the other hand, mild 
cognitive impairment (MCI) refers to the stage between the normal 
age-related decline of memory and thinking skills and more severe 
decline seen in dementia (Petersen et al., 1999). In many cases, MCI 
represents the prodromal stage of major neurocognitive disorders, 
such as AD (Sacuiu et al., 2016).

Different magnetic resonance imaging (MRI) techniques have 
been used to investigate brain changes in people with CI. For instance, 
resting-state functional MRI (rs-fMRI; Biswal et al., 1997) is an MRI 
technique for the early detection of dementia (Vemuri et al., 2012; 
Matthews and Hampshire, 2016). By examining changes in brain 
network functional connectivity, particularly within the default mode 
network (DMN), rs-fMRI has been utilized to identify early signs of 
AD (He et al., 2007). Notably, various fMRI techniques have been 
proposed to analyze functional connectivity, including sliding-
window (Chang and Glover, 2010), temporal independent component 
analysis (ICA; Smith et  al., 2012), and quasi-periodic pattern 
(Thompson et al., 2014) methods.

ICA is a data-driven method that aims to identify underlying 
brain networks within fMRI data (Hyvärinen and Oja, 2000). ICA has 
been widely utilized in AD and MCI studies to explore the underlying 
brain alterations associated with these conditions (Greicius et  al., 
2004; Li et al., 2012; Wang et al., 2012). Indeed, ICA analysis can detect 
abnormal connectivity patterns or dysfunction in key brain networks 
affected by AD, such as the DMN (Yıldırım and Soncu Büyükişcan, 
2019) or the salience network (Zhang et  al., 2020). In addition, 
longitudinal studies utilizing ICA have revealed alterations in 
functional connectivity patterns over time, providing insights into 
their progression (Abubakar et al., 2012).

However, in recent years, there has been growing interest in 
studying the dynamics of the brain’s intrinsic networks using 
co-activation pattern (CAP) analysis. Liu and Duyn introduced the 
CAP approach to track functional connectivity variations within each 
time frame (Liu and Duyn, 2013). In the CAP method, the fMRI 
volumes of the entire brain at time points with significant fMRI signals 
are temporally clustered using k-means into a predetermined number 
of CAPs, which reflect the dynamic behavior of a particular resting-
state network. This method offers a notable advantage by concentrating 
on individual time frames, eliminating the need for an extensive 
number of input time points compared to other fMRI analysis 
methods. Additionally, CAP analysis establishes a more direct 
relationship between voxels, in contrast, for instance, to the 
correlation-based sliding window method. Importantly, the versatility 
of CAP analysis allows for its extension to whole-brain analysis, 
incorporating the entire fMRI volume into temporal clustering.

In 2018, Zhuang et  al. proposed the dominant-CAP (d-CAP) 
method (Zhuang et al., 2018), which aggregates CAPs from multiple 
clustering runs. This method has been applied in individuals with 
Parkinson’s disease and healthy controls (HCs), providing quantitative 

information on network temporal dynamics in both groups (Zhuang 
et al., 2018). In addition to the spatial d-CAPS, this novel analysis 
yields the number of d-CAPs, the temporal fraction and spatial 
consistency of each d-CAP, and the subject-specific switching 
probability among all d-CAPs for different groups. These measures 
can be used to compare network dynamics between groups.

In this preliminary study, following the methodology introduced 
by Zhuang et al. (2018), we synthesized a set of d-CAPs by combining 
CAPs obtained from multiple clustering runs for a group of CI and 
HCs in the default mode network (DMN), visual network (VN), 
executive control network (ECN), and frontoparietal network (FPN). 
Additionally, the same networks were analyzed by the conventional 
ICA method. One key benefit of d-CAP analysis is its ability to focus 
on individual time frames, reducing the need for many input time 
points compared to other methods. In addition, d-CAP analysis 
captures a more direct voxel relationship than the correlation-based 
sliding window method (Liu and Duyn, 2013). It also allows analysis 
of the whole brain in the entire volume of fMRI for temporal clustering 
(Liu et  al., 2013). We  aimed to apply this innovative approach to 
examine the temporal dynamics of resting-state brain networks in 
dementia populations.

2 Methods

2.1 Subjects

This study was performed in accordance with the local 
Institutional Review Board. All participants gave written, informed 
consent in this HIPAA-compliant study.

The study included a total of 15 HC (9 females; mean age [SD]: 
74.3 [6.5] years) and 23 individuals with CI (14 females; mean age 
[SD]: 76.9 [6.8] years). The CI group was comprised of 13 AD patients 
in the stage of dementia (7 females; mean age [SD]: 77.8 [8.2] years) 
and 10 MCI patients due to AD (7 females; mean age [SD]: 75.8 [4.8] 
years). All individuals with CI were referred from local neurology 
clinics or selected from the Arizona Alzheimer’s Disease Center 
(AADC) database (15 individuals from neurology clinics and 8 
individuals from AADC). The inclusion of subjects in each cohort was 
based on clinical diagnostic criteria determined by a practicing 
neurologist (Albert et al., 2011; McKhann et al., 2011). Prior to the 
MRI scan, all participants underwent cognitive assessments, including 
the Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005), 
and Clock-Draw test (Sunderland et al., 1989). The complete subject 
characteristics are summarized in Table 1.

2.2 MRI acquisition

MRI data were acquired at 3 T (Ingenia, Philips, Best, Netherlands) 
with a dedicated 32-channel head coil. Standard T1-weighted (T1-w) 
anatomical images were acquired using a 3D magnetization-prepared 
rapid acquisition gradient echo (MP-RAGE) sequence with the 
following acquisition parameters: repetition time / echo time (TR/
TE), 6.7/3.104 msec; acquisition matrix, 256 × 256; voxel size, 
1.06 × 1.06 mm; slice thickness, 1.2 mm; 170 sagittal slices; flip 
angle = 90. rs-fMRI was acquired using an echo-planar imaging (EPI) 
acquisition with TR/TE, 3.000/30.0 msec acquisition matrix, 215 × 215; 
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voxel size, 2.68 × 2.68 mm; slice thickness, 2.68 mm; flip angle = 800; 
140 volumes.

2.3 Rs-fMRI pre-processing

The rs-fMRI datasets were converted to NIFTI format using 
dcm2niix.1 To ensure a signal steady state, the first three-time frames 
were removed from each dataset (3dTcat, AFNI)2 and temporal 
de-spiking was applied using 3dDespike (AFNI).

Image distortions can arise from head movements during data 
acquisition, potentially compromising data quality and impeding 
accurate interpretation of results. Even minor head movements can 
introduce variations in measured blood oxygenation levels, 
contributing to increased data variability. Therefore, implementing 
data preprocessing to minimize head movement is essential to 
improve the final results. In this study, motion parameters were 
estimated, and realignment of each time series was performed using 
3dvolreg (AFNI). Following visual inspection of the estimated motion 
parameters, participants with motion exceeding thresholds (>3 mm 
translation, >3 degrees rotation) were excluded from the study. These 
criteria were established in alignment with voxel size and 
considerations for the anticipated spatial resolution of BOLD 
responses, accounting for inherent variability in brain anatomy 
across subjects.

