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The glucagon-like peptide-1 receptor (GLP-1R) agonists reduce glycated 
hemoglobin in patients with type 2 diabetes. Mounting evidence indicates that 
the potential of GLP-1R agonists, mimicking a 30 amino acid ligand, GLP-1, 
extends to the treatment of neurodegenerative conditions, with a particular 
focus on Alzheimer’s disease (AD). However, the mechanism that underlies 
regulation of GLP-1R availability in the brain with AD remains poorly understood. 
Here, using whole transcriptome RNA-Seq of the human postmortem caudate 
nucleus with AD and chronic hydrocephalus (CH) in the elderly, we found that 
GLP-1R and select mRNAs expressed in glucose dysmetabolism and dyslipidemia 
were significantly altered. Furthermore, we detected human RNA indicating a 
deficiency in doublecortin (DCX) levels and the presence of ferroptosis in the 
caudate nucleus impacted by AD. Using the genome data viewer, we assessed 
mutability of GLP-1R and 39 other genes by two factors associated with high 
mutation rates in chromosomes of four species. Surprisingly, we identified that 
nucleotide sizes of GLP-1R transcript exceptionally differed in all four species 
of humans, chimpanzees, rats, and mice by up to 6-fold. Taken together, the 
protein network database analysis suggests that reduced GLP-1R in the aged 
human brain is associated with glucose dysmetabolism, ferroptosis, and reduced 
DCX+ neurons, that may contribute to AD.
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Introduction

Alzheimer’s disease (AD) is the seventh leading cause of mortality globally and #1 cause 
of dementia (Knopman et al., 2021; Scheltens et al., 2021; Nandi et al., 2024). Age, family 
history, and genetics followed by high blood sugar or diabetes are the largest risk factors for 
AD (Profenno et al., 2010; Butterfield and Halliwell, 2019; Yiannopoulou and Papageorgiou, 
2020). The estimated total cost of AD for 2022 is $321 billion, an expense projected to increase 
to more than $1 trillion by 2050 (Skaria, 2022). AD is molecularly characterized by plaques of 
amyloid beta (aβ) and neurofibrillary tangles of tau (Blennow et al., 2006). Mutations in the 
amyloid precursor protein (APP) and presenilin genes (Boutajangout et al., 2004), both linked 
to aβ metabolism cause familial AD, a very rare autosomal dominant disease with early onset 

OPEN ACCESS

EDITED BY

Tatiana Olivares,  
Universidad Autónoma de Baja California,  
Mexico

REVIEWED BY

Maoli Duan,  
Karolinska Institutet (KI), Sweden
Julio Isael Perez-Carreon,  
National Institute of Genomic Medicine 
(INMEGEN), Mexico

*CORRESPONDENCE

Joon W. Shim  
 shim@marshall.edu

RECEIVED 05 December 2023
ACCEPTED 15 May 2024
PUBLISHED 10 June 2024

CITATION

Barrett E, Ivey G, Cunningham A, Coffman G, 
Pemberton T, Lee C, Patra P, Day JB, 
Lee PHU and Shim JW (2024) Reduced 
GLP-1R availability in the caudate nucleus 
with Alzheimer’s disease.
Front. Aging Neurosci. 16:1350239.
doi: 10.3389/fnagi.2024.1350239

COPYRIGHT

© 2024 Barrett, Ivey, Cunningham, Coffman, 
Pemberton, Lee, Patra, Day, Lee and Shim. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Brief Research Report
PUBLISHED 10 June 2024
DOI 10.3389/fnagi.2024.1350239

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2024.1350239&domain=pdf&date_stamp=2024-06-10
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1350239/full
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1350239/full
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1350239/full
mailto:shim@marshall.edu
https://doi.org/10.3389/fnagi.2024.1350239
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2024.1350239


Barrett et al. 10.3389/fnagi.2024.1350239

Frontiers in Aging Neuroscience 02 frontiersin.org

(Catania et al., 2022; Kalfon et al., 2022; Pagnon de la Vega et al., 2022; 
Hebestreit et al., 2023; Kriebs, 2023; Lardelli et al., 2023; Li et al., 
2023). In most cases, however, sporadic AD is more common with 
roughly 15 million people affected worldwide (Almkvist and 
Nordberg, 2023; Ansari et al., 2023; Sepulveda-Falla et al., 2023). The 
risk of developing AD is influenced by heritable factors to the extent 
of 60–80% (Mez et al., 2016; Bao et al., 2022; Karlsson et al., 2022), and 
more than 40 genetic risk loci associated with AD have been identified 
(Kunkle et al., 2019; Sullivan et al., 2022; Dato et al., 2023; Fominykh 
et al., 2023; Huang et al., 2023; Wainberg et al., 2023). Among these 
loci, apolipoprotein E (APOE) alleles exhibit the strongest association 
with the disease (Park et al., 2023; Polsinelli et al., 2023; Sadleir and 
Vassar, 2023). Advanced biomarkers, such as positron emission 
tomography (PET) scans and plasma assays for aβ and phosphorylated 
tau, demonstrate significant potential for both clinical and research 
applications (Feinkohl et al., 2020; Peng et al., 2021; Shen et al., 2022; 
Wilson et al., 2022; Gonzalez-Ortiz et al., 2023; Zhang et al., 2023).

