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Objective: Early Alzheimer’s disease (AD) diagnosis remains challenging, 
necessitating specific biomarkers for timely detection. This study aimed to 
identify such biomarkers and explore their associations with cognitive decline.

Methods: A cohort of 1759 individuals across cognitive aging stages, including 
healthy controls (HC), mild cognitive impairment (MCI), and AD, was examined. 
Utilizing nine biomarkers from structural MRI (sMRI), diffusion tensor imaging 
(DTI), and positron emission tomography (PET), predictions were made for 
Mini-Mental State Examination (MMSE), Clinical Dementia Rating Scale Sum of 
Boxes (CDRSB), and Alzheimer’s Disease Assessment Scale-Cognitive Subscale 
(ADAS). Biomarkers included four sMRI (e.g., average thickness [ATH]), four DTI 
(e.g., mean diffusivity [MD]), and one PET Amyloid-β (Aβ) measure. Ensemble 
regression tree (ERT) technique with bagging and random forest approaches 
were applied in four groups (HC/MCI, HC/AD, MCI/AD, and HC/MCI/AD).

Results: Aβ emerged as a robust predictor of cognitive scores, particularly in 
late-stage AD. Volumetric measures, notably ATH, consistently correlated 
with cognitive scores across early and late disease stages. Additionally, ADAS 
demonstrated links to various neuroimaging biomarkers in all subject groups, 
highlighting its efficacy in monitoring brain changes throughout disease 
progression. ERT identified key brain regions associated with cognitive scores, 
such as the right transverse temporal region for Aβ, left and right entorhinal 
cortex, left inferior temporal gyrus, and left middle temporal gyrus for ATH, and 
the left uncinate fasciculus for MD.

Conclusion: This study underscores the importance of an interdisciplinary 
approach in understanding AD mechanisms, offering potential contributions to 
early biomarker development.
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1 Introduction

Alzheimer’s disease (AD) is a condition that gradually affects 
brain function over time. It is a complex disease that results in 
progressive pathological changes in the brain’s biochemical and 
biological processes, leading to permanent impairment of cognitive 
functions (Petersen et al., 1999; Petersen, 2004; Gomar et al., 2011). 
Neuropsychological assessments play a pivotal role in identifying AD 
symptoms across various cognitive domains, including memory, 
language, and executive function (Bayles, 1982; Moss et al., 1986; 
Welsh et al., 1991; Almkvist, 1996; Chen et al., 2000). However, early-
stage AD diagnosis poses a significant challenge, as symptoms may 
not be fully manifest. Neuroimaging emerges as an invaluable tool for 
improving early diagnosis since changes in the brain occur years 
before symptomatic presentation (Weintraub et al., 2012; Sperling 
et  al., 2014; Pontecorvo et  al., 2017). Therefore, predicting 
neuropsychological assessments based on neuroimaging biomarkers 
in both early/asymptomatic and late/symptomatic stages of AD is 
critical for comprehending the initial symptoms and unraveling the 
interplay between various patterns of impairment in brain regions 
affected by the disease (Bondi et al., 1995; Schmidt et al., 1996; Zhou 
et al., 2013).

Neuroimaging proves highly effective in tracking AD 
progression and identifying sensitive indicators, especially in the 
early stages. Various neuroimaging tools, including structural 
magnetic resonance imaging (sMRI), positron emission tomography 
(PET), and diffusion tensor imaging (DTI), have been used to 
predict AD progression through neuropsychological assessment 
(Wen et al., 2019; Tabarestani et al., 2020). Recent studies have used 
volumetric biomarkers based on sMRI, including gray matter 
volume and cortical thickness, to investigate the relationship 
between neuropsychological scores and neuroimaging biomarkers 
(Frisoni et al., 2002; Apostolova et al., 2006; Frisoni et al., 2010; Zhou 
et  al., 2013). Additionally, PET has allowed for a detailed 
investigation of associations between neuropsychological assessment 
and proteinopathies during AD pathogenesis. While markers like 
18F-fluorodeoxyglucose (FDG), tau tangles, and amyloid-β (Aβ) 
plaques are key in AD pathology, previous studies have shown that 
Aβ deposition has a weak correlation with cognition decline 
(Hedden et al., 2013). In contrast, tau and FDG pathological changes 
have been reported as strong biomarkers that are associated with 
cognitive decline especially in the later stage due to atrophy (Koss 
et al., 2016; Huber et al., 2018; Iida et al., 2021). Neuropathological 
studies suggest that tau mediates the link between Aβ and cognitive 
decline, primarily manifesting in patients with mild cognitive 
impairment (MCI) and AD (Choi et al., 2018; Tabarestani et al., 

2020). Moreover, the amyloid cascade hypothesis suggests that the 
accumulation of Aβ initiates a sequence of events leading to AD 
development (Hardy and Higgins, 1992; Reitz, 2012). This hypothesis 
suggests that Aβ buildup triggers inflammation and oxidative stress, 
damaging neurons and disrupting their communication, 
subsequently resulting in classic AD symptoms like memory loss, 
cognitive decline, and behavioral changes (Busche and Hyman, 
2020; Koller et al., 2021). Recent studies have also harnessed DTI for 
detecting micro-structural changes that are typically invisible in 
anatomical scans and undetectable by PET (Wen et  al., 2019; 
Becerra-Laparra et  al., 2020). Despite the potential of DTI 
biomarkers to predict neuropsychological assessments, they remain 
underutilized. The evolving understanding of AD neurobiology 
suggests that it is a multifaceted and heterogeneous disease that 
cannot be explained by a single biomarker or modality alone (Jack 
et al., 2018). Therefore, multimodal imaging techniques are essential 
for exploring the complex and consistent changes that 
accompany AD.

The application of machine learning and regression analysis 
offers promise for early diagnosis and treatment of cognitive 
impairments, including AD. In recent years, various regression 
methods such as least squares, support vectors, lassos, and regression 
trees have been successfully used to predict neuropsychological 
scores based on neuroimaging biomarkers (Zhang et  al., 2012; 
Moradi et al., 2017; Tabarestani et al., 2020). Machine learning, in 
particular, has emerged as a compelling technique for predicting 
cognitive scores (Fan et al., 2010; Duc et al., 2020; Tabarestani et al., 
2020). Recent studies have also shown a strong interest in integrating 
features from different neuroimaging modalities to predict 
neuropsychological assessments based on machine learning 
techniques (Bhagwat et al., 2019; Tabarestani et al., 2020; Hojjati and 
Babajani-Feremi, 2022). Some studies have combined 
neuropsychological scores with neuroimaging biomarkers to find the 
progression trend or predict neuropsychological assessments (Gill 
et al., 2020; Tabarestani et al., 2020; Kuo et al., 2023). However, the 
use of several predictors in such studies can result in the inclusion of 
unrelated information in their different prediction tasks, leading to a 
decrease in regression performance (Zhou et al., 2012). Additionally, 
predicting one cognitive assessment based on another can introduce 
bias due to their high correlation (Tabarestani et al., 2020). In recent 
years, neuropsychological predictions have predominantly 
incorporated single-modal data or found integrative methods for 
combining data across multiple biomarkers from multimodal data. 
However, these methods have not sufficiently captured the 
heterogeneity of AD progression.

