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Objective: To investigate the abnormalities of the three-dimensional

pseudo-continuous arterial spin labeling (3D PCASL) based cerebral blood

flow (CBF) correlation networks in mild cognitive impairment (MCI) and

Alzheimer’s disease (AD).

Methods: 3D PCASL images of 53 cognitive normal (CN) subjects, 43 subjects

with MCI, and 30 subjects with AD were acquired from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database. Whole-brain CBFmaps were calculated

using PCASL and proton density-weighted images (PDWI). The 246 regional

CBF values, including the cortex and subcortex, were obtained after registering

the Brainnetome Atlas to the individual CBF maps. The Pearson correlation

coe�cient between every two regions across subjects was calculated to

construct the CBF correlation network. Then the topologies of CBF networks

with regard to global properties (global network e�ciency, clustering coe�cient,

characteristic path length, and small-world properties), hub regions, nodal

properties (betweenness centrality, BC), and connections were compared

among CN, MCI, and AD. Significant changes in the global and nodal properties

were observed in the permutation tests, and connections with significant

di�erences survived after the z-statistic and false discovery rate (FDR) correction.

Results: The CBF correlation networks of CN, MCI, and AD all showed small-

world properties. Compared with CN, global e�ciency decreased significantly

in AD. Significant di�erences in nodal properties and a loss of hub regions are

noted in the middle temporal lobe in both MCI and AD. In the frontal lobe, BC is

reduced in MCI while it is increased in the occipital lobe in AD. The identified

altered hub regions with significant di�erences in MCI and AD were mainly

distributed in the hippocampus and entorhinal cortex. In addition, disrupted hub

regions in AD with significantly decreased connections were mainly found in the

precuneus/posterior cingulate cortex (PCC) and hippocampus-cortical cortex.
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Conclusions: Noninvasive 3D PCASL-based CBF correlation networks are

capable of showing changes in topological organization in subjects with MCI

and AD, and the observed disruption in the topological organizationmay underlie

cognitive decline in MCI and AD.

KEYWORDS

arterial spin labeling, cerebral blood flow, brain connectivity,mild cognitive impairment,

Alzheimer’s disease

1 Introduction

Alzheimer’s disease (AD), mainly accompanied by progressive,

irreversible cognitive decline, is considered the main cause of

dementia (Scheltens et al., 2021). Mild cognitive impairment (MCI)

is the intermediate state between normal aging and AD, mainly

accompanied by memory impairment (Anderson, 2019). It is

reported that AD is a disconnection syndrome (Delbeuck et al.,

2003), and abnormal brain networks in MCI and AD have been

proven to be associated with cognitive decline (Celone et al., 2006;

Yao et al., 2010), indicating that the application of network-based

methods is of significance for understanding the mechanisms of

MCI and AD.

The perfusion-based functional network plays an important

role in characterizing the synchronous changes of perfusion in

different regions and promotes signal transmission between regions

(Melie-Garcia et al., 2013; Zhu et al., 2013). The cerebral blood

flow (CBF) based network is commonly constructed for functional

connectivity by providing associations between non-independent

regions and their properties of interregional covariation, which

can be obtained by calculating the Pearson correlation coefficient

(Melie-Garcia et al., 2013). It has been proven that CBF correlation

networks are related to metabolic and vascular information (Luciw

et al., 2021). Importantly, group-level correlation analysis is

necessary for CBF networks and the stable relationship of inter-

regional CBF across subjects can be captured (Melie-Garcia et al.,

2013; Zhu et al., 2015). A previous study demonstrated that the

episodic memory decline in MCI is associated with the alteration

of the global modularity in CBF-based networks constructed

with single-photon emission computed tomography (SPECT) data

(Sanchez-Catasus et al., 2018). However, there are some limitations

in SPECT, such as the non-repeatable examinations caused by

invasive radioactive tracers, low spatial resolution, and high

time consumption.