Glucagon-like peptide-1 receptor (GLP-1R) is a G-protein coupled 
receptor for glucagon-like peptide-1 (GLP-1) (Sloop et al., 2018), a 30 
amino acid peptide or hormone released by the intestines in response 
to food intake (Singh et al., 2022). GLP-1R became a drug target as part 
of the incretin concept in a search for insulin-stimulating factors for 
more than 100 years (Holst, 2019). The natural form of GLP-1 
undergoes degradation within approximately 2–3 min in the 
bloodstream. Consequently, various GLP-1 receptor agonists have been 
developed to extend their in vivo effects. These agonists pertain to 
short-acting compounds, including exenatide (exendin-4), a 39 amino 
acid peptide whose sequence is 53% homologous to GLP-1, originally 
isolated from the Gila monster (Graham et al., 2020), which result in 
brief receptor activation, and long-acting compounds that ensure 
continuous GLP-1R activation (Meier, 2012). For GLP-1R to 
continuously activate, either GLP-1 or GLP-1R agonist that mimics the 
actions of GLP-1 is expected to have sufficient availability in GLP-1R 
expressing cells. The mRNA for GLP-1 receptors has been identified in 
various bodily regions and it is the nucleus tractus solitarius (NTS) in 
the brainstem, which can synthesize GLP-1 in addition to gut (Yildirim 
Simsir et  al., 2018). Dyslipidemia, marked by irregular lipid levels 
including low-density lipoprotein (LDL) (Bosso et al., 2022; Higashi, 
2023) and low-density lipoprotein receptor adapter protein 1 
(LDLRAP1) (Ahangari et  al., 2021) in the bloodstream, has been 
proposed as potentially linked to a heightened risk of AD (Oliveira 
et al., 2018; Wang et al., 2022). The connection between dyslipidemia 
and Alzheimer’s is not completely comprehended and that GLP-1 has 
been shown to protect against dyslipidemia (Patel et al., 2014, 2017, 
2018; Jall et al., 2017) and promote neurogenesis (McGovern et al., 
2012; Lennox et al., 2013; Bae and Song, 2017).

The caudate nucleus is a key component of the basal ganglia that 
regulates motor control, learning and memory, reward and motivation, 
and executive functions. The imaging study shows that amyloid 
imaging marker AV-45 is elevated in the caudate nucleus and putamen 
of late-onset AD (Kim et  al., 2022). Recent research suggests a 
connection between the caudate nucleus and AD through atrophy and 
reduced volume, potential role in early detection, disrupted function 
and symptoms, difficulty with movement coordination, problems with 
learning and memory, and apathy and emotional dysregulation 
(Almeida et  al., 2003; Madsen et  al., 2010; Udo et  al., 2020). 
Neurogenesis, the process of generating new neurons, was traditionally 
believed to be limited to the embryonic and early postnatal stages in 

the development of the central nervous system. However, more recent 
research has challenged this view, suggesting that certain brain 
regions, including the caudate nucleus, may exhibit neurogenesis to 
some extent in adulthood (Ernst et al., 2014; Ernst and Frisen, 2015). 
Doublecortin (DCX) (Salvi et  al., 2016), expressed in immature 
neurons, is one of the markers for postnatal neurogenesis (Mirzadeh 
et al., 2010; Shahsavani et al., 2018).

The aim of this study was to test the hypothesis that aging with 
sustained glucose intake, which reduces availability of cerebral 
GLP-1R, contributes to cognitive decline of the brain, leading to CH 
and/or AD depending on functionality of metabolic clearance. In 
doing so, mutability of GLP-1R and neighboring genes might differ 
depending on species as measured by two factors associated with high 
mutation rates in human chromosomes: (i) proximity to telomeres, 
and (ii) high adenine and thymine (A + T) content, since full blown 
spectrum of cognitive decline as seen in humans with AD is reported 
to be different in the said primate or Chimpanzees (Sherwood et al., 
2011; Lacreuse et al., 2020). Given dopamine receptor D2 (DRD2) 
being well-conserved during evolution unlike serotonin receptor, 
5-hydroxytryptamine receptor 2A (HTR2A), the full-length sizes of 
the incretin receptor in four species are assessed as well to determine 
how evolutionarily conserved or advanced receptor GLP-1R might 
be in mouse, rat, chimpanzee, and human chromosome.