A brain mask was generated by bet (Smith, 2002; FSL)3 based on 
the average volume of each motion-corrected time series. Each brain-
extracted rs-fMRI was then coregistered to the corresponding relative 

1 https://github.com/rordenlab/dcm2niix

2 https://afni.nimh.nih.gov/

3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

MPRAGE (also brain extracted by bet) and spatially normalized to the 
standard MNI template (2 mm) using a 12-parameter affine 
transformation and mutual-information cost function (FLIRT; 
Jenkinson and Smith, 2001; FSL). Additionally, the data were 
resampled to isotropic resolution with a Gaussian kernel of 
FWHM = 4 mm (FSL). Voxel time-courses were bandpass filtered 
using AFNI (0.008 Hz < f < 0.1 Hz) to highlight low-frequency 
correlations during resting state.

2.4 ICA processing

The rs-fMRI datasets of the two groups were separately used for 
group ICA analysis using the Multivariate Exploratory Linear 
Optimized Decomposition into Independent Components 
(MELODIC) program (version 3.15; Beckmann and Smith, 2004), 
which is part of the FSL package. The analysis option of multi-session 
temporal concatenation was chosen to extract common spatial 
patterns without assuming a consistent temporal response across 
subjects. The resulting independent components (IC) maps were 
thresholded using a mixture model and alternative hypothesis testing 
approach. The threshold parameter was set to 0.5 to achieve an equal 
weight in false positives and false negatives (Woolrich et al., 2005).

Examining various component options and understanding the 
reasoning behind their selection is crucial for gaining insights into the 
robustness of identified resting components. In this study, we analyzed 
all MELODIC components for each network, averaging them when 
multiple components were present, to ensure a more resilient 
identification of the resting network. Furthermore, we scrutinized 
three key aspects for each component: the spatial map, the time 
course, and the power spectrum of the time course. Following this 
procedure, the DMN, VN, ECN, and FPN were the specific networks 
analyzed in the study.

TABLE 1 The complete subject characteristics for this study.

Group N (F) age (S.D) years motion (mean 
displacement) mm

MoCA Clock-draw

HC 15 (9) 74.3 (6.5) 0.30 (0.15) 26.00 (2.44) 1.82 (0.98)

CI 23 (14) 76.9 (6.8) 0.29 (0.10) 15.65 (6.26) 3.43 (1.12)

Shapiro–Wilk W = 0.97; p = 0.41 W = 0.84; p < 0.001 W = 0.92; p < 0.001 W = 0.91; p = 0.010

t-test: t = 1.17; p = 0.25 - - -

Mann–Whitney: - U = 199; p = 0.438 U = 16; p < 0.001 U = 216; p < 0.001

CI group

AD 13 (7) 77.8 (8.2) 0.29 (0.07) 12.69 (5.51) 3.85 (0.99)

MCI 10 (7) 75.8 (4.8) 0.30 (0.13) 19.50 (5.10) 2.90 (1.10)

t-test: t = 0.76; p = 0.46 - - -

Mann–Whitney: - U = 70; p = 0.784 U = 21.5; p = 0.007 U = 91; p = 0.088

MoCA domains (for CI)

Executive 

functions

Attention & 

concentration
Memory Language Visuospatial skills Orientation

AD 0.83 (1.03) 1.50 (1.51) 0.00 (0.00) 1.50 (1.68) 0.75 (0.73) 0.92 (1.24)

MCI 1.20 (1.75) 1.70 (2.41) 0.90 (1.62) 1.60 (2.12) 1.10 (1.52) 2.10 (2.76)

Mann–Whitney: U = 59; p = 0.971 U = 62.5; p = 0.888 U = 36; p = 0.021 U = 59; p = 0.971 U = 59; p = 0.972 U = 54.5; p = 0.718

SD, Standard Deviation; MoCA, Montreal Cognitive Assessment. The Shapiro–Wilk test was used to assess the normality of the data sample (Shapiro and Wilk, 1965).
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Dual regression, through the dual_regression tool in FSL, was 
employed to estimate customized group-level spatial maps and time 
courses for each participant’s 4D data across the four networks of 
interest (Nickerson et al., 2017). The process involved two steps. In the 
first stage, the group spatial maps were regressed onto each 
participant’s 4D dataset, producing a set of time courses. In the second 
stage, these time courses were further regressed onto the same 4D 
dataset, yielding subject-specific spatial maps. Consequently, this 
analysis generated a component-time course and spatial map for each 
subject and each component.

2.5 D-CAPs processing

Briefly, before performing d-CAP processing, voxel signals of the 
rs-fMRI data, in MNI standard space, were normalized by demeaning 
and dividing by the temporal SD. Conventional CAP analysis utilizes a 
single seed region of interest (ROI) to identify fMRI volumes associated 
with a specific resting-state network, such as the VN shown in 
Figure 1A. In this study, we generated automated 3 mm sphere ROIs 
within each network. Subsequently, the mean signal intensity within 
each ROI was computed and averaged, yielding a singular time-course 
per subject for each network. The spatial correlation between the 
average of selected time frames and the network-seeded correlation 
map increased with more frames by lowering the threshold. As a result, 
the spatial correlation led to a threshold of 25% (Figure  1B), and 
network-associated time points were included when the averaged seed 
signal intensities exceeded the chosen threshold. Whole-brain fMRI 
signals at these time points were identified for each subject in both HC 
and CI groups and were temporally concatenated, as depicted in 
Figure 1C.

Temporal clustering was performed on the concatenated time 
frames from both groups to ensure correspondence between CAPs 
from the HC and CI groups. K-means clustering was used with 
multiple cluster numbers (k = 1, 2, 3; ...). Group-specific CAP sets 
(Ski1 , Ski 2, ...) were computed by averaging spatial maps corresponding 
to time frames assigned to each cluster ki from the HC and CI groups 
(Figure 1D).

In this study, a separate d-CAP set was calculated for each 
group, giving equal consideration to every CAP generated from 
different k-means runs to avoid bias from a single run. The final 
d-CAP set integrated clustering results from multiple k-means 
runs, capturing dynamic structures within network-associated 
time frames. After determining each group’s final d-CAP set, fMRI 
signals at network-associated time points were assigned to 
different clusters based on their spatial similarities to the d-CAPs. 
Spatial correlations were calculated between each network-
associated time frame and every d-CAP to evaluate spatial 
resemblance. This information was utilized to assign the specific 
cluster (Figure 1E).

From d-CAPs analysis, several metrics can be  obtained 
(Figure 1F):

 1 Number of d-CAPs: As the computation of d-CAP sets for each 
group is data-driven, the number of d-CAPs inherently reflects 
the network-associated dynamics within each group. 
Consequently, a smaller number of d-CAPs for a group 
signifies a less dynamic network.