To avoid that, arterial spin-labeling (ASL) magnetic resonance

imaging (MRI), with the advantages of rapid imaging and lower

costs, could be applied as a strategy for measuring arterial blood

flow as an endogenous tracer to assess tissue perfusion and vitality

(Detre et al., 1994). Much evidence has proved that ASL MRI has

a strong correlation with the functional changes related to AD

and some neurodegenerative diseases (Alsop et al., 2010; Wolk

and Detre, 2012). Several studies have shown that the progression

of MCI and AD can be estimated by the regional CBF values

with a three-dimensional pseudo-continuous ASL (3D PCASL)

(Binnewijzend et al., 2013, 2016; Suzuki et al., 2023), a widely

recognized technique with high labeling efficiency, repeatability,

and temporal and spatial signal-to-noise ratio (Alsop et al., 2015;

Dolui et al., 2017), whereas the topological properties of CBF-

based networks among CN, MCI, and AD have not been estimated

in earlier studies. To follow the progression of MCI and AD, we

applied the 3D PCASL to detect the disrupted CBF correlation

networks in MCI and AD. Graph theory was used to characterize

the topologies by exploring the regional and global properties,

and significant differences (p<0.05) were obtained by comparing

the results between each two groups. Finally, a z-statistic was

calculated to obtain the significantly altered connections with the

false discovery rate (FDR) correction.

2 Materials and methods

2.1 3D PCASL data from ADNI

The 3D PCASL data for this study were acquired from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). ADNI was launched in 2003 as a public–private

partnership, led by Principal Investigator Michael W. Weiner, MD.

The primary goal of ADNI has been to test whether serial MRI,

positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessments can be combined

to measure the progression of MCI and early AD. For up-to-date

information (see www.adni-info.org).

Each subject is assigned a unique identification number. CN

subjects have a Memory Box score of 0, a Clinical Dementia

Rating (CDR) of 0, and a Mini-Mental Status Exam (MMSE)

score between 24 and 30. Participants with memory loss and

who have a Memory Box score of at least 0.5, a CDR score of

0.5, and an MMSE score between 24 and 30 are diagnosed as

having MCI. Subjects diagnosed with AD have a CDR of 0.5

or 1.0 and a MMSE score between 20 and 24 following the

National Institute of Neurological and Communicative Disorders

and Stroke-Alzheimer’s Disease and Related Disorders Association

(NINCDS/ADRDA). Detailed inclusion and exclusion criteria

can be found at https://adni.loni.usc.edu/wp-content/themes/

freshnews-dev-v2/documents/clinical/.

2.2 Clinical assessment

All subjects from ADNI completed a comprehensive

neuropsychological assessment based on standardized tests.

Measures associated with cognitive domains include MMSE,
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Montreal Cognitive Assessment (MoCA), and Alzheimer’s Disease

Assessment Scale-Cognitive (ADAS13). The demographic and

clinical information was statistically analyzed by using MATLAB,

one-way analysis of variance (ANOVA), and post hoc tests were

applied to compare variables (age, education level, MMSE, MoCA,

and ADAS13) among three groups. Chi-squared test was used

to determine if there is any significant relationship between sex

(male/female) and subjects with CN, MCI, and AD.

2.3 Image acquisition

Both high-resolution structural MRI data and resting PCASL

data were downloaded for 53 CN subjects, 43 MCI subjects, and

30 AD subjects. The structural images were acquired using an

accelerated sagittal inversion recovery fast spoiled gradient recall

(IR-FSPGR) T1-weighted sequence with the following parameters:

repetition time (TR)/echo time (TE)/inversion time (TI) =

7.39/3.06/400ms, 196 sagittal slices, slice thickness = 1.0mm,

within the plane field of view (FOV) =256 ×256×196 mm3, voxel

size= 1× 1× 1 mm3.

3D PCASL data (label/control images) were acquired by a

3.0 T MRI scanner (Discovery MR 750, GE Medical Systems)

with background suppression and no vascular suppression. The

acquisition parameters were as follows: TR/TE= 4,888/10.5ms, TI

= 2,025ms, post labeling delay (PLD)= 2,000ms, slice thickness=

4.0mm, FOV= 24× 24 cm2, weighting= proton density (PD).

