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Introduction: The prognosis for glioma is generally poor, and the 5-year survival 
rate for patients with this disease has not shown significant improvement 
over the past few decades. Parkinson’s disease (PD) is a prevalent movement 
disorder, ranking as the second most common neurodegenerative disease 
after Alzheimer’s disease. Although Parkinson’s disease and glioma are distinct 
diseases, they may share certain underlying biological pathways that contribute 
to their development.

Objective: This study aims to investigate the involvement of genes associated 
with Parkinson’s disease in the development and prognosis of glioma.

Methods: We obtained datasets from the TCGA, CGGA, and GEO databases, 
which included RNA sequencing data and clinical information of glioma and 
Parkinson’s patients. Eight machine learning algorithms were used to identify 
Parkinson-Glioma feature genes (PGFGs). PGFGs associated with glioma 
prognosis were identified through univariate Cox analysis. A risk signature 
was constructed based on PGFGs using Cox regression analysis and the Least 
Absolute Shrinkage and Selection Operator (LASSO) method. We subsequently 
validated its predictive ability using various methods, including ROC curves, 
calibration curves, KM survival analysis, C-index, DCA, independent prognostic 
analysis, and stratified analysis. To validate the reproducibility of the results, 
similar work was performed on three external test datasets. Additionally, a 
meta-analysis was employed to observe the heterogeneity and consistency 
of the signature across different datasets. We  also compared the differences 
in genomic variations, functional enrichment, immune infiltration, and drug 
sensitivity analysis based on risk scores. This exploration aimed to uncover 
potential mechanisms of glioma occurrence and prognosis.

Results: We identified 30 PGFGs, of which 25 were found to be  significantly 
associated with glioma survival. The prognostic signature, consisting of 19 
genes, demonstrated excellent predictive performance for 1-, 2-, and 3-year 
overall survival (OS) of glioma. The signature emerged as an independent 
prognostic factor for glioma overall survival (OS), surpassing the predictive 
performance of traditional clinical variables. Notably, we observed differences in 
the tumor microenvironment (TME), levels of immune cell infiltration, immune 
gene expression, and drug resistance analysis among distinct risk groups. These 
findings may have significant implications for the clinical treatment of glioma 
patients.
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Conclusion: The expression of genes related to Parkinson’s disease is closely 
associated with the immune status and prognosis of glioma patients, potentially 
regulating glioma pathogenesis through multiple mechanisms. The interaction 
between genes associated with Parkinson’s disease and the immune system 
during glioma development provides novel insights into the molecular 
mechanisms and targeted therapies for glioma.
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1 Introduction

Glioma, the most common malignant tumor of the nervous system, 
is associated with a poor prognosis and treatment challenges. Glioma is 
commonly regarded as one of the most formidable tumors specific to 
the central nervous system (CNS), characterized by the rapid 
proliferation of cancerous glial cells. It accounts for nearly half of all 
brain tumors, with an annual incidence rate ranging from 30 to 80 cases 
per million population (Li et al., 2022). Glioma can be caused by various 
environmental factors, including high-dose radiation, petroleum, and 
vinyl chloride. Genetic factors also play a significant role in the onset of 
glioma. Additionally, viral infections, head trauma, immune 
suppression, and endocrine disorders are also linked to the occurrence 
and development of gliomas (Preusser et al., 2006).

Currently, traditional treatments for gliomas primarily consist 
of surgery, chemotherapy, and radiation therapy. The standard 
treatment for gliomas is maximal surgical resection combined with 
radiotherapy and chemotherapy (Stupp et al., 2005). However, the 
efficacy of these traditional methods is limited, as they can only 
provide partial relief for glioma symptoms, and there is a risk of 
adverse drug resistance, recurrence, and metastasis (de Blank et al., 
2020). Despite significant advancements in glioma treatment in 
recent years, the therapeutic outcomes still fall short of 
expectations, and the prognosis remains poor. Therefore, it is 
crucial to investigate the molecular mechanisms underlying the 
development and progression of gliomas, aiming to identify novel 
prognostic biomarkers and therapeutic targets.