 2 Spatial consistency: To assess spatial consistency, the 
correlation between an individual network-associated time 
frame and the corresponding d-CAP map is calculated for each 
d-CAP cluster. These correlations are then averaged to 
determine the level of spatial consistency. A higher temporal 
fraction, combined with a more stable spatial consistency, 
indicates a resting-state network with reduced dynamics.

 3 Temporal fraction: The temporal fraction (TF) is a metric 
utilized to quantify the duration for which a specific network 
remains within a given d-CAP throughout the scan. An 
imbalanced distribution of temporal occurrences suggests that 
a particular group spends more time within one or more 
d-CAPs, indicating reduced network dynamics. TF is defined 
for each d-CAP as follows:

 
TF number of time frames assigned to dCAP

number of networj
j

�
�    

  kks associated time frames  �

with j = 1,2,3,...., number of d-CAPs.
Switching probability: the switching probability (SP) can be also 

computed for each subject to measure the dynamics of d-CAPs 
associated with each resting-state network. As previously mentioned, 
network-associated time frames are assigned to respective d-CAPs. If 
two consecutive time frames are assigned to different d-CAPs, it is 
considered a d-CAP switch. A reduced switching probability in one 
group reflects a less dynamic network. The SP for a subject is defined 
as follows:

 
SP number of d CAP switches

number of networks associated tis �
� 

    mme frames for subj s�   

with s = 1,2,3,...., number of subjects.

2.6 Statistical analysis

The mean and SD are provided for age and cognitive assessment 
scores. Age differences were examined using the Student t-test 
(Shapiro–Wilk: W = 0.97; p = 0.41), while differences in cognitive test 
scores were analyzed using the Mann–Whitney test (Shapiro–Wilk: 
p < 0.001 for all tests). Differences in motion during the rs-fMRI 
acquisition were evaluated by the Mann–Whitney test (Shapiro–Wilk: 
p < 0.001). Statistical significance was set at p < 0.05, with a power 
analysis of 0.76 (α=0.05; effect-size = 0.80).

In the dual-regression procedure (ICA), the group-level 
statistical inference was performed through a linear model at the 
voxel level, with motion, age and sex as covariates, using an 
in-house R script (version 4.3.1) and RStudio (version 2023.06.0). 
p-values were corrected using the False Discovery Rate (FDR) 
method to address multiple comparisons. Probabilistic threshold-
free cluster enhancement (pTFCE; Spisák et al., 2019) was used to 
control for multiple comparison correction on each component 
separately with corrected probability of 0.05 determined as the 
significance threshold. Furthermore, given our analysis of four 
distinct networks, we applied the Bonferroni correction to adjust 
the final p-values. For ICA, effect-size and associated confidence 
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FIGURE 1

d-CAP processing for the Visual Network (VN; as an example). (A) Conventional CAP analysis used a single seed region of interest (ROI) to identify fMRI 
volumes associated with a specific resting-state network in each subject and group. The spatial correlation between the average of selected time 
frames and the network-seeded correlation is shown in panel (B). The gray background represents regions within ±1 SD across study’s participants. 
(C) A threshold of 25% was chosen based on the spatial correlation (panel B), and network-associated time points were defined when the averaged 
seed signal intensities surpassed this threshold. Whole-brain fMRI signals at these time points were identified and temporally concatenated for each 
subject in both HC and CI groups. (D) Temporal clustering was performed on the concatenated time frames from both groups to ensure 
correspondence between CAPs from the HC and CI groups. (E) d-CAPs set were determined for both group. More information about the algorithm 
can be found in Zhuang et al. (F) From d-CAPs different outputs can be obtained for statistical analysis.
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interval were calculated by Cohen-d with R and RStudio (large 
effect for d > ±0.80).

d-CAPs were processed using an in-house R and RStudio script, 
employing the algorithm described in Zhuang et al. (2018). In this 
analysis, we explored a range of cluster numbers in k-means, spanning 
from 2 to 20. To mitigate the instability of single-trial k-means 
outcomes, we repeated the clustering process 100 times. The clustering 
result with the lowest within-cluster sum of point-to-centroid 
distances was selected as the optimal outcome.

To investigate differences in the switching probability of each 
network, a Student t-test was conducted with age and gender as 
covariates. FDR correction was used to address multiple 
comparisons. Differences in the temporal fraction of the 1st d-CAPs 
for the networks with the same number of d-CAPs was also 
evaluated by Student t-test with age and gender as covariates, 
followed by FDR correction.

Correlations between switching probabilities and cognitive scores 
were evaluated by a linear model, with age and sex as covariates, by R 
and RStudio. The p-values were corrected by FDR. Effect size for 
correlations was evaluated by Spearman’s rank correlation 
coefficient (ρ).

The resulting clusters were labeled according to the automated 
anatomical labeling atlas (AAL; Tzourio-Mazoyer et al., 2002).

3 Results

No statistical differences were found for age (t = 1.17; p = 0.25) 
across the two groups. On the other hand, differences between HC 
and CI were observed for all cognitive tests (MoCA: U = 16; p < 0.001; 
Clock-Draw: U = 216; p < 0.001). Additionally, no differences between 
groups were found for the motion (mean displacement) during the 
rs-fMRI acquisition (U = 199; p = 0.438).

For the CI group (comparison between AD and MCI), we did not 
find any statistical differences in age (t = 0.76; p = 0.46), motion (mean 
displacement; U = 70; p = 0.784), or the clock-draw test (U = 91; 
p = 0.088). However, differences between AD and MCI were found for 
the MoCA (U = 21.5; p = 0.007). Analyzing the different MoCA 
domains, differences between AD and MCI were seen only in the 
memory domain (U = 36; p = 0.021; see Table 1). All subjects were 
included in the final analysis, and for all subsequent analyses, the MCI 
and AD groups were combined into the CI group.

Table 2 displays the number of d-CAPs identified in both the HC 
and CI groups for the resting-state networks utilized in the CAP group 
analysis. We observed an equal number of d-CAPs for the DMN, 
ECN, and FPN in both groups. However, our analysis detected a lower 
number of d-CAPs for the VN for the CI group compared to the 
HC group.

3.1 Default mode network

The Z-values, from the dual-regression procedure, for the DMN 
are shown in Figure  2. Panel A shows the statistical differences 
between HC and CI for ICA analysis. Significantly lower connectivity 
was found in the CI group than HC in the right precentral 
(<t > =2.979) and right postcentral gyrus (<t > =3.096). The complete 
results, with effect sizes and confidence intervals, are reported in 
Table 3A.