Prior research has primarily focused on achieving high accuracy 
in classifying subjects or minimizing errors in estimating cognitive 
scores through regression analysis. Yet, most studies that have used 
multimodal feature domains have paid little attention to the 
differences between feature domains in the sample data. Advancing 
clinical research and drug development necessitates greater emphasis 
on understanding the relationship between effective biomarkers and 
the brain regions impacted by AD throughout its stages of progression. 
Our Study aimed to bridge the gap between these research domains, 
providing significant value in the context of clinical and 
therapeutic investigations.

We conducted separate analyses of different modalities and 
biomarkers, exploring the progression of AD. We identified the most 

Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid-β; ADAS, Alzheimer’s Disease 

Assessment Scale-Cognitive Subscale; ATH, average thickness; BT, bagging tree; 

CDRSB, clinical dementia rating scale sum of boxes; DTI, diffusion tensor imaging; 

ERT, ensemble regression tree; FA, fractional anisotropy; FDG, 

18F-fluorodeoxyglucose; HC, healthy controls; LD, longitudinal diffusivity; MD, 

mean diffusivity; MCI, mild cognitive impairment; MMSE, mini-mental state 

examination; MSE, mean square error; NI, normalized importance; PET, positron 

emission tomography; RD, radial diffusivity; RF, random forest; sMRI, structural 

magnetic resonance imaging; SA, surface region; VGM, volume of gray matter; 

VWM, volume of white matter.
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significant predictive biomarkers and brain regions for each cognitive 
assessment, utilizing three neuroimaging modalities (sMRI, DTI, and 
PET) to predict AD progression using the Mini-Mental State 
Examination (MMSE), Clinical Dementia Rating Sum of Boxes 
(CDRSB), and Alzheimer’s Disease Assessment Scale (ADAS). 
Leveraging a substantial sample set of 1759 individuals, covering a 
spectrum of normal aging, MCI, and AD, we extracted nine competing 
biomarkers. Using the ensemble regression tree (ERT) techniques, 
we predicted target cognitive scores for four different groups: healthy 
controls (HC)/MCI, HC/AD, MCI/AD, and HC/MCI/AD. Through a 
robust integration of large sample sets, three complementary 
neuroimaging modalities, and nine different biomarkers, we were able 
to determine the extent to which each biomarker contributes to 
predicting the cognitive scores. Our investigation delves into the 
spatial characteristics of neuroimaging biomarkers and their 
association with cognitive assessments, shedding light on AD 
progression, particularly in its early stages. By developing a reliable 
biomarker based on each neuroimaging modality, there is a potential 
to capture the heterogeneity in the clinical evaluation of at-risk 
individuals and accelerate preventive strategies in the early stages of 
cognitive decline.

2 Materials and methods

2.1 Participants

This study utilized sMRI, DTI, PET, and neuropsychological data 
from a total of 1759 participants. The data were obtained from the 
Alzheimer’s disease prediction of longitudinal evolution (TADPOLE) 

challenge1 (Marinescu et  al., 2018), which was sourced from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu).2 The current study included 648 healthy controls (294 
males), 699 individuals with MCI (411 males), and 412 individuals 
with AD (234 males). Table 1 presents the demographic and clinical 
characteristics of the participants. Unstable HC and MCI subjects with 
any conversions or revisions were excluded (Hojjati et al., 2018). It is 
important to note that subjects did not necessarily require all three 
neuroimaging modalities, as each modality had been used in separate 
prediction tasks.

2.2 Cognitive assessments

The current study aimed to predict cognitive scores using 
imaging biomarkers. Three cognitive scores were used as targets for 
prediction: MMSE, CDRSB, and ADAS. Each score highlights a 
different aspect of an individual’s neuropsychological status, 

1 https://tadpole.grand-challenge.org

2 Data used in this article were originally obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI 

was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD).

TABLE 1 Demographic and clinical data.

HC MCI AD Statistics

sMRI Number 265 274 227 –

Male/Female 124/141 160/114 122/105 p < 0.02, X2 = 7.35

Age, year (mean ± SD) 73.91 ± 5.57 73.48 ± 7.38 74.43 ± 7.97 p = 0.31, F = 1.14

CDRSB score (mean ± SD) 0.04 ± 0.14 1.28 ± 0.74 4.48 ± 1.80 p < 0.0001, F = 1086.27

MMSE score (mean ± SD) 29.06 ± 1.18 27.63 ± 1.89 23.08 ± 2.67 p < 0.0001, F = 604.83

ADAS score (mean ± SD) 8.61 ± 4.06 15.01 ± 6.22 29.23 ± 8.20 p < 0.0001, F = 680.29

DTI Number 74 78 44 –

Male/Female 31/43 48/30 28/16 p < 0.02, X2 = 7.78

Age, year (mean ± SD) 72.64 ± 5.12 72.24 ± 7.41 74.66 ± 8.73 p = 0.16, F = 1.79

CDRSB score (mean ± SD) 0.06 ± 0.16 1.25 ± 0.72 4.60 ± 1.51 p < 0.0001, F = 400.69

MMSE score (mean ± SD) 28.82 ± 1.48 28.14 ± 1.57 23.40 ± 1.96 p < 0.0001, F = 167.74

ADAS score (mean ± SD) 8.14 ± 4.21 14.29 ± 4.96 29.75 ± 7.82 p < 0.0001, F = 216.57

PET Number 309 347 141 –

Male/Female 139/170 203/144 84/57 p < 0.0006, X2 = 14.58

Age, year (mean ± SD) 73.15 ± 5.81 72.00 ± 7.58 74.13 ± 8.04 p < 0.006, F = 5.13

CDRSB score (mean ± SD) 0.04 ± 0.15 1.31 ± 0.81 4.52 ± 1.68 p < 0.0001, F = 1228.54

MMSE score (mean ± SD) 29.02 ± 1.24 28.16 ± 1.64 23.11 ± 2.05 p < 0.0001, F = 712.18

ADAS score (mean ± SD) 8.51 ± 4.15 13.45 ± 5.53 30.80 ± 8.38 p < 0.0001, F = 1,208

CDRSB, clinical dementia rating scale sum of boxes; ADAS, Alzheimer’s disease assessment scale; MMSE, mini-mental state examination; HC, healthy control; MCI, mild cognitive 
impairment; AD, Alzheimer’s disease.
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depending on their stage of AD progression. The MMSE test is 
scored on a scale of 0–30, with a higher score indicating better 
cognitive function. The CDRSB and ADAS are scored on scales 
ranging from 0 to 18 and 0 to 70, respectively, with higher scores 
indicating more severe dementia and lower scores indicating 
milder dementia.