Parkinson’s disease (PD) is a prevalent movement disorder and the 
second most common neurodegenerative disease, following Alzheimer’s 
disease (Hickman et al., 2018). Most cases of Parkinson’s disease are 
idiopathic, with the incidence rate gradually increasing with age. 
Additionally, Parkinson’s disease is influenced by factors such as 
genetics, environment, and oxidative stress (Fung et al., 2017). The risk 
of Parkinson’s disease may increase due to exposure to toxic chemicals 
like pesticides and herbicides, as well as head injuries, while certain 
lifestyle factors like smoking and caffeine intake may decrease the risk 
(Ritz et al., 2007; Kenborg et al., 2015; Simon et al., 2020). The diagnosis 
of Parkinson’s disease primarily relies on the typical clinical 
manifestations observed in the late stages of the disease. Parkinson’s 
disease is characterized by motor symptoms (e.g., bradykinesia, rigidity, 
and tremors) and non-motor features (e.g., constipation, urinary 
frequency, functional decline, depression, cognitive impairment, and 
sleep disorders), which significantly impact the patients’ quality of life 
(Armstrong and Okun, 2020; Vijiaratnam et al., 2021).

Treatment measures for Parkinson’s disease include medication, 
rehabilitation therapy, exercise, palliative care, and surgery (Armstrong 

and Okun, 2020). However, thus far, no measures have been 
definitively proven to delay or halt the progression of the disease. 
Therefore, the pursuit of finding interventions that can delay or 
prevent the progression of Parkinson’s disease is a major goal for both 
researchers and patients (Armstrong and Okun, 2020).

Cancer is a complex disease characterized by uncontrolled cell 
proliferation and metastasis (Siegel et  al., 2015). Cancer and 
Parkinson’s disease can be considered as opposing conditions in terms 
of pathogenesis, with cancer arising from uncontrolled cell division 
and Parkinson’s disease from cell death. Numerous studies confirm 
that patients with PD have a lower risk of cancer, especially central 
nervous system tumors (Diamandis et al., 2009; Becker et al., 2010; 
Park et  al., 2019). However, a meta-analysis involving 40 studies, 
2,317,408 cases, and 12,113,484 control subjects indicated that patients 
with PD were significantly associated with a reduced risk of lung 
cancer, genitourinary cancers, gastrointestinal cancers and 
hematological cancers, but a higher occurrence of melanoma and 
brain cancer (Leong et al., 2021). Therefore, exploring PD-related 
genes in the diagnosis of gliomas holds great promise and may also 
provide value in the diagnosis and prognosis of gliomas.

In this study, we developed a signature using Parkinson-Glioma 
feature genes (PGFGs). Through systematic analysis, the 19-gene 
signature demonstrated good accuracy in predicting the survival time 
of glioma patients and functioned as an independent prognostic factor 
for glioma. Furthermore, its involvement in reshaping the tumor 
microenvironment offers new insights into the molecular mechanisms 
and targeted treatment of glioma. The workflow diagram of this study 
is presented in Supplementary Figure 1.

2 Materials and methods

2.1 Data retrieval and preprocessing

Firstly, we downloaded HTSeq-FPKM gene expression data and 
related clinical information of glioma patients from The Cancer 
Genome Atlas (TCGA) database as the training set. Our sample 
exclusion criteria were as follows: Firstly, patients with incomplete 
survival data were excluded. This included those with unclear survival 
time (i.e., null value) or ambiguous survival status (i.e., null value). 
Secondly, patients with a follow-up time of less than 30 days were 
excluded. We were concerned that a short follow-up duration may 
introduce bias; therefore, these patients were filtered out. If a patient 
dies within a short period of time, the cause of death is highly likely 
to involve non-tumor-related factors, making it of limited value for 
predicting long-term prognosis. After excluding patients who met the 
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exclusion criteria, a total of 631 glioma patients were enrolled. In the 
process of further validation, we applied the same exclusion criteria.

A total of 618 glioma patients in dataset CGGA-693 and 306 
glioma patients in dataset CGGA-325 were obtained from the China 
Glioma Genome Atlas (CGGA) data portal. A total of 249 glioma 
patients were included in the GSE16011 dataset obtained from the 
NCBI Gene Expression Omnibus (GEO).1 The “Combat” algorithm of 
the R package “sva” was used to reduce the possibility of batch effect 
due to non-biological bias between the TCGA-Glioma dataset and the 
CGGA-693, CGGA-325 and GSE16011 datasets (Johnson et al., 2007). 
In addition, three PD datasets, GSE49036, GSE20141 and GSE7621, 
were obtained from the GEO cohort to identify PD related genes. The 
GSE7621 dataset included 16 brain samples from PD patients and 9 
normal brain samples from controls. The GSE20141 dataset included 
10 brain samples from PD patients and 8 normal brain samples from 
controls. The GSE 49036 dataset included 20 brain samples from PD 
patients and 8 normal brain samples from controls. The three PD 
datasets were generated using the GPL570 (HG-U133 Plus 2) 
Affymetrix Human Genome U133 Plus 2.0 array. Similarly, we used 
the “Combat” algorithm to remove the non-biological effects.