2.4 Overview of CBF correlation network
analysis

The processing steps of CBF correlation network analysis

by using the 3D PCASL MRI are shown in Figure 1. First,

the 3D PCASL MRI and PDWI were applied to calculate

the CBF map (see “2.5 CBF maps Calculation”). Second, the

Brainnetome Atlas (Fan et al., 2016) was registered from MNI

space to individual space with T1 and proton density-weighted

images (PDWI). Thus the CBF map was divided into 246

regions in gray matter. Third, the Pearson coefficient between

regional CBF values at the group level was calculated for the

construction of the correlation networks (see “2.6 Network

Construction”). Finally, the changes in global properties (see “2.7

Global Properties Analysis”), hub regions (see “2.8 Hub regions in

CBF correlation networks”), and nodal property (see “2.9 Nodal

Property Analysis”), as well as altered connections were analyzed

(see “2.10 Connection Analysis”).

2.5 Calculation of CBF maps

The data of 3D PCASL (label/control images) and PDWI

were converted into the 4D.nii.gz in NIFTI from DICOM

format by using the tools of dcm2nii (https://www.nitrc.org/

projects/dcm2nii). Then they were processed by FSL (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/) with motion correction and

brain tissue extraction to benefit the following processing

and analysis.

CBF =

6000 · λ· (SIcontrol − SIlabel) · e
PLD

T1,blood

2 · α·T1,blood · SIPD ·

(

1−e
−

τ

T1,blood

)

The above formula was applied to calculate CBF in the

whole brain. The scan parameters are as follows: T1 of blood is

assumed to be 1.4 s, the factor τ represents the label duration

which is 1.5 s, λ is the brain/blood partition coefficient whose

value is 0.9 (ml/g), PLD is the time of post-labeling delay and

is set to 2.025 s, α is the labeling efficiency factor with a value

of 0.8.

2.6 Network construction

Gray matter brain regions were obtained from CBF maps by

using the FSL tools. Each subject’s PDWI image was first registered

to T1 data linearly, and a matrix with mutual information was

obtained, with linear and non-linear methods. We normalized

T1 data to MNI space. Next, the co-registered PDWI image in

structure space was warped by the transform field normalized

from T1 to MNI. Then, the Brainnetome Atlas in MNI space

was registered to individual PCASL and PDWI space through the

results we obtained in the last step (Yuan et al., 2017). Thus 246

regions in each subject were obtained with the individual atlas and

whole brain CBF maps.

To construct the CBF connectivity network, three CBF data

matrices for CN (53×246), MCI (43×246), and AD (30 ×

246) were prepared, in which rows represent the number of

subjects and columns represent the number of brain regions,

and Pearson’s correlation index between each two brain regions

across subjects was calculated and three CBF connectivity networks

were constructed. Then the CBF connectivity networks after

normalization were calculated at different sparsity from 0.65 to 0.83

with the step size 0.02.

2.7 Analysis of global properties

To analyze the global properties of the CBF connectivity

network, we calculated the global network efficiency, clustering

coefficient, characteristic path length, and small-world properties.

The global efficiency is the average inverse shortest path length

in the network and is inversely related to the characteristic

path length. The clustering coefficient is the fraction of triangles

around a node and is equivalent to the fraction of the node’s

neighbors that are neighbors of each other. The small-world

properties are related to the normalized average clustering

coefficient and the average shortest path length. When the small-

world coefficient value is >1, we consider it to have the small-

world property.

We applied the non-parametric permutation approach (1,000

permutations) to compare the global network properties between

every two groups. In each permutation, regional CBF values
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FIGURE 1

Study procedure of CBF correlation network analysis.

were randomly reassigned and the number of subjects in each

randomized group was the same as that in the original group

with CN (53 × 246), MCI (43 × 246), and AD (30 × 246),

and the correlation connectivity network was constructed for

each randomized group. We obtained the global parameters of

randomized matrices at a range of sparsity 0.65–0.83 with step

size 0.02 in each group with correlation connectivity networks

constructed by each randomized group. Finally, the difference in

the global network parameters of original networks was compared

to that of randomized networks (null distributions) and the relative

positions of difference as nonparametric p-values were obtained,

in which parameters with p-values under 0.05 were considered to

be significant.