Panel B displays the spatial patterns of the blood oxygen level-
dependent (BOLD) signal for the final d-CAP sets of the DMN. For 
this network, for both groups, we found 3 d-CAPs. Each d-CAP’s 
spatial map was also converted to effect size (Cohen’s d) maps, which 
were thresholded at d = ±0.80, representing the large effect size. For 
each d-CAP, between-group differences in Cohen’s d maps at d ≥ ±0.80 
are reported in panel C and Table 3B. Increased coactivation (indicated 
by large effect size) for all d-CAPs was observed in the HC group. On 
the other hand, for d-CAP-2, small clusters of larger activity were 
observed in CI groups inside the left cuneus and precuneus and inside 
the left superior occipital gyrus. Spatial similarities between d-CAPs 
are represented by correlation matrices and are shown in panel D. The 
between-group d-CAP spatial similarities are shown inside the ‘red’ 
box. For this network, high spatial similarity was found for d-CAP-1 
between HC and CI (r > 0.90) and for d-CAP-1 (HC) and d-CAP-3 
(CI; r > 0.80).

3.2 Visual network

Figure 3 displays the Z-values obtained from the dual-regression 
procedure for the VN. In panel A, the statistical differences between 
the HC and CI groups are reported for ICA analysis. Significantly 
lower connectivity was found in the CI group than HC, including in 
the right hippocampus (<t > =3.367), right parahippocampal gyrus 
(<t > =3.868), right amygdala (<t > =3.347), and right temporal pole 
(superior temporal gyrus; <t > =3.199). The complete results, with 
effect sizes and confidence intervals, are reported in Table 4A.

Panel B displays the spatial patterns of the BOLD signal and the 
thresholded effect-sizes for the final d-CAP sets for this network. In 
this case, 5 d-CAPs for HC and only 3 d-CAPs for CI were found. For 
each d-CAP, between-group differences in Cohen’s d maps at 
d ≥ ±0.80 are reported in panel C and Table  4B. Differences in 
coactivation (mainly with HC > CI) were found in several brain 
regions (Table 4B). Spatial similarities between d-CAPs are reported 
in panel D. For this network, high spatial similarities were found 
across the d-CAPs.

3.3 Executive control network

Figure 4 shows the Z-values resulting from the dual-regression 
procedure for the ECN. Panel A focuses on the statistical differences 
observed between the HC and CI groups in ICA analysis. Notably, a 
significant decrease in connectivity was discovered within the right 
superior temporal gyrus (<t > = − 3.177) and both sides of the middle 
temporal gyrus (<t > = − 3.140) in the HC group compared to the CI 
group. For comprehensive findings, including effect sizes and 
confidence intervals, please refer to Table 5A.

TABLE 2 Number of d-CAPs for both groups for resting-state networks 
used in the CAP group analysis.

Network HC CI

DMN 3 3

VN 5 3

ECN 3 3

FPN 2 2
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Panel B shows the spatial patterns of the BOLD signal and the 
thresholded effect sizes for the final d-CAP sets for this network. In 
this case, for both groups, we found 3 d-CAPs. Additionally, for 

each d-CAP, between-group differences in Cohen’s d maps at 
d ≥ ±0.80 are reported in panel C and Table  5B. Differences in 
coactivation were found in several brain regions. For d-CAP-3, 

FIGURE 2

For the DMN: Panel (A) displays the ICA results for both t-test and effect-size, while panel (B) shows the spatial patterns of the d-CAP sets in both the 
HC and CI groups. In panel (C), effect size maps for each d-CAP in each group are presented. Additionally, panel (D) exhibits the spatial correlation 
matrices between the d-CAPs, denoted by asterisks (*) to indicate spatial similarities: *for r  >  0.70, **for r  >  0.80, and ***for r  >  0.90.
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we  found only clusters with higher coactivation in CI than HC 
(Table 5B). Lastly, spatial similarities between d-CAPs are reported 
in panel D. High spatial similarity was found for d-CAP-1 between 
HC and CI (r > 0.80).

3.4 Frontoparietal network

Figure 5 shows the Z-values resulting from the dual-regression 
procedure for the FPN. Panel A shows the statistical differences 

observed between the HC and CI groups in ICA analysis. 
Compared with CI, significant clusters with higher connectivity 
were observed in HC, mainly in the left posterior cingulate gyrus 
(<t > =3.055), left superior parietal gyrus (<t > =3.068), precuneus 
(<t > =3.141), and thalamus (<t > =3.439 and < t > =3.198, for left 
and right sides, respectively). A small cluster with higher 
connectivity in CI was found inside the left inferior frontal gyrus 
pars orbitalis (<t > = − 3.103). For comprehensive findings, 
including effect sizes and confidence intervals, please refer to 
Table 6A.

TABLE 3 Complete results for DMN using (A) ICA and (B) d-CAP analysis.

DMN

(A)

ICA (t-test clusters)

HC > CI (FWE < 0.05 + Bonferroni)

AAL Vol (%) t d Conf. I

Precentral R 0.68 2.981 0.831 [0.147–1.510]

Postcentral R 3.55 3.116 0.923 [0.220–1.607]

(B)

d-CAPs

d-CAP 1 d-CAP 2 d-CAP 3

HC > CI HC > CI HC < CI HC > CI

AAL Vol (%) <Δd> Vol (%) <Δd> Vol (%) <Δd> Vol (%) <Δd>

Precentral L - - 0.82 1.046 - - - -

Precentral R - - 0.35 1.003 - - - -

Cingulum Post L - - 0.35 0.962 - - - -

Cingulum Post R - - 2.11 1.351 - - - -

Calcarine R - - 0.62 1.118 - - - -

Cuneus L - - 0.80 1.083 0.22 −0.951 - -

Cuneus R - - 2.49 1.159 - - - -

Occipital Sup L - - 2.19 1.076 1.54 −0.994 - -

Occipital Sup R - - - - - - 0.39 0.904

Occipital Mid L - - 1.01 1.049 - - - -

Occipital Mid R - - - - - - 0.49 0.925

Postcentral L - - 6.08 0.997 - - - -

Postcentral R - - 1.56 1.035 - - - -

Parietal Sup L - - 26.71 1.184 - - - -

Parietal Sup R - - 11.43 1.160 - - - -

Parietal Inf L - - 10.64 1.222 - - - -

Angular L - - 19.28 1.179 - - - -

Angular R 0.40 0.847 - - - - 3.09 0.922

Precuneus L - - 5.10 1.071 0.35 −1.020 - -

Precuneus R - - 4.27 1.205 - - - -

Paracentral Lobule L - - 2.19 0.942 - - - -

Temporal Sup R 0.25 0.894 - - - - - -

Temporal Mid R 2.66 0.935 - - - - - -

AAL, automated anatomical labeling atlas; Vol (%), volume in percent covered from the cluster in the relative AAL area; d, Cohen-d effect-size; Conf.I, confidence interval for the effect-size; 
<Δd>, differences in effect-size (thresholded at ±0.80).
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FIGURE 3

For the VN: Panel (A) displays the ICA results for both t-test and effect-size, while panel (B) shows the spatial patterns of the d-CAP sets in both the HC 
and CI groups. In panel (C), effect size maps for each d-CAP in each group are shown. Additionally, panel (D) shows the spatial correlation matrices 
between the d-CAPs, denoted by asterisks (*) to indicate spatial similarities: *for r  >  0.70, ** for r  >  0.80, and ***for r  >  0.90.
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(Continued)

TABLE 4 Complete results for VN using (A) ICA and (B) d-CAP analysis.