2.2 Eight machine learning algorithms for 
identifying Parkinson-Glioma feature 
genes

We utilized the “limma” package in R to detect genes that were 
differentially expressed between Parkinson’s disease (PD) brain tissue 
and normal brain tissue. To increase the sample size of normal tissue, 
we integrated the glioma expression data with the normal brain tissue 
data from GTEx (Genotype-Tissue Expression). This allowed us to 
identify differentially expressed genes that may have predictive value 
for glioma diagnosis.

Based on the “caret” package in R, we used the genes obtained above 
to construct a characteristic diagnostic model, including random forest 
(RF) model, support vector machine (SVM) learning model, extreme 
gradient boosting (XGBoost) model, generalized linear model (GLM), 
elastic net model, stepLDA (Linear Discriminant Analysis with Stepwise 
Feature Selection) model, Partial Least Squares (PLS) model and Multi-
Step Adaptive MCP-Net (msaenet) model. Following the modeling with 
the aforementioned eight methods, we performed residual analysis on the 
data samples. Subsequently, we generated reverse cumulative distribution 
plots for the residuals of each method, allowing us to evaluate the machine 
learning accuracy based on the reverse cumulative residual scores. 
Parkinson-Glioma feature gene (PGFG) was identified according to Root 
Mean Square Error (RMSE).

2.3 Gene signature construction and 
evaluation

Univariate Cox analysis was performed on the TCGA-Glioma, 
CGGA-693, CGGA-325, and GSE16011 datasets using the “survival” 
package in R. To ensure result reliability, we used a stringent threshold 
of p < 0.001 to identify PGFGs associated with prognosis. The TCGA 

1 https://www.ncbi.nlm.nih.gov/geo/

glioma patient cohort was utilized as the training set. Lasso-Cox 
regression analysis was employed to screen and eliminate collinearity 
among 25 prognosis-related PGFGs. Subsequently, a risk score model 
was constructed by multiplying the β (Coef) value with the PGFG 
expression levels. Risk score = (β1*PGFG1 + β2* PGFG2 + β3* 
PGFG3 + ⋯ + βn* PGFGn), where β represents the coefficient of the 
PGFG (Friedman et al., 2010; Simon et al., 2011).

We calculated the risk scores of patients in the CGGA-693, CGGA-
325, and GSE16011 datasets. Then, we conducted univariate Cox analysis 
on the risk scores and performed a meta-analysis using the “meta” 
package to assess the consistency and heterogeneity of the prognostic 
model across all four datasets. We used the median risk score in the 
training set as the cutoff value to classify patients in the four datasets into 
high-risk and low-risk groups. Subsequently, we performed Kaplan–
Meier survival analysis, ROC curve analysis, and calibration curve 
analysis to evaluate the prognostic model’s predictive ability, accuracy, 
and repeatability in glioma patients. In the training set, we performed 
univariate and multivariate Cox analysis on risk scores, Age, Gender, and 
Grade staging to determine the independence of the signature from 
traditional clinical variables. We  employed the concordance index 
method to assess the accuracy advantage of the signature, and decision 
curve analysis (DCA) to evaluate its potential benefits for patients.

2.4 Exploring the potential mechanisms of 
glioma

We utilized eight software tools [MCPcounter (Becht et al., 2016), 
CIBERSORT (Newman et al., 2015), xCell (Aran et al., 2017), TIMER 
(Li et al., 2017), EPIC (van Veldhoven et al., 2011), QUANTISEQ 
(Finotello et  al., 2019), estimate (Yoshihara et  al., 2013), IPS 
(Charoentong et al., 2017)] to quantify the abundance of immune 
infiltration in patients. Next, we compared the differences in immune 
infiltration between high-risk and low-risk groups and calculated the 
Pearson correlation between the genes, signatures (risk scores) in the 
model, and the content of immune cells. The signature effectively 
quantified the risk of glioma patients. To explore the significant 
heterogeneity between the high-risk group and the low-risk group, 
we  constructed a weighted gene co-expression network using the 
“WGCNA” R package, known for its approximate scale-free 
characteristics (Langfelder and Horvath, 2012). Highly coordinated 
genes were identified based on the correlation among all these gene 
expression values. The network module was generated using the 
Topological Overlap Measure (TOM; Li and Horvath, 2009), and 
co-expressed gene modules were identified using the Dynamic Hybrid 
Cutting method (a bottom-up algorithm; Langfelder et al., 2008). 
Finally, modules with related genes were merged.