2.3 Neuroimaging data

We used various biomarkers from neuroimaging data as 
predictors in our machine learning models. Nine different types of 
biomarkers were extracted from the three neuroimaging 
modalities: sMRI, DTI, and PET. The aim of selecting these 
biomarkers was to establish a robust machine learning framework 
based on a substantial sample size. All imaging data had undergone 
prior processing, and post-processed measurements for each 
biomarker were collected (Marinescu et  al., 2018). The sMRI 
biomarkers were grouped into four categories: volume of gray 
matter (VGM) in 68 cortical brain regions, average thickness 
(ATH) in 68 cortical brain regions, surface area (SA) in 70 cortical 
and subcortical brain regions, and volume of white matter (VWM) 
in 45 brain regions. The DTI biomarkers consist of fractional 
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), 
and longitudinal diffusivity (LD), within 57 brain regions. 
Additionally, we utilized 18F-florbetapir PET imaging to capture 
Aβ deposition in 109 cortical and subcortical brain regions (see 
Supplementary Table S1). It is important to note that the regions 
marked with a red font in Supplementary Table S1 are similarly 
repeated in VGM, ATH, and Aβ, and they are based on the 
Desikan-Killiany cortical parcellation (Desikan et al., 2006). The 
selection of regions was based on the criterion of availability 
without any missing data across all participants and biomarkers in 
each modality. This rigorous approach aimed to maintain data 
integrity and consistency throughout the analysis, ensuring that 
the results accurately reflected the information from all participants 
without any gaps or inconsistencies due to missing values. These 
diverse biomarkers collectively formed the foundation of our 
machine learning model.

For grouping our samples, we included multiple cohorts within 
each group: HC/MCI, HC/AD, MCI/AD, and HC/MCI/AD. The 
decision to consider multiple cohorts as single group was influenced 
by several factors. First, examining biomarker performance across all 
four groups allows for a more comprehensive assessment of the data. 
It provides insights into how biomarkers perform across various 
combinations of clinical conditions, which may offer valuable insights 
not captured by analyzing individual conditions separately. Second, in 
clinical practice, patients often present with mixed symptoms or may 
transition between different clinical conditions over time. By 
considering multiple condition categories simultaneously, the analysis 
better reflects the real-world complexity of neurodegenerative diseases 
and provides a more accurate representation of biomarker 
performance in clinical settings. Finally, understanding how 
biomarkers perform across different clinical conditions is crucial for 
clinical decision-making and treatment planning. By considering all 
relevant condition categories, the analysis provides more actionable 
insights for clinicians and researchers working in the field of 
neurodegenerative diseases.

2.4 Modeling ensemble regression tree

In this study, the ensemble regression tree (ERT) was used to 
predict cognitive scores based on neuroimaging biomarkers. To 
ensure generalization of our models, we used a permutation process, 
repeated 500 iterations, to divide subjects into training (90%) and test 
(10%) sets across four groups: HC/MCI, HC/AD, MCI/AD, and 
HC/MCI/AD.

To address the bias and variance effects, we leveraged ensemble 
algorithms that combined the predictions of multiple estimators 
(Rokach, 2005). Our approach combined two ensemble learning 
techniques: bagging tree (BT) and random forest (RF). Bagging is an 
ensemble algorithm that fits multiple models on different subsets of a 
training set and then combines the predictions from all models. The 
BT aggregation aimed to decrease decision tree variance by merging 
multiple weak learners into stronger ones (Dey, 2016). 
We  accomplished this by training 50 learner decision trees, each 
utilizing randomly selected subsets of data from training samples. The 
RF is an extension of bagging that also randomly selects subsets of 
features used in each data sample. We grew trees with surrogate splits 
to compute the error function for each variable at each split point 
(Springer and Kegelmeyer, 2008). For each biomarker (e.g., ATH, MD, 
and Aβ) the importance of each feature was determined by summing 
the changes in node risk resulting from splits on each feature and then 
dividing by the number of branch nodes. Node risk is defined as the 
mean squared error weighted by the node probability. Since we used 
surrogate split, the feature importance was calculated by summing 
changes in node risk across all splits at each branch node, including 
surrogate splits. The change in node risk highlights the difference 
between the risk of the parent node and the combined risk of its 
two children.

The feature importance metrics were derived from the average 
values across 500 iterations. Moreover, all reported mean squared 
error (MSE) values were based on the test sets across 500 iterations. 
We used analysis of variance (ANOVA) test followed by post hoc 
Tukey’s honestly significant difference (HSD) test with a family-wise 
error rate (FWER) of 0.01 to compare MSE of the nine biomarkers. 
Statistical significance for the categorical variables was assessed using 
chi-squared (χ2) test. It is noteworthy that we  investigated the 
significance of various biomarkers in predicting cognitive measures 
by comparing their performance under two aspects based on: (A) 
MSE of predicting the cognitive measures in Section 3.1; (B) 
Correlation coefficient between actual values and predicted values in 
Section 3.1; and (C) ranking the significant brain regions in Sections 
3.2 and 3.3. Implementation of the ERT algorithm and statistical 
analyses were carried out using MATLAB (2019b, MathWorks, 
Natick, MA).

2.5 Calculation of normalized importance 
and ranking the significant brain regions

For calculating the normalized importance (NI) of each biomarker 
(e.g., ATH, MD, and Aβ), we  started by averaging the feature 
importance values across 500 iterations of the ERT. Next, we computed 
the square root of the average feature importance matrix and 
normalized it across all features associated with that specific 
biomarker. Finally, we divided the normalized values by the average 
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across features to standardize the NI values across biomarkers. This 
standardization step ensures that the variation of the NI is centered 
around one, facilitating clearer comparisons and interpretations across 
biomarkers. By employing this approach, we obtained NI values that 
effectively reflect the relative importance of each biomarker in 
predicting the target outcome, while also accommodating variations 
in feature importance and variability across different biomarkers.