2.8 Hub regions in CBF correlation
networks

The MATLAB-based Brain Connectivity Toolbox (BCT) for

complex brain network analysis (Rubinov and Sporns, 2010) was

applied to analyze the properties of the CBF connectivity network

in CN, MCI, and AD groups.

We identified the hub regions with node measure betweenness

centrality (BC) and the fraction of all shortest network paths

containing a given node, which is applied most widely in

characterizing the importance of nodes in a network (Freeman,

1977). In the current study, nodes with BC two times higher than

the mean value of all the nodes were defined as hub regions.

Hub regions in the CN group were first detected, and then the

corresponding BC values of regions in MCI and AD groups

were calculated.

2.9 Nodal property analysis

To detect the changes in nodal properties of the CBF

connectivity network among CN, MCI, and AD groups, the

non-parametric permutation approach (1,000 permutations) was

applied. With the same method described in the global properties

analysis, we constructed the original and randomized correlation

networks, and then BC values of nodes in original and randomized

matrices at a sparsity of 0.83 in each group were obtained. Finally,

the difference of BC values of nodes in the original networks was

compared to that of randomized networks (null distributions), and

the relative positions of difference as non-parametric p-values were

obtained, nodes with significant differences were identified with

p-values below 0.05.

2.10 Analysis of connections

Significant differences in the connections of CBF connectivity

networks with a sparsity of 0.83 between every two groups (CN

vs. MCI, CN vs. AD, and MCI vs. AD) were tested. z-values

were obtained from the correlation coefficients with Fisher’s z-

transformation. Then a z-statistic was obtained, and connections

with significantly different values survived with false discovery rate

(FDR) correction (p < 0.001).
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TABLE 1 Demographic and clinical characteristics of ADNI subjects.

Parameter CN MCI AD P

value

(n = 53) (n = 43) (n = 30)

Age, years 74.1± 3.2 76.2± 3.6 75.1± 5.3 0.243a

Education,

years

16.3± 2.1 16.4± 2.3 16.6± 2.2 0.537a

Sex,

menwomen/men

26/27 22/21 16/14 0.931b

MMSE 28.9± 2.4 26.8± 3.4 21.5± 2.7 <0.001a∗

MoCA 25.7± 2.6 23.1± 3.9 17.6± 3.9 <0.001a∗

ADAS13 7.9± 4.5 16.9± 4.1 27.8± 2.9 <0.001a∗

Data are shown as the mean ± standard deviation. ∗P<0.05; aone-way analysis of variance;
bchi-squared test; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CN, cognitive normal;

MCI, Mild cognitive impairment; AD, Alzheimer’s disease; MMSE, Mini-Mental Status

Exam; MoCA, Montreal Cognitive Assessment; ADAS13, Alzheimer’s Disease Assessment

Scale-Cognitive13.

3 Results

3.1 Demographic and clinical
characteristics of ADNI subjects

The demographic and clinical characteristics of subjects from

ADNI are shown in Table 1. Significant differences (p<0.001) were

found among CN, MCI, and AD in MMSE, MoCA, and ADAS13.

No significant difference was found among the three groups in

terms of age, sex, and education level.

3.2 Calculated CBF maps and regional CBF
values

The calculated whole brain CBF maps of CN, MCI, and AD

are shown in Figure 2. After the registration of the Brainnetome

Atlas to CBF maps in individual space, 246 regional CBF values

in gray matter were obtained. Regional CBF with significant

differences among CN, MCI, and AD were statistically analyzed

with double t-tests and FDR correction (p < 0.05). Compared with

CN, nine regions decreased significantly inMCI, mainly distributed

in the frontal gyrus, middle temporal gyrus, parahippocampal

gyrus, parietal lobe, and occipital lobe. Compared with CN

and MCI, nine regions with significant differences were found

in AD, they are mainly in the frontal gyrus, temporal gyrus,

parahippocampal gyrus (e.g., entorhinal cortex), and hippocampus.

Figure 3 shows the spatial location of the regions mentioned above,

and the regional values with significant differences are listed in

Supplementary Table 1.