Results

Using whole transcriptome RNA-Seq (refer to the method for 
details), the top 20 were categorized based on the size of nucleic acid 
fragments. One group (comprising 7 genes) exhibited relatively higher 
RNA fragments, with FPKM >100 (“high RNA”), including APOE and 
hemoglobin subunit alpha 1 (HBA1). The other group (comprising 13 
genes) showed relatively lower RNA levels, with FPKM <100 (“low 
RNA”), such as phosphofructokinase, muscle (PFKM) and 
GLP-1R. The high RNA group, which includes APOE, indicated that 
genes encoding hemoglobin subunit proteins like HBA1 and 
hemoglobin subunit alpha 2 (HBA2), exhibited consistent transcript 
levels across different diagnoses, including control, CH in the elderly, 
and/or AD (Figure  1A). Despite the clear detectability of mRNA 
levels, aquaporin 4 (AQP4) and glutamate-ammonia ligase (GLUL) 
did not exhibit differences in CH or AD when compared to control 
specimens. The compilation of genes featuring lower FPKM, which 
includes PFKM, implies that LDLRAP1 might elevate specifically in 
AD (Figure 1B). Given the 20 candidate genes of interest, we assessed 
their genomic characteristics of the two factors associated with high 
mutation rates over human chromosomes, i.e., (i) proximity to 
telomeres, and (ii) high A + T content (Figure 1C). We found that 15 
of 20 human genes screened during whole transcriptome RNA-Seq 
satisfied proximity to telomeres while three genes (NFE2L2, PFKM, 
and GLUL) failed to meet either of the two factors (Figure 1D). The 
two factor analyses on 10 clonal hematopoiesis-driver genes and 10 
loci associated with copy number variations suggested that protein 
tyrosine phosphatase non-receptor type 11 (PTPN11) 
(Supplementary Figure S1) might be  associated with hemoglobin 
change (Figures 1A,B; Supplementary Tables S1–S3).

Next, we  assessed genes encoding the incretin and related 
molecules, which regulate glucose-dependent insulin secretion. 
We found that GLP-1R, glucose-dependent insulinotropic polypeptide 
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receptor (GIPR), and insulin receptor (INSR) gene were detected at 
1–10 FPKM and that GLP-1R was significantly decreased in the 
caudate nucleus with AD as compared to that of unaffected controls 
(p = 0.01). However, the transcript of dipeptidyl peptidase 4 (DPP4) 
and glucagon receptor (GCGR) were neither significantly different nor 
higher than 1 FPKM, suggesting that expression levels of these two 
genes, reported to be expressed in gut and/or liver, were low in the 
aged brain (Figures 2A,B). Consistent with the heatmap of RNA-Seq 
(Figure 1), we found that LDLRAP1 was significantly elevated in the 
caudate nucleus with AD (p = 0.01) as compared to that of age-matched 
controls, while tumor necrosis factor (ligand) superfamily, member 4 
(TNFSF4) was only elevated in the caudate nucleus with CH (p = 0.02). 
Among seven human genes forming a protein network with LDLRAP1, 
PFKM gene demonstrated a significant difference (p = 0.018) between 
CH and AD (Figures 2A,C). To test an idea if GLP-1R or LDLRAP1 is 
expressed in vascular endothelial cells, we assayed these genes along 
with the positive control gene and GAPDH as internal reference. 
Consistent with the prior report (Lovshin and Cherney, 2015), gel 
electrophoresis following RT-PCR indicated that the mRNA for 
GLP-1R and LDLRAP1 were not detectably expressed in the human 
vascular endothelial cell line (Figure 2D; Supplementary Figure S2).

Examining two factors linked to high mutation rates in these 
genes, we observed that GLP-1R and the genes related to insulin exhibit 
exceptional RNA sizes. We conducted a comparison of the transcript 
sizes of molecules associated with the incretin, including GLP-1R and 
five others like LDLRAP1, across four different species. The results 
indicate that GLP-1R exhibits an unusually longer transcript length in 
chimpanzees, and there is no consistent nucleotide length observed 
across mouse, rat, chimpanzee, and human (Figure 3A). This finding 
is moderately akin to a serotonin receptor, where there is approximately 
a 3.6-fold difference in size between rat (1,566 bp) and chimpanzee 
HTR2A (5,787 bp). GLP-1R and incretins except GIPR satisfied 
proximity to telomeres at <50 Mb, while DPP4 and NFE2L2 failed to 
meet proximity to their telomeres or F (i) (Figure 3B). However, all 10 
genes did not satisfy high A + T content at >59% (Figure 3C). The 