VN

(A)

ICA (t-test clusters)

HC > CI (FWE < 0.05 + Bonferroni)

AAL Vol (%) t d Conf. I

Hippocampus R 14.89 3.381 1.067 [0.364–1.773]

ParaHippocampal R 26.21 3.902 1.266 [0.546–1.990]

Amygdala R 5.11 3.388 1.190 [0.471–1.899]

(B)

d-CAPs

d-CAP 1 d-CAP 2 d-CAP 3

HC > CI HC < CI HC > CI HC < CI HC > CI HC < CI

AAL Vol (%) <Δd> Vol (%) <Δd> Vol (%) <Δd> Vol (%) <Δd> Vol (%) <Δd> Vol (%) <Δd>

Precentral L - - - - 0.80 1.011 - - 15.77 1.059 - -

Precentral R - - - - - - - - 6.86 1.117 - -

Frontal Sup L - - - - - - - - 0.96 0.986 - -

Frontal Sup R - - - - - - - - 0.65 1.006 - -

Frontal Mid L - - - - - - - - 1.94 1.028 - -

Frontal Mid R - - - - 1.78 0.987 - - 11.98 1.058 - -

Frontal Inf Oper L - - - - - - - - 2.15 1.091 - -

Frontal Inf Oper R - - - - 1.75 0.983 - - 7.58 0.997 - -

Frontal Inf Tri R - - - - 6.21 0.978 - - 7.48 1.023 - -

Rolandic Oper R - - - - - - - - 20.71 1.090 - -

Insula R - - - - - - - - 3.84 1.003 - -

Cingulum Mid L - - - - - - - - 2.39 0.998 - -

Cingulum Mid R - - - - 1.55 0.993 - - 5.38 1.056 - -

Cingulum Post R - - - - - - - - 0.45 0.982 - -

Hippocampus L - - - - 11.88 1.027 - - 0.66 1.052 - -

ParaHippocampal L - - - - 2.40 1.012 - - 0.93 1.233 - -

Amygdala L - - - - 1.90 0.966 - - - - - -

Amygdala R - - - - - - - - 10.53 1.009 - -

Calcarine L - - - - 8.50 1.247 0.28 −0.946 - - 8.69 −1.133

Calcarine R 4.86 1.022 1.91 −0.928 2.97 1.137 - - 3.54 1.079 3.80 −1.085

Cuneus L - - - - 9.52 1.154 - - - - 1.59 −0.994

Cuneus R 1.06 1.002 - - 4.14 1.159 - - 1.03 1.031 1.18 −1.060

Lingual L - - - - - - - - 2.11 0.998 3.66 −1.114

Lingual R 4.70 0.969 0.11 −0.893 3.26 0.996 - - 1.30 1.018 - -

Occipital Sup L - - - - 11.07 1.158 - - 2.06 1.005 1.34 −1.100

Occipital Sup R 3.91 0.982 - - 1.55 1.263 - - 9.55 1.011 - -

Occipital Mid L 2.38 0.946 - - 5.48 1.112 - - 6.18 1.103 - -

Occipital Mid R 16.64 1.006 - - 6.00 1.132 - - 4.93 0.987 - -

Occipital Inf L 4.02 0.978 - - 2.83 1.022 0.77 −0.951 6.80 1.046 - -

Occipital Inf R 36.97 0.953 - - - - - - - - - -

Fusiform L - - - - 3.14 1.005 - - 1.43 1.109 - -

Postcentral L - - - - 3.41 1.001 - - 21.10 1.236 - -

Postcentral R - - - - - - - - 3.51 1.060 - -
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Panel B shows the spatial patterns of the BOLD signal and the 
thresholded effect sizes for the final d-CAP sets for this network. For 
this network, for both groups, we found 2 d-CAPs. Moreover, for each 
d-CAP, between-group differences in Cohen’s d maps at d ≥ ±0.80 are 
reported in panel C and Table 6A. Compared with the CI group, 
higher coactivation was found in HC inside several brain regions 
(Table 6B). Lastly, spatial similarities between d-CAPs are reported in 
panel D. High spatial similarity was found for d-CAP-1 between HC 
and CI (r > 0.80).

3.5 Switching probability, spatial 
consistency, and temporal fraction

Switching probabilities were computed for each participant within 
the HC and CI groups. Box plots illustrating the switching probabilities 
associated with all networks are depicted in Figure  6, while the 
complete results can be found in Table 7. Notably, when comparing the 
CI group to the HC group, significantly lower switching probabilities 
were observed for the DMN (t = 2.239; FDR = 0.023), VN (t = 2.864; 
FDR = 0.007), and FPN (t = 2.645; FDR = 0.017). However, for the ECN, 
although a decrease in switching probabilities was observed in the HC 
group, the corresponding FDR-value was greater than 0.05 (t = 0.461; 
FDR = 0.764). The decreased switching probabilities in the CI group, 
particularly for the DMN, VN, and FPN networks, indicate an overall 
reduction in dynamic activity within these networks.

Table 8A presents the spatial consistency of each d-CAP associated 
with all networks. Across the analyzed networks, the mean spatial 
consistency for the first d-CAP was higher in the HC group compared 
to the CI group, which can indicate resting-state networks with 
reduced dynamics in the latter.

In Table 8B, the temporal fraction of the d-CAPs associated 
with each network is shown. Additionally, Table 8C provides the 
mean and SD of the temporal fraction for the 1st d-CAPs in each 
group for only networks with the same number of d-CAPs. 
Statistical differences were found in the DMN and FPN networks, 
where the HC group exhibited lower temporal fractions compared 
to the CI group, indicative of decreased network dynamics for the 
CI group.

3.6 Correlations

We examined the correlations between switching probability 
and cognitive scores, as shown in Figure 7. Our analysis revealed 
statistical correlations, without correction for multiple 
comparisons, between MoCA scores and SP within the DMN 
(t = 2.372, p = 0.028, FDR = 0.084, ρ = 0.43). Similarly, a significant 
correlation was observed between the clock draw and SP within 
the ECN (t  = 2.467, p = 0.036, FDR = 0.107, ρ = 0.656). It is 
important to note that both correlations did not survive 
FDR correction.

4 Discussion

In this preliminary study, we  used ICA and d-CAP analysis 
methods to investigate the differences in resting-state functional 
connectivity and dynamic network properties between HC and 
individuals with CI. Additionally, differences in cognitive 
performances between the two groups and correlations between 
cognitive scores and d-CAP switching probability were analyzed.