3.3 Global properties of CBF correlation
networks

From Figure 4, global efficiency shows a significant decrease in

the AD group compared with the CN group under the sparsity

of 0.71 (p = 0.031), 0.73 (p = 0.016), 0.75 (p = 0.009), 0.77

(p = 0.002), 0.79 (p = 0.002), 0.81 (p < 0.001), and 0.83 (p <

0.001). A significant decrease was also found from a comparison

between MCI and AD at the sparsity of 0.77 (p = 0.027), 0.79 (p =

0.018), 0.81 (p= 0.003). No significant changes were found among

the CN, MCI, and AD for clustering coefficient and characteristic

path length. Figure 5 shows that all three groups exhibit small-

world topologies across the sparsity from 0.65 to 0.83, and the

intermediate state of MCI is shown between CN and AD in the

small-world properties across all the sparsity values. From the bar

plot in Figure 5, we found that, compared with CN, the mean

small-world value of all sparsity in MCI decreased by 0.1 (6.85%),

and that in AD decreased by 0.23 (15.75%). Meanwhile, the mean

small-world value in AD decreased by 0.13 (9.56%) compared

with MCI.

3.4 Hub regions in CBF correlation
networks

Hub regions in the CN, MCI, and AD are shown in Figure 6.

Twenty-five hub regions were identified in CN, while the number

of hub regions is 25 in MCI and 24 in AD. Hub regions were

identified in three groups distributed in the inferior and middle

frontal gyrus, orbital gyrus, inferior and superior temporal gyrus,

precuneus, and occipital gyrus. The identified hub regions are listed

in Supplementary Table 2.

In addition, the middle temporal gyrus, inferior parietal lobule,

and cingulate gyrus including cingulate gyrus (CG)_R_7_1 (i.e.,

posterior cingulate cortex, PCC) were found as hub regions in

CN and MCI but disappeared in AD. Identical hub regions

such as parahippocampal gyrus (PhG)_L_6_4 (i.e., entorhinal

cortex), and hippocampus (Hipp)_L_2_1 were also found only

in CN. For both MCI and AD groups, hub regions were found

in the insular gyrus and cuneus. Additionally, hub regions

in the striatum and posterior superior temporal sulcus were

also observed.

3.5 Altered nodal property in CBF
correlation networks

From Figure 7, we found that 18 regions with significantly

different BC values in the CBF correlation networks between

CN and MCI groups, including the inferior frontal gyrus,

middle frontal gyrus, dorsal anterior insula, inferior temporal

gyrus, orbital gyrus, cuneus, parahippocampal gyrus, superior

temporal gyrus, and thalamus. Between CN and AD groups,

20 regions were detected with significant differences. They were

distributed in the parahippocampal gyrus, cuneus, caudoventral

anterior insula, inferior temporal gyrus, superior temporal

gyrus, striatum, thalamus, fusiform gyrus, hippocampus, posterior

superior temporal sulcus, and superior occipital gyrus. Compared

with the MCI group, 13 regions were found to be decreased

in the AD group, which include the cuneus, hippocampus,

inferior frontal gyrus, inferior temporal gyrus, parahippocampal

gyrus, posterior superior temporal sulcus, superior occipital gyrus,
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FIGURE 2

Representative CBF maps from CN, MCI, and AD groups.

FIGURE 3

The spatial locations of regions with significant di�erences in CBF values among CN, MCI, and AD groups.

superior temporal gyrus, striatum, thalamus, and precentral

gyrus. In addition, we found cuneus, inferior temporal gyrus,

parahippocampal gyrus, superior temporal gyrus, and thalamus

changed significantly between every two groups. Importantly, the

significantly changed BC value of PhG_L_6_4 (i.e., entorhinal

cortex) was found in MCI and AD. We found that there is

no region with significant differences between CN and MCI

in the hippocampus, and with progression and the BC value

of Hipp_L_2_1 in the hippocampus decreased significantly

in AD. We also found that with progression, significantly

different regions in the frontal lobe decreased, while some

regions in the occipital lobe increased significantly in AD.

The regions with significantly different BC values are listed in

Supplementary Table 3.