unusual variations of GLP-1R transcripts over four different species 
were evident as we compared the relative sizes of RNA via comparisons 
of Rat/mouse, Chimp/rat, Human/rat, and Human/chimp (Figure 3D). 
Such an exceptional molecular size was also found in incretins and 
associated genes to a lesser extent as we compared INSR, DPP4, GCGR, 
and GIPR collectively over four species (Figure 3E). In contrast to 
GLP-1R and incretins, LDLRAP1 exhibited uniform RNA sizes across 
the mouse, rat, chimpanzee, and human genomes (Figure 3F). This is 
in contrast to other genes outside the incretin family, such as NFE2L2, 
HBA1, and HMOX1 (Figure 3G). This pattern is reminiscent of a 
dopamine receptor, where the nucleotide size of the mouse (2,778 bp) 
and human DRD2 (2,808 bp) is nearly identical. Moreover, the caudate 
nucleus in elderly individuals with AD displayed a deficiency in 
doublecortin (DCX) (Supplementary Figure S3A) and indicated the 
loss of the marker for axonal injury or tubulin beta class I (TUBB) 
(Supplementary Figure S3). This observation is further substantiated 
by a declining trend in the gene expression of tubulin beta 1 class VI 
(TUBBP1) in the caudate nucleus (Supplementary Figure S4).

Next, we assessed the levels of genes encoding hemoglobin subunit 
proteins as GLP-1R is associated with glycated hemoglobin (HBA1c). 
Strikingly, the caudate nucleus affected by AD exhibited elevated levels 
of the transcription factor NFE2L2 (a marker for oxidative stress/
autophagy/ferroptosis), SQSTM1 (indicative of autophagy and 
inflammation), and CD163 (a marker for macrophage presence or 
microglial activation) (Figure 4A). The Kruskal–Wallis one-way analysis 
of variance test revealed a significant difference in the median of MAF 
BZIP transcription factor K (MAFK), which is a marker for oxidative 
stress and inflammation, among the control, CH, and AD groups. On 
the other hand, hemoglobin subunit gamma 1 (HBG1) and HBA2 gene 
were significantly decreased in the caudate nucleus with AD. HBA1 and 
HBA2 exhibited a significant reduction in the caudate nucleus of elderly 
individuals with CH. We also examined the condition of genes associated 
with clonal hematopoiesis, but we  did not observe any significant 
differences in the expression of these genes in the caudate nucleus with 
CH and/or AD (Figure 4B). Collectively, NFE2L2 is intricately connected 

FIGURE 1

Select gene expressions from whole transcriptome RNA-Seq of human postmortem brains. (A) The heat map illustrating an overall view of whole 
transcriptome RNA-Seq, represented by genes mediating glucose metabolism (GAPDH, GLUL), genetic predispositions to AD (APOE), glymphatic 
function (AQP4), and hemoglobin (HBA1, HBA2, HBG1) status in control (CNT, n  =  5), chronic hydrocephalus (CH, n  =  5), and Alzheimer’s disease (AD, 
n  =  6). (B) The heat map illustrating an overall view of whole transcriptome RNA-Seq, represented by genes mediating glucose (PFKM, GLP-1R, GIPR, 
INSR, DPP4 and GCGR), inflammation (TNFSF4), ferroptosis (HPR, NFE2L2, Hmox1, CD163, and HP), and cholesterol (LDLRAP1) metabolism in CNT 
(n  =  5), CH (n  =  5), and AD (n  =  6). For clarity, plots are grouped by the order of magnitude in RNA amounts (A, high RNA; B, low RNA). (C) Mutable 
characteristics quantified by two factors of proximity to telomeres and high A  +  T content associated with high mutation rates in human chromosomes. 
Mb, million bases. (D) Matching rates of either of the two factors and 20 genes shown in (A–C).
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with HMOX1, TP53, MAFK, BTB and CNC homology 1 (BACH1), and 
PTPN11. In contrast, the network involving HBA1, haptoglobin (HP), 
CD163, and HBA2 is linked through HMOX1 (Figure 4C).

Collectively, we found that genes encoding four separate protein 
networks involving heme or hemoglobin cluster (Figure 1A), GLP-1R 
or incretin cluster (Figure 1B), inflammatory response or LDLRAP1 
cluster (Figures  1B,C, 2, 3), and autophagy cluster (Figure  4) can 
be linked when GAPDH is added as a linker molecule connecting 
each network (Supplementary Figure S5). To validate unbiased study 
results on RNA-Seq, PCA analyses providing variances of the dataset 
(Supplementary Figures S6, S7), GSEA on AD 
(Supplementary Figure S8) and CH (Supplementary Figure S9) along 
with enrichment analyses via G-profiler (Supplementary Figures S11, 
S12), Hierarchical Clustering (Supplementary Figure S13), and 
histological detection of vascular proteins as compared to RNA-Seq 
dataset are conducted as provided in Supplementary Figure S14.