TABLE 4 (Continued)

Parietal Sup L - - - - 13.79 1.006 - - 22.99 1.163 - -

Parietal Sup R - - - - 0.34 0.966 - - 11.93 1.063 12.20 −1.049

Parietal Inf L - - - - 4.36 1.028 - - 30.12 1.097 - -

Parietal Inf R - - - - - - - - 4.30 1.121 0.39 −0.992

SupraMarginal L - - - - - - - - 5.82 1.005 - -

SupraMarginal R - - - - - - - - 7.64 1.112 - -

Angular L - - - - 2.75 0.974 - - 22.50 1.140 - -

Angular R 1.77 0.916 - - - - - - 9.14 0.993 1.94 −1.012

Precuneus L - - - - 2.77 0.985 - - 23.34 1.084 - -

Precuneus R - - - - 4.92 1.027 - - 27.05 1.147 - -

Paracentral Lobule L - - - - - - - - 22.11 1.069 - -

Paracentral Lobule R - - - - 1.94 1.051 - - 6.01 1.025 - -

Putamen L - - - - 0.53 0.953 - - - - - -

Putamen R - - - - - - - - 5.71 1.081 - -

Pallidum R - - - - - - - - 1.74 1.047 - -

Temporal Sup L - - - - - - - - 2.33 1.005 - -

Temporal Sup R - - - - - - - - 1.07 1.038 - -

Temporal Mid L - - - - - - - - 3.33 1.012 - -

Temporal Mid R - - - - - - - - 3.44 1.038 - -

AAL, automated anatomical labeling atlas; Vol (%), volume in percent covered from the cluster in the relative AAL area; d, Cohen-d effect-size; Conf.I, confidence interval for the effect-size; 
<Δd>, differences in effect-size (thresholded at ±0.80).

VN
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We found the same numbers of d-CAPs between the HC and CI 
groups for the DMN, ECN, and FPN. However, the VN exhibited more 
d-CAPs in the HC group than in the CI group. These results suggest that 
the dynamic properties of the VN may be altered in individuals with CI.

By ICA analysis, significant differences in connectivity between the 
HC and CI groups were found in the DMN. Specifically, lower 
connectivity was observed in the CI group compared to HC in regions 
such as the right precentral gyrus and right postcentral gyrus. These 

FIGURE 4

For the ECN: Panel (A) displays the ICA results for both t-test and effect-size, while panel (B) shows the spatial patterns of the d-CAP sets in both the 
HC and CI groups. In panel (C), effect size maps for each d-CAP in each group are shown. Additionally, panel (D) shows the spatial correlation matrices 
between the d-CAPs, denoted by asterisks (*) to indicate spatial similarities: *for r  >  0.70, **for r  >  0.80, and ***for r  >  0.90.
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(Continued)

TABLE 5 Complete results for ECN using (A) ICA and (B) d-CAP analysis.

ECN

(A)

ICA (t-test clusters)

HC < CI (FWE < 0.05 + Bonferroni)

AAL Vol (%) t d Conf. I

Temporal Sup R 0.91 −3.180 −1.077 [−1.79–0.36]

Temporal Mid R/L 1.07 −3.142 −1.023 [−1.72–0.32]

(B)

d-CAPs

d-CAP 1 d-CAP 2 d-CAP 3

HC > CI HC < CI HC > CI HC < CI HC < CI

AAL Vol (%) <Δd> Vol (%) <Δd> Vol (%) <Δd> Vol (%) <Δd> Vol (%) <Δd>

Precentral L 5.95 1.047 - - 3.34 0.974 4.11 −0.986 - -

Precentral R 3.37 1.104 - - 6.67 1.079 - - - -

Frontal Sup L 1.45 0.971 1.75 −1.087 13.75 1.246 3.31 −1.037 1.18 −1.034

Frontal Sup R 5.82 1.121 - - 3.31 1.077 - - 3.79 −1.254

Frontal Sup Orb L 7.97 0.970 - - 18.22 1.019 - - - -

Frontal Sup Orb R 8.28 1.126 - - - - - - - -

Frontal Mid L 0.99 0.942 - - 19.37 1.304 1.91 −0.988 0.81 −1.163

Frontal Mid R 3.23 1.070 - - 2.84 1.028 0.35 −1.087 0.71 −1.145

Frontal Mid Orb L 5.11 0.946 - - 19.26 0.996 - - - -

Frontal Inf Oper L 13.97 1.018 - - 3.48 1.196 - - - -

Frontal Inf Oper R - - - - 2.31 0.961 3.39 −1.235 - -

Frontal Inf Tri L 9.89 1.019 - - 11.54 1.006 - - - -

Frontal Inf Tri R - - - - 6.13 1.024 - - - -

Frontal Inf Orb L 0.54 0.929 - - 11.28 1.019 - - - -

Supp Motor Area L 0.76 1.062 0.90 −1.053 0.52 0.970 - - - -

Supp Motor Area R 2.83 1.045 - - 0.25 0.950 - - 0.96 −1.167

Olfactory L - - - - 2.83 0.988 - - - -

Frontal Sup Medial L 1.52 0.980 2.32 −1.117 16.36 1.148 1.87 −1.159 1.59 −1.111

Frontal Sup Medial R 7.66 1.112 - - 5.30 1.067 - - 0.70 −1.051

Frontal Med Orb L 0.49 0.952 - - 2.79 0.960 - - - -

Frontal Med Orb R 0.41 1.024 - - - - - - - -

Rectus L - - - - 1.31 0.996 - - - -

Insula L 6.42 0.996 - - - - - - - -

Cingulum Ant L - - - - 28.04 1.130 - - - -

Cingulum Ant R - - - - 21.90 1.003 - - - -

Cingulum Mid L - - - - 3.98 1.133 - - - -

Cingulum Mid R - - - - 5.50 1.034 - - - -

Hippocampus L - - - - - - 6.67 −1.019 - -

Hippocampus R - - - - - - 0.29 −1.249 - -

Amygdala L - - - - - - 0.63 −0.934 - -

Fusiform R - - - - - - 2.19 −0.999 - -

Postcentral L 3.23 1.019 - - - - 5.05 −1.062 - -

https://doi.org/10.3389/fnagi.2024.1362613
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Bergamino et al. 10.3389/fnagi.2024.1362613

Frontiers in Aging Neuroscience 14 frontiersin.org

findings align with previous research indicating altered DMN connectivity 
in individuals with CI and dementia (Greicius et al., 2004; Sorg et al., 2007; 
Bai et al., 2009). In addition, spatial maps and effect size analyses revealed 
increased coactivation in the HC group compared to CI, reflecting more 
synchronized activity within the DMN in healthy individuals.