To identify significant brain regions, we compared the NI values 
with those generated through a random permutation test. This 
involved randomly shuffling the actual cognitive scores 500 times, 
alongside 500 iterations of train and test separation. Subsequently, 
we determined the 95th percentile (calculated as the mean plus two 
standard deviations of the 500 permuted NI values) for each 
biomarker as a threshold. Brain regions with NI values surpassing 
this threshold were deemed to have a notable influence on predicting 
cognitive scores. It’s important to note that when plotting the NI for 
each biomarker and subject group, we arranged the indices so that 
the larger values of NI curves consistently descend from left to right. 
This trend suggests that regions with lower indices are the ones 
significantly contributing to outcomes.

To enhance clarity regarding our permutation test, we constructed 
Supplementary Figure S1 as an illustrative example. This figure 
displays NI values alongside permutation results for Aβ across 109 
brain areas in predicting MMSE scores. The black plots represent the 
mean of the permutation results in each group, with the standard 
deviation also depicted. Significant features were identified based on 
the 95th percentile of the fitted normal distribution, roughly 
equivalent to the mean plus two standard deviations. In 
Supplementary Figure S1A, focusing on the HC/MCI group 
representing individuals with non to mild cognitive decline, our 
findings suggest that no statistically significant brain region exhibited 
an NI higher than the 95th percentile of the fitted normal distribution 
from the permutation test. Conversely, examining the AD cohort in 
HC/AD, MCI/AD, and HC/MCI/AD groups 
(Supplementary Figures S1B–D), we  observed that NI values in 
several brain regions significantly surpassed the 95th percentile of the 
fitted normal distribution from the permutation test results. It’s 
important to note that for better visualization in, we only plotted the 
mean of the permutation results for the HC/MCI/AD groups. This 
simplification offers insight into the general pattern of permutations 
results, typically centered around 1.

Finally, to visualize the significant ranked brain regions, 
we standardized NI values across four groups of individuals (HC/
MCI, HC/AD, MC/AD, and HC/MCI/AD) and color coded 
them from lowest NI value (dark blue) to highest NI value 
(dark red).

3 Results

3.1 Evaluating biomarker efficacy from 
normal cognition to severe dementia

Figures 1A–C, 2A–C and Tables 2, 3 provide insights into the 
performance of ERT models for predicting three cognitive scores 
(MMSE, CDRSB, and ADAS) based on nine neuroimaging biomarkers 
across four distinct groups (HC/MCI, HC/AD, MCI/AD, and HC/
MCI/AD). Figures 1A–C and Table 2 offer results of MSE between 

predicted values and actual values, providing an indication of the 
predictive accuracy of the model. On the other hand, Figures 2A–C 
and Table  3 present data on the correlation coefficient between 
predicted values and actual values, showcasing the goodness of fit of 
the ERT model.

As observed by the results presented in Figures 1A–C, 2A–C and 
Tables 2, 3, determining the most effective biomarker within each 
subject group requires a comprehensive evaluation. This evaluation 
entails not only analyzing the MSE, which quantifies the average 
squared difference between predicted and actual values but also 
considering the correlation between these predicted and actual values. 
It is essential to note that in certain predictive models, particularly 
noticeable within the HC/MCI group, the biomarker with the lowest 
MSE values may not consistently exhibit the highest correlation with 
the actual values. This observation emphasizes the complexity of the 
predictive model’s performance assessment. While achieving the 
lowest MSE suggests optimal performance in terms of error metrics, 
it does not guarantee that the predicted and actual values align 
perfectly or adhere closely to a linear assumption.

We conducted one-way ANOVA across nine biomarkers for each 
group, examining MSE and correlation values in Tables 2, 3. The 
analyses involved multiple ANOVA tests to evaluate biomarkers 
performances across three cognitive scores (MMSE, CDRSB, and 
ADAS) and four groups (HC/MCI, HC/AD, MCI/AD, and HC/MCI/
AD). The results of the one-way ANOVA on MSE values (Table 2) 
demonstrated statistically significant differences among at least two 
biomarkers (p < 0.0001, F > 16.97) across all groups and cognitive 
scores. The results of the one-way ANOVA on correlation values 
(Table 3) also show the significant differences among at least two 
biomarkers (p < 0.0001, F > 92.20) across all groups and cognitive 
scores. This finding suggests the potential presence of specific 
biomarkers demonstrating superior performance compared to others.

An in-depth pairwise examination utilizing Tukey HSD tests 
(considering FWER of 0.01) on the nine biomarkers for MMSE 
cognitive score prediction (Figures  1A, 2A) highlighted Aβ’s 
exceptional predictive capabilities in the presence of an AD cohort. 
Aβ emerged as a notably superior predictor, yielding significantly 
smaller MSE values and larger correlation (average correlation >0.66) 
compared to the other eight biomarkers (p-value <0.0001). This 
finding is also consistent in Figures  1B, 2B, emphasizing Aβ’s 
superiority in predicting CDRSB scores, where MSE values were 
significantly smaller and larger correlation (average correlation 
>0.66) than those based on other biomarkers (p-value <0.0001). For 
ADAS score, based on both MSE and correlation (Figures 1C, 2C) 
only in the HC/MCI/AD group, Aβ significantly (p  < 0.0001) 
outperformed all other biomarkers (average correlation >0.70) in 
predicting ADAS scores.

The average results of MSE and correlation for sMRI modality 
biomarkers across all cognitive scores, as shown in Tables 2, 3, 
consistently demonstrate that ATH outperforms the other three 
biomarkers (VGM, VWM, and SA) within this modality. Similarly, 
the assessment of DTI modality biomarkers across all cognitive 
scores indicates that MD surpasses the other three biomarkers (FA, 
RD, and LD) within the DTI modality across most groups and 
cognitive scores. These findings imply that ATH and MD exhibit 
superior predictive accuracy and stronger correlations with actual 
values across various cognitive scores compared to the other 
biomarkers in the sMRI and DTI modalities, respectively.
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FIGURE 1

Mean squared error (MSE) of the ensemble regression tree models for predicting (A) MMSE, (B) CDRSB, and (C) ADAS based on nine neuroimaging 
biomarkers: VGM, ATH, VWM, SA, FA, MD, RD, LD, Aβ in four groups: HC/MCI, HC/AD, MCI/AD, and HC/MCI/AD.
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FIGURE 2

Correlation between actual values and predicted values of the ensemble regression tree models for predicting (A) MMSE, (B) CDRSB, and (C) ADAS 
based on nine neuroimaging biomarkers (VGM, ATH, VWM, SA, FA, MD, RD, LD, and Aβ) in four groups (HC/MCI, HC/AD, MCI/AD, and HC/MCI/AD).
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3.2 Identifying key biomarkers in AD 
progression

In the previous section, we compared the biomarkers based on MSE 
values. In this section and Section 3.3, our focus is on comparing the 
biomarkers with the ranking of significant brain regions to identify the 
most effective biomarker. Figures 3, 4 primarily aim to identify the most 
crucial biomarkers in detecting the transition groups of subjects from 
normal cognition to severe cognitive decline. Each of the nine subplots 
in these figures corresponds to a neuroimaging biomarker, and their NI 
is compared across four groups of individuals (HC/MCI, HC/AD, MCI/
AD, and HC/MCI/AD) in contrast to the average random permutation 
test results of HC/MCI/AD (only for visualization).