Discussion

Late-onset AD, which usually develops in individuals age mid-60s, 
affects 90–95% of all Alzheimer’s diagnoses and arises from brain 
alterations that develop over a long period due to aging (Reitz et al., 

2020). In this study, we provided comprehensive RNA-Seq data for 
elderly postmortem specimens (with a median age of approximately 
75 years), supporting the hypothesis that AD is marked by reduced 
levels of both GLP-1R and DCX. This implies a potential association 
with glucose dysmetabolism and compromised neurogenesis in the 
caudate nucleus. In addition to the role of DCX in neurogenesis, it has 
been demonstrated that neural stem cells, with absent or reduced 
DCX protein expression, exhibit impaired migration, delayed 
differentiation and deficient neurite formation (Shahsavani et  al., 
2018). To enhance cognitive function using pharmaceutical 
intervention, these findings strongly imply that solely inhibiting 
cerebral amyloid plaques may fall short. Achieving the restoration of 
robust connections, which involves neuronal projections from cell 
bodies in the NTS and/or hindbrain to the basal ganglia, may 
necessitate the reinstatement of GLP-1R-expressing neurons or the 
correction of deficient levels of DCX. This connectivity is crucial for 
cognition involving learning and memory processes in conjunction 
with the hippocampus.

Despite updates to the classical Hardy-Allsop “amyloid 
hypothesis” (Hardy and Allsop, 1991), the mechanistic link(s) between 
sugar (glucose) intake and cognitive function remain to be  fully 
elucidated. Typically, in subjects with normal blood sugar or 
non-diabetes systemic blood glucose homeostasis in humans is under 

FIGURE 2

Differential regulations of GLP-1R and LDLRAP1 in the aged brain with CH and AD. (A) The scatter plots summarizing glucose and cholesterol 
dysmetabolism through mRNA levels of GLP-1R, GIPR, DPP4, INSR, LDLRAP1, PFKM, TNFSF4, and GCGR in the caudate nucleus with CH and AD as 
compared to those of control (Cnt) obtained from the whole transcriptome RNA-Seq; CH, chronic hydrocephalus; AD, Alzheimer’s disease; statistical 
analysis by Kruskall Wallis test. (B) A network chart showing associations between GLP-1R and genes mediating glucose-driven insulin secretion 
depicted in (A). Note that these GLP-1R-related genes show detectable levels of FPKM in the brain (the caudate nucleus) except DPP4 (almost zero). 
(C) A network chart showing associations between LDLRAP1 and genes mediating inflammation, glucose, and cholesterol metabolism depicted in (A). 
Putative core genes for AD marked with inner circles in purple (B,C). (D) Agarose gels displaying absence of GLP-1R and LDLRAP1 transcripts in human 
vascular endothelial cells (hvECs) line. Pos.C, positive control with the known molecular size at 249  bp. rep., replicate. *p < 0.05; **p < 0.01 by Dunn’s 
multiple comparisons after Kruskal-Wallis ANOVA.
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the control of glucagon-like peptide-1(7–36)amide (GLP-1), a peptide 
secreted from intestinal enteroendocrine L cells in response to a meal. 
Previously, in mice lacking GLP-1 receptor (GLP-1R), interactions 
between diabetes and AD have been suggested, revealing the 
phenotype with impaired synaptic plasticity and memory formation 
(Abbas et  al., 2009). Our RNA-Seq data presented in this study 
suggests that GLP-1R mRNA levels were decreased in the caudate 
nucleus with AD. Taken together, reduced GLP-1R in the basal ganglia 
of the aged brain is associated with cognitive decline in AD through 
dysfunctional clearance of amyloid.

Given that monoclonal antibodies approved by the United States 
Food and Drug Administration (FDA) for AD targeting aβ have 
documented serious adverse effects like brain swelling (Mahase, 2021) 
or intracerebral hemorrhage (van Dyck et al., 2023) in clinical trials, 
there is a heightened level of concern. Among subjects in the early 
stages of AD, the use of gantenerumab led to a decrease in amyloid 
plaque buildup when compared to a placebo, but no apparent link was 
observed between the use of the said antibody treatment and a 
slowdown in the progression of clinical deterioration (Bateman et al., 
2023). Whether inhibiting amyloid plaque alone is enough to prevent 
the aging brain from cognitive decline or we have underestimated how 
human brains becoming vulnerable to hemorrhage (Couzin-Frankel 
and Piller, 2022), hemoglobin change (Ferrer et al., 2011; Min and 
Min, 2016; Dos Santos and Pardi, 2020; Arioz et al., 2021), hemolytic 
anemia (Klei et al., 2019), and/or altered hematopoiesis (Aman, 2023; 

Sanchez Vela et  al., 2023) in the progression of aging remains to 
be resolved. Varying perspectives have risen on the origins of AD. It 
has been argued that plaques or tangles serve as the fundamental 
cause, while other perception highlights that aβ or tau are 
manifestations rather than triggers (Braak and Braak, 1997; Yildirim 
Simsir et al., 2018). The primary indicator of the ailment is identified 
as glucose hypometabolism (Mosconi et al., 2008; Tondo et al., 2020), 
providing a more reliable predictor of cognitive decline than the 
buildup of plaques or tau. Recognizing that metabolic anomalies in 
the brain precede Alzheimer’s helps in comprehending why 
individuals may possess amyloid plaques without developing the 
disease (Yildirim Simsir et al., 2018).