3.6 Altered connections in CBF correlation
networks

We did not find a connection with significant differences

between CN and MCI. While 27 connections were found

with significant differences between CN and AD, they were

distributed in the frontal lobe (middle and inferior frontal gyrus,

orbital gyrus, precentral gyrus), temporal lobe (superior and
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FIGURE 4

Relative di�erences in global properties of CBF correlation networks (global e�ciency, clustering coe�cient, and characteristic path length) between

CN-MCI, CN-AD, and MCI-AD across the sparsity from 0.65 to 0.83. The non-parametric permutation tests (1,000 permutations) were conducted

showing the results of the mean value (blue lines) and 95% confidence intervals (dashed lines).

middle temporal gyrus, parahippocampal gyrus, posterior superior

temporal sulcus), parietal lobe (superior parietal lobule, angular

gyrus, supramarginal gyrus, precuneus, postcentral gyrus), insular

lobe (rostrodorsal posterior insula), limbic lobe (cingulate gyrus),

occipital lobe (cuneus, superior occipital gyrus), and subcortical

nuclei (hippocampus), and those spatial distributions mentioned

above are shown in Figure 8 (left). From Figure 9 (top), we found

most of the connections were significantly decreased, except for

seven connections in the frontal, parietal limbic, and occipital lobes

were increased. Compared with MCI, we found 20 connections

with significant differences in the AD group, which were distributed

in the frontal lobe (superior, middle and inferior frontal gyrus,

orbital gyrus, precentral gyrus, paracentral lobule), temporal lobe

(superior and middle temporal gyrus), parietal lobe (supramarginal

gyrus, postcentral gyrus), insular lobe (dorsal anterior insula,

ventral posterior insula, rostrodorsal posterior insula, caudoventral

anterior insula), limbic lobe (cingulate gyrus), occipital lobe

(cuneus), and subcortical nuclei (striatum, thalamus). The spatial

distributions of these connections are shown in Figure 8 (right).

From Figure 9 (bottom), three edges in the frontal, parietal, and

insular lobe increased significantly, and the other edges reduced

significantly in AD compared with MCI.

4 Discussion

We used a 3D PCASL technique to investigate the altered

topological properties of CBF correlation networks in subjects

identified as having CN, MCI, and AD. In earlier studies,

correlation networks have been detected with different techniques

for MCI or AD, including functional networks with SPECT data,

fluorodeoxyglucose positron emission tomography (FDG-PET)

data, blood oxygen level-dependent (BOLD) MRI, and cortical

networks with T1-weighted MRI (Yao et al., 2010; Seo et al., 2013;
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FIGURE 5

The small-world properties of the CBF correlation network in CN, MCI, and AD groups. The left sub-figure is the small-world values across the

sparsity from 0.65 to 0.83. The two sub-figures on the right are absolute and percentage changes in mean small-world by averaging across all

sparsity levels among CN, MCI, and AD, respectively.

FIGURE 6

The spatial locations of hub regions in CN, MCI, and AD.

FIGURE 7

The spatial locations of regions with significant di�erences in nodal BC value in CBF correlation networks among CN, MCI, and AD groups.

Dai and He, 2014; Sanchez-Catasus et al., 2018). However, CBF

correlation networks were only analyzed in MCI with SPECT

(Sanchez-Catasus et al., 2018), where the global efficiency of MCI

was found to be reduced compared to the control group. Although

FDG-PET, SPECT, and ASL are widely applied to measure cerebral

metabolism, ASL has the advantages of rapid imaging, non-

invasive, and low costs compared with the others. BOLD and

ASL are both commonly used to estimate functional networks

calculated by interregional correlation coefficients. Using BOLD,

time series were used to examine the connectivity at the individual

level, which can reflect temporal synchronization of the inter-

regional neural activity (Biswal et al., 1995), while the interregional

CBF-related networks are obtained at the group level and cannot

be compared between individuals. Moreover, CBF connectivity
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FIGURE 8

Connections with significant di�erence (P < 0.001) between CN and AD, MCI and AD.

as a single physiological parameter might be more relevant for

characterizing cerebral metabolism, whereas BOLD connectivity

is influenced by several parameters including CBF, cerebral blood

volume, cerebral metabolic rate of oxygen, and oxygen metabolism

(Buxton et al., 2004).