The correlation between genes and modules was measured by 
calculating gene significance (GS) and module significance (MS). 
Furthermore, we identified significantly co-expressed gene modules 
in the high-risk group using the WGCNA algorithm and conducted 
functional enrichment analysis on these modules.

Additionally, we  compared the differences in four groups of 
immune-related genes (Immunoinhibitor, Chemokines, 
Immunostimulator, Human Leukocyte Antigen) between the high-
risk and low-risk groups.

We conducted GSEA enrichment analysis on the C2, C5, and 
Hallmark gene sets in the MSigDB database and the CancerSEA 
database, which defines 14 tumor states. We used the “clusterProfiler” 
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package to thoroughly analyze the differences in pathway activation 
between the high-risk and low-risk groups (Yu et al., 2012; Wu et al., 
2021). By using butterfly diagrams, we  vividly displayed the 
correlation between risk scores and TIP (Tracking Tumor 
Immunophenotype) scores, 8 types of immunotherapy scores, and 
different tumor signaling pathways.

2.5 Applying a signature to guide 
chemotherapy and immunotherapy

Chemotherapy is a commonly used treatment for patients with 
glioma. To predict the chemotherapy response, we  utilized the R 
package “pRRophetic” to estimate the half-maximal inhibitory 
concentration (IC50) of chemotherapeutic drugs in different patient 
subtypes (Geeleher et al., 2014). Immunotherapy represents a novel 
treatment approach. To assess the predictive performance of our 
model for immunotherapy, we compared the scores of eight different 
types of immunotherapies between high-risk and low-risk groups.

3 Results

3.1 Identification of 30 Parkinson-Glioma 
feature genes

Prior to applying the combat algorithm from the “sva” package for 
correction, the box plot and principal component analysis revealed 
notable batch effects in GSE49036, GSE20141, and GSE7621 datasets 
(Figures 1A,B). We successfully mitigated non-biological biases among 
the Parkinson’s datasets (Figures 1C,D). Through differential analysis, 
we identified a total of 112 genes with differential expression. These 
genes can be found in Supplementary Table 1. Subsequently, 
we employed eight machine learning algorithms to train diagnostic 
genes capable of distinguishing gliomas from normal tissues, thus 
identifying Parkinson-Glioma feature genes. The sum of errors 
between the residual predicted values and the actual values reflects the 
prediction accuracy of the model. The residual boxplot (Figure 1E) and 
the residual reverse cumulative distribution plot (Figure 1G) indicate 
a high predictive ability of the model. Performance verification of 
different diagnostic models based on eight algorithms is presented in 
Supplementary Figure 2. Due to the good accuracy of each algorithm, 
we  determined the top  10 important genes of each algorithm as 
Parkinson-Glioma feature genes based on RMSE (Figure 1F). After 
removing duplicate genes, we obtained a total of 30 Parkinson-Glioma 
feature genes. These genes can be found in Supplementary Table 2.

3.2 The 19-PGFGs signature is an 
independent prognostic factor for gliomas

We identified 25 genes associated with OS in glioma through 
univariate Cox analysis (Figure 2A). The Lasso-Cox analysis ultimately 
identified 19 genes for constructing a prognostic model (Figures 2B,C). 
The risk score = 0.0583 × RBM3 + (−0.0126) × CYP27C1 + (−0.2337) 
× CBLN1 + 0.2144 × GIMAP2 + (−0.0067) × FZD9 + (−0.1237)× 
P4HA1+ (−0.0281) × PLCXD2 + 0.0292 × HSPA6 + (−0.0415)× DDIT4 
+ (0.0521) × LXN + 0.1032 × TMEM130 + (−0.1693) × CLSTN2+ 0.3785 
× GBE1 + 0.0388 × TMEM255A + 0.0050 × DLK1 + 0.2588 ×EN1 + 

(−0.1183) × AKR1C3 + 0.0113 × S100A12 + (−0.3239) × GNPDA2, 
where β is the coefficient of the PGFG. Nineteen prognostic PGFGs 
obtained through Lasso-Cox regression analysis and their coefficients 
can be found in Supplementary Table 3.