The failure of antibodies targeting amyloid plaques to prevent 
cognitive decline in individuals treated during the early stages of AD 
reported in the prior clinical trial (Bateman et al., 2023) underscores 
the existence of a distinct mechanism that contributes to the 
deterioration of cognitive function as individuals age. In addition to 
the observed deficit in DCX, our data indicates the need for addressing 
neuroaxonal injury related to tubulin in the caudate nucleus affected 
by AD. DCX binds to and stabilizes microtubules, which are structural 
components of the neuronal cytoskeleton. Beta-tubulins are integral 
members of the tubulin protein family, responsible for the formation 
and organization of microtubules. Our findings substantiate the 
connection between deficient DCX and the depletion of neurite 
components (TUBB, TUBB3, and TUBBP1), representing different 

FIGURE 3

Exceptional RNA sizes of GLP-1R. (A) The transcript (RNA) size of GLP-1R and nine other genes over four species. Note that the nucleotide sizes of 
GLP-1R differ in all four species while there is no HBG1 transcript detected in mouse chromosomes at the genome data viewer. (B) Proximity to 
telomeres of 10 genes over four species. Note that GLP-1R except two other genes (DPP4 and NFE2L2) shown here have evolved in a way meeting 
proximity to telomeres or the first factor, F(i), associated with high mutation rate as eight human genes are at less than 50  Mb as compared to those of 
mice and rats. (C) A  +  T content of 10 genes over four species. Ten genes shown here demonstrate a similar characteristic of difficulty in meeting this 
second factor, F(ii), associated with high mutation rate. (D) Bar graph summarizing relative sizes of the transcript (RNA), suggesting unusual variations in 
GLP-1R over fours species. (E) Bar graph showing relative sizes of the transcript (RNA) in four incretin genes other than GLP-1R, suggesting unusual 
diversion over rat, chimpanzee, and human chromosome. (F) Bar graph showing relatives sizes of LDLRAP1 transcript (RNA) over four species. (G) Bar 
graphs showing relatives sizes of typical transcripts over four species.
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forms of beta-tubulin proteins (Supplementary Figures S3, S4). Given 
that doublecortin (DCX) also facilitates plasticity and learning 
(Vukovic et al., 2013; Chen et al., 2016; Jalayeri-Darbandi et al., 2018), 
the rectification of inadequate DCX levels in the basal ganglia affected 
by AD is justified.

What is the underlying factor responsible for alterations in markers 
associated with glucose dysmetabolism (GLP-1R), dyslipidemia 
(LDLRAP1), ferroptosis (NFE2L2), and autophagy (SQSTM1)? It 
might be  lifestyle or diet. Many developed countries worldwide 
promote polyunsaturated fatty acid (PUFA) as part of a healthy diet by 
branding “seed” into “vegetable” oils. As a result, consumption of 
saturated fats from animals has steadily decreased while PUFAs from 
plants have drastically escalated. Given the Minnesota survey 
conducted during year 1968–1973, without Ramsden (Ramsden et al., 
2016), the risk of low fat diet would have been buried (Keys, 1961; 
Frantz et al., 1989; Ramsden et al., 2016) for nearly 50 years: “…the 
greater degree of cholesterol-lowering was associated with a higher risk of 
death…” (Ramsden et  al., 2013). This was further supported by 
recovering the Sydney Diet Heart study, concluding that,”…substituting 
dietary linoleic acid in place of saturated fats increased the rates of 
death from all causes…” (Ramsden et al., 2013).

Unlike recent reports on “iron overload” where intraventricular 
hemoglobin or iron induces hydrocephalus (Strahle et al., 2014, 2021), 
our findings indicate that there is a disturbance in iron homeostasis, 

specifically involving iron deficiency, in the disease. Correcting the 
abnormal expressions of hemoglobin subunit proteins in the brain is 
proposed as a strategy to prevent or delay motor symptoms (gait 
disturbance) and cognitive impairment associated with CH in the elderly.

Our prior studies on two factors of proximity to telomeres and 
high A + T content associated with genetics and epigenetics of human 
diseases (Lucas et al., 2021; McKnight et al., 2021; Raines et al., 2022; 
White et al., 2022; Hart et al., 2023; McKnight et al., 2023) suggest that 
G protein coupled receptors harbor a positive correlation with the full-
length nucleotide size (Raines et al., 2022). The result presented herein 
regarding two factors associated with high mutation rates in mice, rats, 
chimpanzees, and humans indicates that GLP-1R is an exception 
during evolution across mice (1,480 bp, 44%) and chimpanzees 
(16,610 bp, 57%), i.e., A + T contents of GLP-1R in four species are less 
than 59%, the average of human chromosomes. Even if chimpanzee 
GLP-1R RNA has exceptionally evolved with the longest nucleotide 
size (Supplementary Table S2), the relative mutability of GLP-1R is 
moderate (one of the two factors, not both, satisfied), only affected by 
proximity to telomeres alone (45 Mb < 50 Mb), as compared to the 
trend of 143 druggable GPCRs (Raines et al., 2022).