The DMN plays a crucial role in several cognitive functions, 
such as autobiographical memory and social cognition. Alterations 
in the DMN have been identified as potential early markers of 
cognitive decline, including the early stages of AD (Grieder et al., 
2018). Additionally, as AD progresses, there are disruptions in the 
connectivity and activity within the DMN. This network is also 
closely tied to processes related episodic memory, which is often 
impaired in AD (Huo et al., 2018). The DMN has been previously 
studied in dementia, providing valuable insights into the 
pathophysiology of various forms of CI (Sorg et al., 2007). For 
instance, decreased functional connectivity inside the DMN in 
patients with AD has been reported by several studies (Greicius 
et al., 2004; Sorg et al., 2007), and it may be associated with deficits 
in different cognitive domains, including memory and attention 
(Hahn et al., 2013).

The VN also showed significant differences in connectivity between 
the HC and CI groups. The HC group displayed higher connectivity in 
regions including the hippocampus, parahippocampal gyrus, amygdala, 
and temporal pole (superior temporal gyrus). From d-CAPs analysis, 
we found five d-CAPs for HC and only three d-CAPs for CI, which 
might indicate a less dynamic network inside people with CI.

The VN is a network essential for processing visual information 
and connects to cognitive functions like object recognition and spatial 
awareness (Uddin et  al., 2010). Changes in the VN have been 
associated with cognitive decline and visual impairments, which can 
occur in dementia, leading to challenges in tasks such as object 
recognition, spatial orientation, and visual attention (Frost et  al., 
2013); additionally, changes in the visual system might serve as early 
indicators of cognitive decline (Marquié et al., 2019; Xia et al., 2022). 
Furthermore, studies have shown that VN alterations are associated 

with specific visual symptoms in AD (Huang et al., 2021). For instance, 
decreased connectivity between VN regions has been correlated with 
deficits in visual attention and memory (Lazarou et al., 2022).

Similarly, the FPN showed lower connectivity in CI than HC in 
regions such as the left posterior cingulate gyrus, left superior parietal 
gyrus, precuneus, and thalamus. The FPN is of significant interest in 
the AD due to its involvement in executive functions, attentional 
control, and cognitive flexibility (Agosta et al., 2013). Several studies 
have demonstrated changes in FPN connectivity in individuals with 
dementia, which might correspond to the underlying cognitive 
impairments (Zhou et al., 2010).

Various cognitive processes such as attention control, working 
memory, cognitive flexibility, and goal-directed behavior are 
associated with the ECN (Dajani and Uddin, 2015). In this study, the 
ECN showed decreased connectivity in the HC group compared to CI, 
particularly within the right temporal regions. Although higher 
functional connectivity inside the ECN is not common in individuals 
with dementia, Liu et al. similarly found increased connectivity in a 
cohort of individuals with MCI (Balachandar et  al., 2015; Liu 
W. et al., 2021).

For all networks, the spatial similarity, which reflects the spatial 
correlations between each network-associated time frame and every 
d-CAP, showed a good correspondence between HC and CI in 
several d-CAPs.

From d-CAPs analysis, we  found that the switching 
probabilities were significantly reduced in the DMN, VN, and 
FPN networks in individuals with CI. These findings suggest 
reduced dynamics and less flexible functional interactions within 
these networks in CI. However, no significant differences in 
switching probability were observed for the ECN, indicating 
preserved dynamic properties in this network between the HC 
and CI groups. Additionally, the spatial consistency of d-CAPs 
showed higher values in the HC group than the CI group across 
all networks, indicating greater consistency in the functional 
connectivity patterns within d-CAPs in healthy individuals.

TABLE 5 (Continued)

Postcentral R 2.89 1.007 - - 0.54 1.009 1.15 −0.979 - -

Parietal Inf L - - - - - - 0.46 −1.045 - -

Precuneus R 0.60 0.974 - - - - - - - -

Paracentral Lobule R 5.18 0.978 - - - - - - - -

Caudate L - - - - 14.35 0.999 - - - -

Caudate R - - - - 1.36 0.976 - - 3.56 −0.938

Putamen L - - - - 10.50 0.975 1.94 −1.111 - -

Putamen R - - - - - - 4.24 −1.065 - -

Pallidum R - - - - - - 23.86 −1.096 - -

Temporal Mid L - - - - 0.31 0.916 - - - -

Temporal Mid R - - - - - - 9.33 −1.193 - -

Temporal Inf L - - - - 5.30 0.990 - - - -

Temporal Inf R - - - - - - 6.28 −1.126 - -

AAL, automated anatomical labeling atlas; Vol (%), volume in percent covered from the cluster in the relative AAL area; d, Cohen-d effect-size; Conf.I, confidence interval for the effect-size; 
<Δd>, differences in effect-size (thresholded at ±0.80).
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The temporal fraction for the 1st d-CAP revealed statistical 
differences in the DMN and FPN networks. The CI group 
exhibited higher temporal fractions compared to HC. These 
findings suggest that the DMN and FPN in CI are less 
dynamic networks.

Finally, the correlations between SP and cognitive scores for the 
CI group showed significant statistical correlations between the 

MoCA scores and SP within the DMN. Similarly, a significant 
correlation was observed between clock draw performance and SP 
within the ECN (p < 0.05). However, these correlations did not survive 
after multiple comparison corrections.

In this investigation, distinct ICA analyses were conducted 
for each group, and the multi-session temporal concatenation 
option was employed. This methodology was chosen to capture 

FIGURE 5

For the FPN: Panel (A) displays the ICA results for both t-test and effect-size, while panel (B) shows the spatial patterns of the d-CAP sets in both the 
HC and CI groups. In panel (C), effect size maps for each d-CAP in each group are shown. Additionally, panel (D) shows the spatial correlation matrices 
between the d-CAPs, denoted by asterisks (*) to indicate spatial similarities: *for r  >  0.70, **for r  >  0.80, and ***for r  >  0.90.
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unique patterns of functional connectivity specific to each 
cohort, facilitating a more nuanced exploration of group-specific 
alterations. Moreover, given that the primary aim of our study 
was to analyze differences in resting-state functional connectivity 
and dynamic network properties using dCAPs, this approach was 
considered the most fitting for our specific research  
objectives.

One limitation of this study is the relatively small sample size; 
therefore, we  have defined this study as “preliminary.” This 
designation reflects our awareness of the exploratory nature of the 
research and the need for caution in interpreting the results. For this 
reason, effect sizes have been reported for all analyses, which 
measure the strength of a relationship between variables or the 
magnitude of an intervention’s impact. In studies with small sample 
sizes, detecting meaningful effect sizes becomes challenging. 

Additionally, the CI cohorts were defined based on clinical diagnosis, 
without biomarker confirmation (Jack et al., 2018). Therefore, these 
findings should be  replicated in a larger cohort, with biomarker 
confirmation (Abubakar et al., 2012), to enhance the robustness of 
the results and facilitate a more comprehensive understanding of 
the condition.

Another limitation of our study lies in the unavailability of 
respiratory and cardiac data during the MRI acquisition. Despite 
recognizing the importance of addressing potential artifacts from 
physiological sources such as the respiratory and cardiac systems, 
we were constrained by the absence of the capability to acquire specific 
data related to these variables. Although we have incorporated this 
limitation into our discussion, the absence of respiratory and cardiac 
data during the imaging process might pose a restriction on the 
fMRI analysis.