Figure 2D presents the meta-analysis results of the univariate Cox 
analysis for the prognostic model in four datasets. Despite the 
heterogeneity among different datasets, these results consistently 
demonstrate that the 19-PGFGs signature is a significant risk factor 
for glioma in all four datasets. The median risk score was used as the 
cut-off value to divide the 631 patients into high-risk and low-risk 
groups. Similar results were obtained using the same method on the 
CGGA-693 dataset, the CGGA-325 dataset, and the GSE16011 
dataset. The risk scores of patients in four datasets can be found in 
Supplementary Tables 4–7. The Kaplan–Meier curve illustrates that 
the OS of the low-risk group is significantly better than that of the 
high-risk group (Figures  2E–H). The calibration curve analysis 
indicates a good consistency between the predicted values and the 
actual values (Figures 2I–L). The model-predicted 1-, 2-, and 3-year 
OS AUCs validate the predictive performance of the signature, 
demonstrating satisfactory specificity and sensitivity (Figures 2M–P). 
Based on the clinical information from TCGA-Glioma, both 
univariate Cox (Figure 3A) and multivariate Cox (Figure 3B) analyses 
indicate that the 19-PGFGs signature is an independent prognostic 
factor for glioma patients (p < 0.001). The C-index (Figure  3C) 
indicates that our signature outperforms traditional clinical variables. 
DCA (Figure  3D) suggests that applying our model can benefit 
patients. Our signature demonstrates robustness.

3.3 The high-risk group exhibits higher 
levels of immune cell infiltration

To investigate the correlation between risk score and immune cell 
content, eight different software programs were utilized to evaluate the 
immune cell content. Subsequently, the Wilcoxon rank sum test was 
conducted to compare the immune cell content between high and low 
scoring groups. The results are presented in Figure 4A. Clearly, the high-
risk group exhibits a higher number of immune cells. Furthermore, the 
Spearman’s correlation analysis aligns with the difference analysis, 
demonstrating a significant positive correlation between the risk score 
and the content of different immune cell types (Figure 4B).

These findings suggest that this signature may serve as a crucial 
immune marker. The genes in the model exhibit intricate correlation 
patterns with immune cell infiltration, suggesting that these genes may 
be  involved in the reshaping of the diversified immune 
microenvironment (Figures 4C–J).

3.4 The high-risk group and the low-risk 
group exhibit distinct biological patterns

We employed WGCNA (Weighted Gene Co-expression Network 
Analysis) to correlate gene expression profiles with risk groups and 
generate heatmaps for visualizing the gene networks. The heatmap 
illustrated the topological overlap matrix (TOM) among all analyzed 
genes, ultimately constructing a co-expression atlas (Figure 5A). The 
high-risk group and the low-risk group exhibit distinct biological 
patterns due to variations in their co-expression gene modules 
(Figure 5B).
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FIGURE 1

Identification of Parkinson-Glioma feature genes. GSE7621: 9 normal brain samples and 16 PD brain samples GSE20141: 8 normal brain samples and 10 PD 
brain samples GSE49036: 8 normal brain samples and 20 PD brain samples. (A) The boxplot illustrated the distribution of gene expression before the removal 
of batch effects; (B) Principal Component Analysis (PCA) demonstrated expression patterns before the elimination of batch effects; (C) The boxplot depicted 
the distribution of gene expression after batch effect removal; (D) PCA displayed expression patterns following batch effect removal; (E) Box plots of sample 
residuals from the eight algorithms were presented. The x-axis represented the quantile of outliers, with the red dot indicating the mean; (F) Eight different 
algorithms identified the top 10 significant genes, resulting in the discovery of 30 Parkinson-Glioma feature genes; (G) Reverse Cumulative Distribution Maps 
of model residuals were constructed using RF, SVM, XGB, GLM, Elastic Net, stepLDA, PLS, and msaenet. The y-axis represented the outlier percentile.
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FIGURE 2

Construction and validation of the prognostic signature. TCGA-Glioma: 631 glioma patients, 315 cases in the high-risk group and 316 cases in the low-
risk group CGGA-693: 618 glioma patients, 365 cases in the high-risk group and 253 cases in the low-risk group CGGA-325: 306 glioma patients, 178 
cases in the high-risk group and 128 cases in the low-risk group GSE16011: 249 glioma patients, 171 cases in the high-risk group and 78 cases in the 
low-risk group The significance of the survival curve was evaluated using the log-rank test. (A) Univariate Cox analysis identified 25 prognostic genes; 
(B,C) Coefficient profiles of the 19 prognostic PGFGs obtained through Lasso-Cox regression analysis. The Lasso regression model revealed the partial 
likelihood deviance of variables. Red dots represented the partial likelihood of deviance values, and gray lines represented the standard error (SE). The 
two vertical dotted lines on the left and right symbolized optimal values based on minimum criteria and 1  −  SE criteria, respectively; (D) Meta-analysis 
demonstrated the heterogeneity and consistency of the signature across TCGA-Glioma, CGGA-693, CGGA-325, and GSE16011 datasets; (E–H) KM 
curves illustrated the differences in OS between the high-risk and low-risk groups in the TCGA-Glioma, CGGA-693, CGGA-325, and GSE16011 
datasets; (I–L) Calibration curves denoted the accuracy and specificity of the signature. ROC curves displayed the 1-, 2-, and 3-year OS in the TCGA-
Glioma (M), CGGA-693 (N), CGGA-325 (O), and GSE16011 (P) datasets.