Nuclear factor erythroid 2-related factor 2 (NFE2L2), also known 
as nuclear factor erythroid-derived 2-like 2, is a transcription factor that 
in humans is encoded by the NFE2L2 gene, which marks ferroptosis 
(Luo et al., 2022; Ye et al., 2022; Lin et al., 2023) and autophagy (Pajares 

FIGURE 4

Differential regulation of autophagy and ferroptosis marker genes in the aged brain with CH and AD. (A) The scatter plots summarizing autophagy, 
ferroptosis, and iron homeostasis through mRNA levels of NFE2L2, SQSTM1, CD163, MAFK, HBG1, HBA1, HBA2, and HMOX1 in the caudate nucleus 
with CH and AD as compared to those of control (Cnt) obtained from the whole transcriptome RNA-Seq. (B) The scatter plots summarizing 
hematopoiesis-driver genes through mRNA levels of TP53 and PTPN11 in the caudate nucleus with CH and AD as compared to those of Cnt obtained 
from the whole transcriptome RNA-Seq; statistical analysis by Kruskal–Wallis test (A,B). (C) A network chart showing interconnections and association 
between autophagy (NFE2L2) and genes mediating ferroptosis depicted in (A). Note that TP53 and PTPN11 are the mediators linking NFE2L2 
(autophagy/ferroptosis) to hemoglobin/iron homeostasis as hematopoiesis driver genes. A putative core gene for AD marked with inner circle in purple 
(C). *p < 0.05; **p < 0.01; ***p < 0.005 by Dunn’s multiple comparisons after Kruskal-Wallis ANOVA.
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et al., 2018; Deng et al., 2020; Xu et al., 2020; Bhattacharjee et al., 2022). 
Ferroptosis is a type of controlled cell death marked by the iron-
dependent buildup of lipid peroxides. In contrast to other forms of cell 
death like apoptosis or necrosis, ferroptosis entails the deadly 
accumulation of reactive oxygen species (ROS) and lipid peroxidation, 
particularly in cell membranes (Jakaria et al., 2021; Yadav et al., 2023). 
Sequestosome-1, encoded by the SQSTM1 gene in humans and 
commonly referred to as the ubiquitin-binding protein p62, serves as 
an autophagosome cargo protein. SQSTM1 plays a role in selective 
autophagy (Tian et  al., 2013), which is the natural, conserved 
degradation of the cell that removes unnecessary or dysfunctional 
components through a lysosome-dependent regulated mechanism. 
Other than cancer cells or certain types of epithelial cells (Gupta et al., 
2023), emerging research suggests that neurons can undergo ferroptosis 
and autophagy (Dong et al., 2022; Duan et al., 2023) under certain 
conditions (Liang et  al., 2022; Yang et  al., 2023). Ferroptosis and 
autophagy in neurons have been implicated in various 
neurodegenerative diseases, including AD. Neuronal populations in the 
caudate nucleus collectively contribute to cognitive functions within the 
broader neural circuits involved in cognition and behavior. However, 
the specific involvement of ferroptosis and autophagy and the markers 
like NFE2L2 with heme oxygenase 1 (Hmox1) (Zheng et al., 2023) and 
SQSTM1 in the caudate nucleus has not been extensively studied.

In conclusion, GLP-1 is one of the incretin peptides (Baggio and 
Drucker, 2007), which significantly modified biology and clinical 
impact of the gut-pancreas crosstalk from the intestinal mucosa 
(Baggio and Drucker, 2007). With recent success on the market, there 
is no doubt that GLP-1R agonist may soon significantly modify 
diabetes and obesity (Wilkinson et al., 2023; Wolffenbuttel et al., 2023; 
Yamada et al., 2023). The findings presented in this study suggest that 
reduced GLP-1R availability in the caudate nucleus in combination 
with elevated LDLRAP1, might be specific biomarkers of AD.

Methods

Human postmortem tissues

Postmortem tissues were requested from the National Institute of 
Health (NIH) NeuroBioBank (NBB), USA over a period of 1 year. 
We  collected the postmortem tissues of aged individuals through 
multiple repositories of the NIH NBB, which provided the caudate 
nucleus (DeVito et al., 2007; Deshpande et al., 2009; Jang et al., 2017; 
Peterson et al., 2019; Figure 1A) in a frozen state. Caudate nucleus 
specimens in frozen state were transported to our lab. Per the record 
provided by the NBB, the specimens were collected at postmortem 
intervals of 16 ± 8 h (mean ± std.; range 4–25 h after death, n = 7  in 
unaffected controls; n = 7 in NPH; n = 5 in AD). Inclusion criteria and 
diagnosis are provided in Supplementary Tables S3, S4. Seven male 
and twelve female brain specimens are used, where sex is noted in 
Supplementary Figure S1 and Supplementary Table S3.