Figure 3 shows NI of the brain regions for predicting the MMSE 
score based on nine biomarkers. As shown in this figure, VGM, ATH, 
and VWM biomarkers demonstrated 3, 10, and 2 brain regions, 
respectively, with significantly larger NI in the HC/MCI group 

compared to random permutation test results. In contrast, we failed 
to identify any brain region with significantly larger NI in the HC/
MCI group compared to random permutation based on Aβ. The 
presence of AD cohort in the other three groups increased the 
likelihood of identifying important brain regions. Specifically, as 
shown in Figure 3I, we found Aβ in more than 30 brain regions with 
NI significantly larger in groups with AD (HC/AD, MCI/AD, and 
HC/MCI/AD) than in the random permutation or HC/MCI group. 
Figures  3A–C, along with Figure  3I, illustrated that despite Aβ 
affecting more brain regions in the presence of AD cohort, the sMRI 
biomarkers VGM, VWM, and especially ATH achieved higher NI 
values. Figure  3D highlighted almost non-existent association 
between SA and MMSE scores. Additionally, DTI biomarkers (FA, 
MD, RD, and LD), indicated a significant difference in the NI of five 
brain regions between groups with and without AD.

Supplementary Figure S2 shows NI values for the prediction of 
CDRSB. The CDRSB prediction aligns closely with the MMSE score 

TABLE 2 MSE in three cognitive scores across nine biomarkers.

HC/MCI HC/AD MCI/AD HC/MCI/AD

MMSE VGM 2.85 ± 0.82 7.34 ± 2.25 7.01 ± 1.99 6.39 ± 1.59

ATH 2.82 ± 0.76 6.57 ± 2.32 6.68 ± 2.10 5.85 ± 1.55

VWM 3.40 ± 1.08 9.93 ± 3.22 10.09 ± 2.79 8.06 ± 2.45

SA 3.42 ± 1.21 11.50 ± 3.70 9.23 ± 3.18 9.01 ± 2.62

FA 2.64 ± 0.98 7.79 ± 3.00 7.95 ± 2.62 6.51 ± 2.17

MD 2.48 ± 0.91 5.66 ± 2.46 6.35 ± 2.36 5.147 ± 1.72

RD 2.50 ± 0.99 6.71 ± 3.09 7.63 ± 2.84 6.15 ± 2.28

LD 2.42 ± 0.96 6.44 ± 2.80 7.36 ± 2.47 5.72 ± 2.08

Aβ 2.22 ± 0.473 4.47 ± 1.12 4.80 ± 1.09 3.86 ± 0.77

CDRSB VGM 0.65 ± 0.14 3.66 ± 0.90 3.33 ± 0.89 2.95 ± 0.65

ATH 0.62 ± 0.13 3.11 ± 0.94 3.08 ± 0.93 2.66 ± 0.62

VWM 0.72 ± 0.32 3.94 ± 1.99 3.58 ± 1.47 3.21 ± 1.38

SA 0.73 ± 0.35 5.96 ± 2.24 4.04 ± 1.75 4.38 ± 1.52

FA 0.67 ± 0.28 4.50 ± 1.84 3.23 ± 1.32 3.18 ± 1.24

MD 0.64 ± 0.27 3.21 ± 1.47 3.13 ± 1.29 2.54 ± 1.05

RD 0.63 ± 0.27 3.42 ± 1.56 3.46 ± 1.38 2.79 ± 1.06

LD 0.59 ± 0.26 3.85 ± 1.71 3.66 ± 1.36 3.02 ± 1.17

Aβ 0.69 ± 0.18 2.12 ± 0.76 1.96 ± 0.60 1.69 ± 0.47

ADAS VGM 33.15 ± 6.24 78.12 ± 16.64 64.07 ± 13.15 64.62 ± 11.13

ATH 30.247 ± 5.94 63.54 ± 14.92 58.90 ± 13.47 56.97 ± 10.59

VWM 37.80 ± 9.52 72.30 ± 48.57 58.53 ± 34.44 60.62 ± 3.84

SA 36.79 ± 12.76 117.68 ± 64.02 74.70 ± 43.57 89.79 ± 39.34

FA 31.07 ± 10.72 110.45 ± 54.71 79.16 ± 38.48 81.47 ± 32.41

MD 27.52 ± 9.97 64.93 ± 34.88 70.09 ± 32.81 59.03 ± 24.38

RD 27.79 ± 9.84 82.45 ± 583.56 83.98 ± 39.54 71.24 ± 32.66

LD 28.90 ± 10.51 85.42 ± 51.31 80.97 ± 37.42 72.52 ± 34.86

Aβ 26.84 ± 4.49 60.94 ± 16.47 52.79 ± 13.95 47.83 ± 10.54

The lowest average MSE values within each group are highlighted in bold font. CDRSB, clinical dementia rating scale sum of boxes; ADAS, Alzheimer’s disease assessment scale; VGM, volume 
of gray matter; VWM, volume of white matter; SA, surface area; FA, fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity; LD, longitudinal diffusivity; Aβ, amyloid-β; ANOVA, 
analysis of variance; HC, healthy control; MCI, mild cognitive impairment; AD, Alzheimer’s disease.
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prediction, as shown in Figure 3, but the presence of the AD group led 
to higher NI in CDRSB compared to MMSE scores 
(Supplementary Figures S2A,B).

The NI results for ADAS prediction are illustrated in Figure 4. The 
HC/MCI group, as shown in this figure, provided particularly 
interesting results. Almost all biomarkers identified at least one 
significant brain region, not only in groups containing AD individuals 
but also in the HC/MCI group. Consequently, several brain regions 
were affected by all nine neuroimaging biomarkers. In the HC/MCI 
group, ATH emerged as the best predictor of ADAS scores, with two 
brain regions having NIs exceeding 1.5. Among DTI biomarkers, MD 
proved to be the most effective. In the MCI/AD, HC/AD, and HC/
MCI/AD groups, which included the AD patients, 45, 25, and 15 brain 
regions, respectively, contributed to the prediction of Aβ, 
ATH, and MD.