Specifically, the red module exhibits a significant positive 
correlation with the low-risk group, while the high-risk group shows 
a significant positive correlation with the magenta module. The core 

genes in the module are defined as those with GS > 0.5 and MM > 0.8 
(Figures 5C,F). GO and KEGG enrichment analysis suggest that the 
red module (Figures 5D,E) is enriched in molecular functions such as 
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channel activity, and the magenta module (Figures 5G,H) is enriched 
in molecular functions such as growth factors.

3.5 Molecular expression and pathway 
activity differ between the high-risk and 
low-risk groups

The high-risk group shows high expression of four types of 
immune-related genes, as indicated by the results of immune 
infiltration analysis (Figure 6A). GSEA analysis reveals significant 
activation of malignant tumor characteristics, including inflammatory 
response, cell cycle, and invasion, in patients belonging to the high-
risk group (Figure  6B). Despite exhibiting higher immune cell 
infiltration, the high-risk group contributes to the development of 
inflammatory characteristics in glioma patients, thereby increasing 
malignancy, as supported by previous findings on immune infiltration. 
This point is further confirmed by the correlation between risk score 
and TIP score, eight immunotherapy scores, and multiple tumor 
signaling pathways (Figure 6C).

3.6 Chemotherapy and immunotherapy

In addition to the chemokine scoring, the other immunotherapy 
scores were consistent, suggesting that the high-risk group may 

be more appropriate for immunotherapy, potentially because they 
have greater immune reserves (Figures 7A–H). Furthermore, the IC50 
values of four chemotherapy drugs were higher in the low-risk group 
(Figures 7I–L) and showed a significant negative correlation with the 
risk score (Figures 7M–P). This suggests that patients in the high-risk 
group may exhibit greater sensitivity to these four drugs.

4 Discussion

Gliomas are classified into four categories by the World Health 
Organization (WHO), with the first two types being low-grade 
gliomas (LGG) and the last two being high-grade gliomas (HGG; 
Tom et al., 2019). The poor prognosis of glioma, regardless of its 
subtype, is attributed to its high heterogeneity, invasiveness, 
permeability of the blood–brain barrier (BBB), hypoxic tumor 
niche, and the presence of epithelial-mesenchymal transition (EMT; 
Śledzińska et al., 2021; Li et al., 2022). Glioblastoma (GBM) has a 
median survival period of no more than 16 months (Stupp et al., 
2009). Current methods for treating gliomas are imprecise and have 
limited effectiveness (Dono et al., 2021). Accurate prediction of 
glioma patients’ prognosis is significantly important in guiding 
their treatment. The microenvironment of glioma involves crosstalk 
among multiple signaling pathways and biological mechanisms, 
contributing to its continuous growth and development (Zhao 
et al., 2021).

FIGURE 3

Internal validation of the signature. The univariate (A) and multivariate (B) Cox regression analyses demonstrated the independent prognostic value of 
the signature for Glioma patients (p  <  0.001); (C) The time-dependent C-index indicated the accuracy of the signature; (D) The DCA curves emphasized 
the potential clinical benefits of the signature for Glioma patients.
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FIGURE 4

Immune infiltration profiles. The main methods involved were Wilcoxon rank-sum test for difference analysis and Spearman correlation analysis. 
(A) Eight immune infiltration software tools showed varying quantities of immune cells between the high-risk and low-risk groups; (B) Correlation 
between immune cells and risk scores; (C–J) Correlation between immune cells and genes incorporated in the model.

Interestingly, the discovered relationship between Parkinson’s 
disease (PD) and brain cancer suggests that these two distinct diseases, 
PD and glioma, may share common biological pathways that 
contribute to their development (Leong et  al., 2021). Therefore, 

developing a prognostic model based on Parkinson’s disease-related 
genes could be a valuable approach for predicting glioma prognosis.

We analyzed the expression data of 112 genes related to 
Parkinson’s disease in glioma patients. The data was obtained from 
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the TCGA, CGGA, and GEO databases, and the patients had a 
follow-up time of more than 30 days. We identified 25 PGFGs that 
were prognostically significant. The majority of the included PGFGs 
showed a significant association with overall survival in glioma 
patients. This finding highlights the important role of PGFGs in 
glioma and underscores the accuracy of machine learning.