Data sorting for whole transcriptome 
RNA-seq

We conducted two different sessions of whole transcriptome 
RNA-Seq, designed to obtain a total of 62,704 readings (# of genetic 

loci or genes) with the sample size at N = 16 (n = 5 for control and CH; 
n = 6 for AD). The first session involves N = 7 (n = 2 for control and 
CH; n = 3 for AD). Of all data points (62,704 loci), 3.4% (n = 2,144 
genetic loci or genes out of 62,704) showed a statistical significance at 
p < 0.05. As these data were sorted per (1) p-value, and (2) effect size, 
one of genes encoding hemoglobin subunit proteins was ranked #1 by 
statistical significance (p = 0.000000000101). The second session was 
conducted with N = 9 (n = 3 per group). Of all data points (62,704 loci), 
10.8% (n = 6,799 genetic loci or genes out of 62,704) showed a 
statistical significance at p < 0.05. Furthermore, 4.8% (n = 2,988 genetic 
loci or genes among 62,704) exhibited a statistical significance at 
p < 0.01. When these data were sorted per (1) p-value, and (2) effect 
size, again, genes encoding hemoglobin subunit proteins were ranked 
at top by statistical significance along with molecules mediating 
glucose and lipid metabolisms.

Primer design

We designed the primers for six genes of interest with one 
housekeeping gene based on the prior reports (Giaccone et al., 2010; 
Trabzuni et al., 2012; Mesitskaya et al., 2018; Shim and Madsen, 2018; 
Gable et al., 2019; Cacabelos, 2020; Hochstetler et al., 2020). Human 
gene transcripts were searched using Ensembl database.1 Using 
Primer3 online, we determined the sequences of a specific exon per 
gene transcript.2 Then, lyophilized forms were manufactured and 
provided by the vendor (Thermofisher scientific, Waltham, MA). 
Seven human gene primers were designed (Supplementary Table S4).

Total RNA isolation and cDNA generation

Total RNA was extracted from the caudate nucleus specimens of 
unaffected controls, CH in the elderly cases, and AD cases using the 
QIA-ZOL-based RNA isolation kit (RNeasy Lipid Tissue Mini Kit, 
QIAGEN). The concentration and quality of the samples were assessed 
using a NanoDrop spectrophotometer (Thermofisher). Subsequently, 
a total of 500 ng of RNA per reaction was reverse-transcribed using 
the High-Capacity RNA-to-cDNA Kit (Thermofisher; Catalog 
number: 4368814) with the ABI SimpliAmp Thermal Cycler System 
(Thermofisher).

Reverse transcription polymerase chain 
reaction

RT-PCR was conducted in 25 μL reaction volumes containing 
250 ng cDNA, following the manufacturer’s instructions (GoTaq® 
Green Master Mix). The cycling conditions comprised three steps: 
denaturation at 95°C for 2 min, followed by 35 cycles of 
denaturation at 95°C for 30 s, annealing at 60°C for 30 s, and 
extension at 72°C for 30 s (Promega, Madison, WI). Subsequently, 
the PCR products were separated through electrophoresis on 1.25% 

1 http://useast.ensembl.org/index.html

2 https://bioinfo.ut.ee/primer3-0.4.0/
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agarose gels in 1x Tris/boric acid/EDTA (TBE) buffer and visualized 
by staining with Maestro dye (MaestroSafe, Maestrogen). The 
fluorescent signal was visualized using FluorChem E System 
(biotechne).

ImageJ analysis

The analysis of DNA agarose gel images was performed using NIH 
ImageJ. The procedure consists of six steps: (1) Open the gel image in 
ImageJ, (2) Use the rectangle tool to select, (3) Analyze-gels-1st lane 
and subsequent lanes until the end, (4) Analyze-gels-plot lanes, (5) 
Connect with straight lines, and (6) Select with points. The area 
calculated for each band was recorded in the result file and saved in a 
spreadsheet. The relative fold change for each gene of interest was 
quantified relative to the expression of the housekeeping gene.

Statistical analysis

Primary component analysis (PCA) and statistical analyses were 
carried out using Prism (version 9.3.0, GraphPad Software Inc.), 
allowing for the creation of a heatmap plot and bar graphs based on 
the data analyzed with ImageJ. Non-parametric tests were employed 
for their conservative approach compared to parametric tests. 
Consequently, the Mann–Whitney test and Kruskal–Wallis test were 
utilized for two-group and three-group comparisons, respectively. 
Statistical significance was considered when the p-value was less than 
0.05, and significance levels are denoted in the figures and legends as 
*p < 0.05, **p < 0.01, and ***p < 0.005.

Gene set enrichment analysis and 
hierarchical clustering

GSEA 4.3.3 and G-profiler were used for gene set enrichment 
analysis (GSEA). For hierarchical clustering of the RNA-Seq dataset, 
providing dendrograms, Instant Clue software was used.
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