3.3 Most discriminatory brain regions from 
normal cognition to severe dementia

Based on our prediction models, we  observed several 
associations between ADAS and neuroimaging biomarkers across 
four groups of individuals transitioning from normal cognition to 
severe dementia. Aβ, ATH, and MD were identified as more 
important neuroimaging biomarkers for predicting cognitive scores 
based on PET, sMRI, and DTI, respectively. Figures 5–7 depict the 
NI values of these biomarkers for ADAS prediction. In the 
Supplementary materials, we also present the NI values of these 
three biomarkers for MMSE and CDRSB prediction 
(Supplementary Figures S3–S8). As previously mentioned, our 
analysis involved calculating feature importance across 68 regions 
based on the Desikan-Killiany cortical parcellation for both ATH 
and Aβ outcomes. Additionally, for Aβ, we examined 41 subcortical 
regions as detailed in Supplementary Table S1. However, Aβ in the 
subcortical regions did not demonstrate significant feature 
importance in comparison to the cortical regions, consistently 
ranking lower in importance. To ensure clarity and facilitate a more 
direct comparison between ATH and Aβ, we  chose to focus 
exclusively on the 68 cortical regions common to both biomarkers 
in Figures 5, 6 and Supplementary Figures S3, S4, S6, S7.

The NI of cortical brain regions based on Aβ is illustrated in 
Figure  5. The top-ranked significant regions showed with dark 
yellow to red colors include the right and left transverse temporal 
gyrus, and right precuneus cortex in the MCI/AD group; right 
transverse temporal gyrus, right precuneus cortex in the HC/MCI/
AD group; and right and left superior frontal gyrus, right and left 
transverse temporal gyrus, and right precuneus cortex in the HC/
AD group. Notably, the right transverse temporal gyrus and right 
precuneus cortex consistently showed high NI throughout three 
groups with the presence of the AD group. The NI value of each 
brain region in the HC/MCI group was below the assumed threshold 
and not significant.

Figure 6 shows the most discriminatory brain regions according 
to ATH. The top-ranking significant regions showed with dark yellow 
to red colors for the HC/MCI group were the right and left entorhinal 
cortex and the right fusiform cortex. The other three groups (MCI/
AD, HC/MCI/AD, and HC/AD) had the same top-ranking regions: 
left and right entorhinal cortex, left inferior temporal gyrus, and left 
middle temporal gyrus. In groups from one through four (1: HC/
MCI, 2: MCI/AD, 3: HC/MCI/AD, and 4: HC/AD), the NI values of 
the left and right entorhinal cortex gradually increased, revealing the 
significant progression of these two regions based on ATH.

According to previous results and as shown in Figure 7, MD was 
the most discriminatory DTI biomarker. In each group, the top 
significant regions were as follows: left cingulum and right sagittal 
stratum in the HC/MCI group; left uncinate fasciculus in the MCI/
AD group; left uncinate fasciculus and left cingulum in the HC/MCI/
AD group; and left uncinate fasciculus and left cingulum in the HC/
AD group.

After careful consideration, we chose to focus on the HC/MCI/
AD group, which encompasses all three cohorts and identified the 
three most effective biomarkers for each neuroimaging modality 
(Aβ, ATH, and MD). We used these biomarkers to demonstrate a 
consensus on the top brain regions for predicting three cognitive 
scores (i.e., MMSE, CDRSB, and ADAS), as illustrated in Figure 8. 

TABLE 3 Correlation between predicted and actual values of three 
cognitive scores across nine biomarkers.