We developed a 19-gene signature that accurately predicts overall 
survival in glioma patients. The risk score of this signature indicates 
its potential as an independent prognostic model. We  observed a 
positive correlation between the expression levels of RBM3, GIMAP2, 

HSPA6, LXN, TMEM130, GBE1, TMEM255A, DLK1, EN1, and 
S100A12 and the overall survival of gliomas. Conversely, the 
expression levels of CYP27C1, CBLN1, FZD9, P4HA1, PLCXD2, 
DDIT4, CLSTN2, AKR1C3, and GNPDA2 showed a negative 
correlation with the overall survival of gliomas. Previous studies have 
demonstrated that the majority of the 19 genes comprising prognostic 
features are associated with cancer or disease progression. They exhibit 
either favorable or unfavorable prognostic significance in different 
tumors. This indirectly indicates the biological significance of the 
selected survival-related genes and the effectiveness of our signature.

FIGURE 5

Mining of network modules using WGCNA. The main method involved was Pearson correlation analysis. (A) Heatmap of the network for all genes; 
(B) Heatmap showing the correlation between module eigengenes and risk traits; (C) Correlation and significance of the red module with the low-risk 
group of Glioma patients; (D,E) GO and KEGG analysis of genes in the red module; (F) Correlation and significance of the magenta module with the 
high-risk group of Glioma patients; (G,H) GO and KEGG analysis of genes in the magenta module.
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RNA-binding motif protein 3 (RBM3) is an excellent cold-shock 
protein that can rapidly upregulate its expression to ensure 
homeostasis and survival under cold stress conditions in the body 
(Ferry et al., 2011; Hu et al., 2022). RBM3 has been confirmed as a 
neuroprotective protein and demonstrates protective effects in cases 
of acute brain and spinal cord injuries (Choi et al., 2012). Additionally, 
RBM3 is closely linked to the development and progression of 
neurodegenerative diseases, including Lewy body dementia and 
Alzheimer’s disease (Rajkumar et al., 2020; Hu et al., 2022). Numerous 
immune studies have demonstrated the upregulation of RBM3 in 
various tumors, including malignant astrocytoma, classifying it as an 

oncogene (Zhang et al., 2013; Karnevi et al., 2018; Hu et al., 2022). 
Interestingly, some studies have indicated a close association between 
RBM3 overexpression and favorable clinical outcomes, making it a 
potential biomarker for cancer treatment (Al-Astal et  al., 2016). 
RBM3 exhibits varying effects on prognosis in different cancers, 
highlighting its involvement in multiple complex mechanisms that 
necessitate further exploration. Our research results are consistent 
with previous studies, confirming that RBM3 is an important 
biomarker positively correlated with glioma prognosis, and also a 
differentially expressed gene in Parkinson’s disease. It is a gene that is 
related to both neurodegenerative diseases and cancer. However, the 

FIGURE 6

Exploration of potential risk mechanisms. The main methods involved were Wilcoxon rank-sum test for difference analysis, GSEA for enrichment 
analysis, and Spearman correlation analysis. (A) Comparative analysis of four distinct categories of immune-related genes, namely Immunoinhibitor 
genes, Chemokines, Immunostimulator genes, and Human Leukocyte Antigen, between high- and low-risk groups; (B) Bar charts represented the 
GSEA results; (C) Butterfly plots vividly illustrated the correlation between risk score, TIP score, eight immunotherapy scores, and various tumor 
signaling pathways.
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specific mechanism of RBM3 in glioma and Parkinson’s disease is still 
unclear, and there is a lack of direct evidence. Related research is very 
limited. Future studies can further explore the expression patterns, 
regulatory mechanisms of RBM3 in Parkinson’s disease and glioma, 
as well as its correlation with disease progression, providing new 
ideas and methods for the diagnosis and treatment of these 
two diseases.

Glycogen branching enzyme (GBE1) is a critical gene that 
participates in regulating glycogen metabolism. Additionally, GBE1 
exhibits varying effects on the prognosis of different cancers (Lando 
et al., 2009; Liang et al., 2021). GBE1 has been shown to impact 
FBP1 expression via the NF-κB pathway, thereby influencing the 
glucose metabolism pattern of glioma cells (Chen et al., 2023). This 
promotes tumor progression driven by the Warburg effect, which is 
associated with a poor prognosis in glioma (Chen et al., 2023). Our 
research indicates that there is a positive correlation between GBE1 

expression and the prognosis of glioma patients. However, the 
mechanism of GBE1  in Parkinson’s disease remains unclear. 
We speculate that GBE1 may also affect the glucose metabolism 
pattern of substantia nigra cells in a similar way to its impact on 
glioma cells, which could then lead to mitochondrial dysfunction 
and increased oxidative stress in these cells, and thereby contribute 
to Parkinson’s disease. However, this is only a speculation and 
requires further research.