TABLE 6 Complete results for FPN using (A) ICA and (B) d-CAP analysis.

FPN

(A)

ICA (t-test clusters)

HC > CI (FWE < 0.05 + Bonferroni)

AAL Vol (%) t d Conf. I

Cingulum Post L 1.54 3.058 0.820 [0.133–1.509]

Parietal Sup L 1.60 3.108 0.845 [0.151–1.521]

Precuneus L/R 2.14 3.146 0.756 [0.072–1.434]

Thalamus L 13.04 3.431 1.081 [0.371–1.788]

Thalamus R 4.14 3.206 1.024 [0.322–1.721]

HC < CI (FWE < 0.05 + Bonferroni)

AAL Vol (%) t d Conf. I

Frontal Inf Orb L 3.64 −3.106 −0.888 [−1.571–0.192]

(B)

d-CAPs

d-CAP 1 d-CAP 2

HC > CI HC > CI

AAL Vol (%) <Δd> Vol (%) <Δd>

Frontal Mid L - - 0.94 1.094

Frontal Mid Orb L - - 3.12 0.989

Frontal Inf Oper L 1.60 0.984 1.90 1.032

Frontal Inf Oper R - - 0.37 0.941

Frontal Inf Tri L 0.21 0.933 7.62 1.076

Supp Motor Area L - - 4.49 0.978

Supp Motor Area R - - 3.15 0.968

Frontal Sup Medial L - - 0.25 0.925

Insula L - - 1.41 0.951

Cingulum Ant L - - 1.80 0.950

Cingulum Mid L - - 4.58 0.995

Cingulum Mid R - - 3.88 0.961

AAL, automated anatomical labeling atlas; Vol (%), volume in percent covered from the cluster in the relative AAL area; d, Cohen-d effect-size; Conf.I, confidence interval for the effect-size; 
<Δd>, differences in effect-size (thresholded at ±0.80).
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Finally, other limitations are associated with the proposed 
CAP group analysis. First, using k-means clustering with spatial 
correlation as a similarity measure may not fully capture the 
non-linear relationships between different time frames in fMRI 
data. Consideration of alternative clustering methods that can 
account for non-linear relationships might be useful to enhance 
the accuracy and efficiency of the clustering process (Liu B. et al., 
2021; Zou et al., 2021). Additionally, direct comparisons between 
d-CAPs from different groups are challenging due to the 

group-specific nature of network dynamics represented by 
d-CAP sets. As a result, except for the first d-CAP, the 
correspondence of all d-CAPs between groups cannot 
be maintained (Zhuang et al., 2018). Consequently, comparisons 
involving specific d-CAPs other than d-CAP1 cannot be directly 
performed. Considering the inherent interdependence between 
the number of d-CAPs, it is important to interpret results for 
group comparisons by using temporal fractions and switching 
probabilities. Therefore, addressing these limitations and 

FIGURE 6

Box plots illustrating the switching probabilities of d-CAPs for the HC and CI groups. Statistical significance was denoted by *for FDR-values less than 
0.05 and **for FDR-values less than 0.001.
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incorporating more sophisticated clustering techniques could 
enhance the robustness and interpretability of the proposed CAP 
group analysis method.

5 Conclusion

In conclusion, our results provide evidence for altered 
resting-state functional connectivity and dynamic network properties 
in individuals with CI compared to HCs. The findings suggest altered 
connectivity patterns within the DMN, VN, ECN, and FPN, 
indicating the involvement of multiple functional networks in 
CI. Our results revealed reduced connectivity in the DMN, VN, and 
FPN, while showing increased connectivity in the ECN, possibly 
indicative of compensatory processes.

Additionally, decreased switching probabilities and higher temporal 
fractions highlight the diminished dynamics and flexibility of functional 
interactions within these networks in people with CI. These results can 
help to understand the brain processes underlying CI and influence the 
development of diagnostic and therapeutic strategies specifically targeting 
these networks.

TABLE 8 (A) Spatial consistency for all networks; (B) Temporal fraction of each d-CAP associated with the four networks in HC and CI groups; (C) 
Statistical comparisons of the temporal fraction of the 1st d-CAP associated with networks that share the same number of d-CAPs in the HC and CI 
groups.

(A) Consistency

HC CI

d-CAP 1 d-CAP 2 d-CAP 3 d-CAP 4 d-CAP 5 d-CAP 1 d-CAP 2 d-CAP 3

DMN 0.72 (0.11) 0.67 (0.11) 0.60 (0.21) 0.71 (0.10) 0.62 (0.11) 0.75 (0.12)

VN 0.75 (0.10) 0.61 (0.11) 0.76 (0.08) 0.63 (0.10) 0.75 (0.12) 0.68 (0.14) 0.67 (0.10) 0.59 (0.10)

ECN 0.75 (0.15) 0.66 (0.10) 0.69 (0.15) 0.58 (0.13) 0.70 (0.15) 0.62 (0.14)

FPN 0.62 (0.15) 0.56 (0.12) 0.56 (0.11) 0.54 (0.11)

(B) Temporal fraction

HC CI

d-CAP TF (%) dCAP TF (%)

DMN

d-CAP 1 0.52 d-CAP 1 0.69

d-CAP 2 0.15 d-CAP 2 0.21

d-CAP 3 0.16 d-CAP 3 0.14

VN

d-CAP 1 0.34 d-CAP 1 0.53

d-CAP 2 0.21 d-CAP 2 0.27

d-CAP 3 0.14 d-CAP 3 0.20

d-CAP 4 0.16

d-CAP 5 0.14

ECN

d-CAP 1 0.39 d-CAP 1 0.41

d-CAP 2 0.22 d-CAP 2 0.28

d-CAP 3 0.39 d-CAP 3 0.30

FPN
d-CAP 1 0.61 d-CAP 1 0.73

d-CAP 2 0.27 d-CAP 2 0.39

(C) Temporal fraction for 1st d-CAP

HC CI t FDR

DMN 0.52 (0.14) 0.69 (0.11) −4.180 0.0006**

ECN 0.39 (0.12) 0.42 (0.12) −0.751 0.4562

FPN 0.61 (0.15) 0.73 (0.12) −2.729 0.0147*

In (C), *indicates FDR < 0.05 and **indicates FDR < 0.01.

TABLE 7 Statistical comparisons were conducted to compare the 
switching probability between the HC and CI groups.

<HC> <CI> t FDR

DMN 0.37 (0.21) 0.19 (0.26) 2.239 0.023*

VN 0.38 (0.10) 0.23 (0.21) 2.864 0.007**

ECN 0.19 (0.25) 0.26 (0.20) 0.461 0.764

FPN 0.18 (0.19) 0.04 (0.08) 2.645 0.017*

The mean and standard deviation of the switching probability for each network are provided. 
Additionally, network-specific t-values and FDR-values are presented.
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