HC/MCI HC/AD MCI/AD HC/
MCI/AD

MMSE VGM 0.21 ± 0.14 0.67 ± 0.08 0.56 ± 0.10 0.61 ± 0.07

ATH 0.27 ± 0.15 0.71 ± 0.07 0.61 ± 0.09 0.64 ± 0.06

VWM 0.06 ± 0.23 0.45 ± 0.24 0.30 ± 0.23 0.39 ± 0.27

SA 0.08 ± 0.18 0.46 ± 0.19 0.28 ± 0.20 0.34 ± 0.31

FA 0.07 ± 0.24 0.45 ± 0.26 0.28 ± 0.27 0.36 ± 0.24

MD 0.11 ± 0.27 0.65 ± 0.18 0.47 ± 0.22 0.54 ± 0.19

RD 0.11 ± 0.25 0.56 ± 0.2 0.30 ± 0.28 0.42 ± 0.20

LD 0.12 ± 0.25 0.57 ± 0.22 0.32 ± 0.27 0.45 ± 0.20

Aβ 0.22 ± 0.12 0.75 ± 0.07 0.66 ± 0.08 0.66 ± 0.07

CDRSB VGM 0.16 ± 0.14 0.66 ± 0.07 0.49 ± 0.10 0.58 ± 0.07

ATH 0.27 ± 0.14 0.72 ± 0.06 0.54 ± 0.09 0.63 ± 0.07

VWM 0.14 ± 0.29 0.45 ± 0.28 0.37 ± 0.30 0.37 ± 0.23

SA 0.06 ± 0.28 0.48 ± 0.31 0.34 ± 0.36 0.40 ± 0.26

FA −0.003 ± 0.26 0.47 ± 0.26 0.36 ± 0.27 0.37 ± 0.21

MD 0.13 ± 0.23 0.66 ± 0.20 0.43 ± 0.21 0.55 ± 0.18

RD 0.22 ± 0.22 0.62 ± 0.23 0.29 ± 0.25 0.49 ± 0.19

LD 0.28 ± 0.24 0.58 ± 0.21 0.25 ± 0.26 0.46 ± 0.18

Aβ 0.29 ± 0.12 0.79 ± 0.06 0.66 ± 0.08 0.70 ± 0.06

ADAS VGM 0.35 ± 0.12 0.69 ± 0.07 0.61 ± 0.08 0.65 ± 0.07

ATH 0.44 ± 0.11 0.75 ± 0.06 0.65 ± 0.07 0.69 ± 0.05

VWM 0.10 ± 0.22 0.50 ± 0.24 0.35 ± 0.24 0.40 ± 0.26

SA 0.08 ± 0.29 0.49 ± 0.28 0.37 ± 0.31 0.40 ± 0.27

FA 0.09 ± 0.24 0.49 ± 0.26 0.35 ± 0.27 0.41 ± 0.23

MD 0.30 ± 0.22 0.74 ± 0.25 0.49 ± 0.23 0.62 ± 0.14

RD 0.30 ± 0.23 0.66 ± 0.21 0.34 ± 0.27 0.52 ± 0.19

LD 0.28 ± 0.22 0.65 ± 0.20 0.34 ± 0.28 0.51 ± 0.18

Aβ 0.34 ± 0.10 0.76 ± 0.06 0.71 ± 0.07 0.70 ± 0.06

The highest average correlation values within each group are highlighted in bold font. 
CDRSB, clinical dementia rating scale sum of boxes; ADAS, Alzheimer’s disease assessment 
scale; VGM, volume of gray matter; VWM, volume of white matter; SA, surface area; FA, 
fractional anisotropy; MD, mean diffusivity; RD, radial diffusivity; LD, longitudinal 
diffusivity; Aβ, amyloid-β; ANOVA, analysis of variance; HC, healthy control; MCI, mild 
cognitive impairment; AD, Alzheimer’s disease.
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For each biomarker, we identified four overlap states: no consensus, 
one consensus on the cognitive scores, two consensuses on cognitive 
scores, and consensus on all three cognitive scores. Despite 
differences in biomarkers, we  identified six brain regions that 
consistently emerged as the top regions for predicting all three 
cognitive scores: the right transverse temporal region for Aβ, the left 
and right entorhinal cortex, the left inferior temporal gyrus, the left 
middle temporal gyrus for ATH, and the left uncinate 
fasciculus for MD.

4 Discussion

AD is a complex neurological condition that affects various brain 
regions and cognitive functions. To better understand the link 

between cognitive decline and brain changes in AD, it is crucial to 
identify and monitor effective biomarkers and their associated brain 
regions. In this study, we  present a framework based on ERT to 
identify the brain regions that are linked to cognitive abilities. The 
main objectives of this study are to identify the most effective 
biomarkers associated with cognitive scores and to tie these 
biomarkers to specific brain regions. Our findings reveal that Aβ 
outperforms other biomarkers regarding prediction performance 
(MSE and correlation between predicted and actual values), but it 
does not appear to have a significantly different association with 
cognitive decline compared with other biomarkers in the absence of 
an AD diagnosis. The association between cognitive decline and Aβ 
starts at the late onset of the disease. Our second finding suggests that 
volumetric measures, such as ATH, are strongly associated with 
cognitive scores, not only in early stages (HC/MCI group) but also in 

FIGURE 3

Feature importance for the prediction of MMSE score based on nine different biomarkers: (A) VGM, (B) ATH, (C) VWM, (D) SA, (E) FA, (F) MD, (G) RD, 
(H) LD, and (I) Aβ. The x-axis shows the brain regions considered in the prediction based on each biomarker. The y-axis represents the normalized 
importance value for four groups and a random permutation. Larger values of normalized importance in brain regions indicate a higher association 
between that region’s feature and the MMSE score.
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late/symptomatic stages (MCI/AD group). Additionally, we found that 
ADAS is associated with almost all neuroimaging biomarkers in this 
study and in all groups of subjects, regardless of their symptomatology. 
Thus, ADAS appears to be a cognitive test that can track brain changes 
based on neuroimaging biomarkers throughout the early/
asymptomatic to late/symptomatic phases of the disease. Lastly, our 
study demonstrates that the ERT technique can capture critical brain 
regions that have strong associations with all three cognitive scores 
throughout the early to late stages of the disease. These regions include 
(a) right transverse temporal (Aβ); (b) left and right entorhinal cortex, 
left inferior temporal gyrus and left middle temporal gyrus (ATH); 
and (c) left uncinate fasciculus (MD).

Previous machine learning-based AD studies have 
demonstrated that combining information from different 
neuroimaging modalities can improve classification and regression 
performances (Tong et al., 2017; Hojjati et al., 2019; Tabarestani 

et al., 2020). Our study also supports the notion that biomarkers 
from different neuroimaging techniques are complementary and 
can offer a better understanding of AD than using each biomarker 
or technique alone (Baron et al., 2001; Frisoni et al., 2002; Rose 
et al., 2006; Langbaum et al., 2009; Rathore et al., 2017). Although 
combining different feature domains may enhance the performance 
of machine learning methods, it may not fully utilize the 
complementary information present in each biomarker, and it 
remains challenging to understand the contribution of each feature 
in modality and link the feature to specific brain regions. Therefore, 
we aimed to separately utilize multiple neuroimaging biomarkers 
to predict cognitive scores in AD to handle the discrepancy between 
feature domains and gain new insights into the complex changes in 
the brain associated with AD.

Our results showed that Aβ PET consistently outperformed the 
other eight MRI-based biomarkers in predicting cognitive scores. 

FIGURE 4

Feature importance for the prediction of ADAS score based on nine neuroimaging biomarkers: (A) VGM, (B) ATH, (C) VWM, (D) SA, (E) FA, (F) MD, 
(G) RD, (H) LD, and (I) Aβ. The x-axis shows the brain regions considered in the prediction based on each biomarker. The y-axis represents the 
normalized feature importance for four groups and a random permutation. Larger values of normalized importance in brain regions indicate a higher 
association between that region and the ADAS score.
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Previous research has shown that even healthy older adults with high 
amyloid burden have lower cognitive performance, and high levels of 
Aβ are strongly related to progressive cognitive decline, particularly 
in episodic memory and executive function (Sperling et al., 2013; 
Villemagne et al., 2013; Baker et al., 2017). Longitudinal studies have 
shown that levels of Aβ strongly related to progressive cognitive 
decline, and mostly affected episodic memory and executive function 
(Villemagne et al., 2013; Baker et al., 2017). Despite Aβ performing 
well in predicting cognitive scores, the calculated NI was most 
significant in late/symptomatic AD stages. On the other hand, 
volumetric measures based on sMRI, particularly ATH, showed a 
relatively higher NI from early/asymptomatic to late/symptomatic AD 
stages in comparison with Aβ. Among DTI biomarkers, MD indicated 
that WM biomarker is strongly associated with cognitive scores (Lee 
et al., 2017). These findings suggest that exploring the differences 
between feature domains could provide novel insights into the 
intricate mechanisms of AD, rather than solely focusing on improving 
machine learning performance by using the best modality or 
integrating multimodal features.