Engrailed 1 (EN1) is a homeodomain-containing transcription 
factor that plays essential and widespread roles in the embryonic 
development of various tissues, including the cerebellum, midbrain, 
skeleton, and limbs (Loomis et al., 1996). EN1 has been shown to 
possess oncogenic properties in glioma, regulating cancer cell 
proliferation and growth through modulation of the Hedgehog 
signaling pathway (Chang et al., 2022). Previous studies have found 
that EN1 may become a common target for immunotherapy of PD 

FIGURE 7

Chemotherapy and immunotherapy. The main methods involved were Wilcoxon rank-sum test for difference analysis and Spearman correlation 
analysis. (A–H) The scores of eight different types of immunotherapies between high-risk and low-risk groups; (I–L) The IC50 of four chemotherapy 
drugs between high-risk and low-risk groups; (M–P) The IC50 values of the four chemotherapy drugs showed a significant negative correlation with 
the risk score.
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and glioblastoma (Zhao et al., 2023). Another study has indicated that 
EN1 is involved in regulating the maturation and survival of 
dopaminergic neurons, potentially serving as a genetic risk factor for 
PD (Haubenberger et al., 2011).

The 19-gene signature is a predictive model based on gene 
expression data, which is used to evaluate the risk of tumor prognosis 
for individuals. This model enables clinicians to more accurately and 
effectively assess the survival status of patients. We found that patients 
in the low-risk group have a longer OS compared to the high-risk group. 
The model’s predictive performance was validated through external and 
internal dataset validation, confirming its independence from other 
clinical characteristics. As a quantitative tool, the DCA curve can assist 
in verifying whether the gene signature model can benefit patients by 
comparing the differences between actual risks and model-predicted 
risks to assess the value of the model. By plotting and analyzing the 
DCA curve, it can reveal the dynamic relationship between the 
prognostic model and other traditional clinical variables in terms of net 
benefit, thereby helping to more accurately estimate the cancer risk for 
individuals. Our DCA curves demonstrate that the application of our 
gene signature can benefit patients with gliomas, and it outperforms 
traditional clinical variables. Furthermore, we observed differences in 
the TME, levels of immune cell infiltration, immune gene expression, 
and drug resistance analysis across various risk groups. These differences 
could have significant implications for the clinical treatment of patients 
with glioma.

Transcriptome-based tumor prognostic models have certain 
advantages in predicting the prognosis of cancer patients. They can 
reveal changes in gene expression during tumorigenesis and 
development by analyzing the transcriptome data of tumor cells, thereby 
predicting the prognosis of patients. However, these models also have 
some limitations, mainly including the following aspects: First, the 
limitations of the quality and quantity of transcriptome sequencing data. 
In practical operations, errors may occur during sample acquisition, 
processing, and sequencing, as well as due to factors such as the 
heterogeneity of tumor tissues, which may affect the quality of 
transcriptome data. Second, the limitations and biases of transcriptome 
sequencing technology itself. Issues such as the comparability of data 
between different sequencing platforms and technologies, accurate 
measurement of gene expression levels, and detection of low-abundance 
genes may all affect the predictive performance of prognostic models. 
Third, the complexity of tumors and individual differences. Tumor is a 
complex disease involving interactions among multiple genes and 
pathways during its occurrence and development. Even if prognostic 
models based on transcriptome data can reveal the relationship between 
some gene expression changes and prognosis, they may not fully cover 
all the complexity and individual differences of the tumor. This may lead 
to the inability of the model to accurately predict the prognosis of 
patients in some cases. In addition, we did not conduct in vivo and in 
vitro experimental validations. In the future research, priority should 
be given to conducting in vivo and in vitro experiments to validate the 
mechanism of each gene within the gene signature in the occurrence and 
development of glioma and PD.

5 Conclusion

In summary, this study has identified a 19-gene signature 
composed of Parkinson-Glioma feature genes that holds prognostic 

value for glioma patients. Our research has proposed a predictive 
model and identified biomarkers for glioma patients, laying the 
groundwork for further mechanistic and therapeutic investigations.
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