Although each biomarker and neuroimaging technique can 
provide valuable insights into AD, their direct and indirect 
relationships with each other remain unclear, which raises questions 
about their individual independent contributions to cognitive 
decline. Moreover, the lack of clarity surrounding the simultaneous 
and delayed relationships between these biomarkers plays a critical 
role in understanding the heterogeneity of AD, which remains an 
unresolved challenge. This ambiguity is reflected in conflicting 
reports regarding the relationship between the two best biomarkers 
in our study: Aβ and ATH. Some studies suggest that an increase in 
Aβ deposition is linked with neurodegeneration, such as cortical 
thinning and/or lower volume (Becker et al., 2009; Glodzik et al., 
2012; Doré et al., 2013; Kaffashian et al., 2015; Llado-Saz et al., 2015; 
Susanto et al., 2015; Hedden et al., 2016; Sala-Llonch et al., 2017; Ten 
Kate et al., 2018), while others report the opposite, where higher Aβ 
deposition is associated with cortical thickening and/or increased 
volume (Whitwell et al., 2013; Rahayel et al., 2019; Batzu et al., 2020; 
Harrison et  al., 2021; Hojjati et  al., 2023). Fortea et  al. (2011) 
examined the association between Aβ values and cortical thickness 

FIGURE 5

Feature importance of Aβ in brain regions for the prediction of ADAS score in four groups: (A) HC/MCI, (B) HC/AD, (C) MCI/AD, and (D) HC/MCI/AD. 
The groups of subjects show small to large differences in the cognitive scores from normal aging to AD, from top to bottom. The color map is based 
on the normalized feature importance values.
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in a group of cognitively preserved individuals and found a complex 
and nonlinear (inverted-U shaped) relationship between Aβ values 
and cortical thickness in various brain regions. They reported that 
changes in cortical thickness in regions like temporoparietal areas 
and precuneus were linked to intermediate Aβ values that may 
precede cortical thinning. Wirth et al. (2013) investigated non-Aβ 
factors of neurodegeneration within AD regions in older HC adults 
and found that many had neurodegenerative biomarker abnormalities 
in AD-affected brain regions, despite having normal Aβ levels. This 
evidence suggests that neurodegenerative patterns similar to AD can 
also develop through non-Aβ pathways and affect cognition in older 
adults without Aβ burden (Becker et al., 2011; Doherty et al., 2015).

Lastly, in order to better understand the relationship between 
cognitive scores and biomarkers, it is essential not only to determine 
the most effective biomarker for each neuroimaging modality, along 
with their respective associations with cognitive scores but also to 
identify the most significant brain regions for each biomarker and 
modality. The ERT framework utilized in this study generated a set 
of features (i.e., brain regions) that were weighted and ranked based 
on their predictive power for cognitive scores. Prior research findings 

align with our results, suggesting that cognitive decline is linked to 
pathologies and atrophy in the temporal lobe of the brain (Desikan 
et al., 2011). Specifically, critical biomarkers such as the transverse 
temporal gyrus and precuneus cortex have been identified in the 
cognitive decline associated with Aβ (Wu et al., 2016). Additionally, 
the cortical thickness of the entorhinal cortex has been independently 
and additively associated with declining memory, while different 
temporal regions have been identified as critical biomarkers in 
AD-related memory decline (Velayudhan et  al., 2013; Knopman 
et al., 2019). Finally, our results are consistent with previous research 
that has demonstrated a significant negative association between 
cognitive scores and white matter integrity in the cingulum and the 
uncinate fasciculus (Li et al., 2018; Luo et al., 2020).

AD is a complex and multifaceted illness that impacts the brain 
and is linked to cognitive deterioration. The symptoms of AD can 
manifest differently, as can the underlying biological transformations 
in the brain. Additionally, there are several subtypes of AD that vary 
in the distribution of abnormal pathologies and patterns of brain 
changes. Employing an interdisciplinary approach to AD entails 
drawing on diverse neuroimaging modalities to gain a more 

FIGURE 6

Feature importance of ATH in cortical brain regions for the prediction of ADAS score in four groups: (A) HC/MCI, (B) HC/AD, (C) MCI/AD, and (D) HC/
MCI/AD. The groups of subjects show small to large differences in the cognitive scores from normal aging to AD, from top to bottom. The color map is 
based on the normalized feature importance values.
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comprehensive understanding of the disease and its underlying 
mechanisms. Grasping the role of each biomarker in cognitive decline 
is vital in overcoming the heterogeneity of AD and developing more 
effective treatments.

Recognizing and addressing specific potential limitations in this 
study is crucial for guiding future research efforts. Firstly, our attempt to 
maximize subject inclusion for each modality of imaging resulted in 
varying numbers of features (brain regions) and subjects across different 
imaging modalities. In other words, subjects did not necessarily undergo 
all three neuroimaging modalities, potentially impacting analyses due to 
the heterogeneity of AD and the possibility that subjects used in different 
prediction tasks may be  in different disease stages. To enhance the 
robustness of our findings, it is essential to validate results in independent 
datasets with the same sample represented in all modalities. Another 
limitation concerns the sample size of the DTI modality, which was 
smaller compared to other modalities. This discrepancy may influence 
the prediction task and result in lower performance for this modality. 
Additionally, the absence of other robust biomarkers such as tau and 
FDG in cognitive scores is a noteworthy limitation. However, the strong 
associations between these biomarkers and cognitive scores have been 
well-documented by previous studies. Despite these limitations, they 
should be viewed as opportunities for further research to build upon and 
refine our understanding.

5 Conclusion

In this study, we  investigated the potential of an 
interdisciplinary approach to predict cognitive scores in AD by 
utilizing multimodal neuroimaging biomarkers. Our proposed 
ERT prediction model achieved this goal by identifying the most 
associated biomarkers, especially in the early stages of the disease, 
and mapping their importance to specific brain regions. Our 
findings revealed that Aβ, ATH, and MD biomarkers, derived 
from PET, sMRI, and DTI, respectively, were strongly associated 
with cognitive scores in AD. Among the nine biomarkers 
examined, ATH had the strongest association with the cognitive 
disorder in the HC/MCI group (early stage of AD), while Aβ 
biomarkers were most effective in predicting cognitive scores in 
AD-stage subjects. Furthermore, we found that ADAS decline was 
best explained by almost all considered biomarkers, unlike MMSE 
and CDRSB. Our results showed that cognitive decline was 
primarily driven by the right transverse temporal gyrus (based on 
Aβ), left and right entorhinal cortex, left inferior temporal gyrus, 
left middle temporal gyrus, and left uncinate fasciculus. These 
findings highlight the importance of an interdisciplinary approach 
to understanding the underlying mechanisms of AD and may help 
in the development of more effective treatments.

FIGURE 7

Feature importance of MD in cortical brain regions for the prediction of ADAS score in four groups: (A) HC/MCI, (B) HC/AD, (C) MCI/AD, and (D) HC/
MCI/AD. The groups of subjects show small to large differences in the cognitive scores from normal aging to AD, from top to bottom. The color map is 
based on the normalized feature importance values.
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