There are five main findings revealed in this study: (1).

The CBF correlation networks of CN, MCI, and AD showed

small-world properties. (2). Compared with CN, global efficiency

showed a significant decrease in AD. (3). A loss of hub

regions in the middle temporal lobe was found in MCI and

AD. (4). Significant differences in the nodal properties of BC

are observed in both MCI and AD in the middle temporal

lobe; in addition, in the frontal lobe, BC was found to be

reduced in MCI while it increased in the occipital lobe in

AD. Both regional CBF values and BC decreased in the

entorhinal cortex and hippocampus in AD. (5). Connections in

AD showed significant differences compared to those in CN

and MCI. The findings mentioned above are discussed in the

following subsections.

4.1 Global properties of CBF correlation
networks

Compared with matched random networks, small-

world networks have higher local clustering and similar

path lengths, thus improving the communication efficiency

of the brain (Bullmore and Sporns, 2009). In this study,

the CN, MCI, and AD groups all exhibited small-world

properties, which are consistent with other studies including

FDG-PET-based functional and cortical networks in MCI

and AD (Supekar et al., 2008; Yao et al., 2010; Seo et al.,

2013; Xu et al., 2020), indicating that the 3D PCASL-based

CBF correlation networks of CN, MCI, and AD present

an optimal balance between local specialization and global

integration processes.

In comparison with CN and MCI, the global efficiency

was reduced in AD, which is consistent with a prior study

(Liu et al., 2014), where the lower global efficiency of BOLD

functional MRI networks in AD was reported. While in other

studies, significantly reduced global efficiency or the clustering

coefficient of networks were found (Berlot et al., 2016; Sanchez-

Catasus et al., 2018; Zhou, 2020), in this study, MCI shows no

apparent differences in properties of global efficiency, clustering

coefficient, and characteristic path length over the entire range

of sparsity thresholds. The intermediate state of MCI of the

small-world in CBF correlation networks between CN and AD

is consistent with prior studies (Liu et al., 2012; Dai and He,

2014).

4.2 Hub regions in CBF correlation
networks

The hub regions identified in our study are largely consistent

with previous reports. For instance, in CN, hub regions in the

middle temporal gyrus, inferior frontal gyrus, and orbital gyrus

occurred in a previous study in which cortical networks were

characterized by gray matter volumes (Yao et al., 2010). Hub

regions in the precuneus, medial frontal gyrus, inferior parietal

cortex, and thalamus in current findings are consistent with the

results in a study where nodal strength was used to identify

hubs in functional networks (Dai et al., 2015). For the altered

hub regions in brain connectivity in MCI and AD, some of

our results are consistent with previous studies. Hub regions in

the right precuneus were defined in all three groups, with left

parahippocampal gyrus (e.g., entorhinal cortex) only appearing in

the CN but missing in MCI and AD (Seo et al., 2013; Khazaee

et al., 2017). In agreement with earlier studies (Seo et al., 2013;

Grajski et al., 2019; Hrybouski et al., 2023), hub regions were

found in the left precuneus and PCC only in CN and MCI,

while in MCI and AD, hub regions occurred in the right angular

gyrus (right inferior parietal lobe). Moreover, hub regions in the

middle temporal gyrus in CN disappearing in MCI an AD was

also proved. Of note, the loss of hubs in the hippocampus and

entorhinal cortex in MCI and AD are subregions of the core

memory-associated middle temporal lobe, which might be related

to the dysfunction of thememory (Fjell et al., 2015; Hrybouski et al.,

2023).
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FIGURE 9

Subregions and lobes to which the corresponding connections with significant di�erences of CN vs. AD (top), and MCI vs. AD (bottom). Connections

in blue decrease significantly in AD, while the black ones are increased edges in AD.
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4.3 Altered CBF values and nodal
properties in CBF correlation networks

Brain regions with abnormal nodal properties (in terms of

BC) and regional CBF values in AD are mainly distributed in the

parahippocampal gyrus (e.g., entorhinal cortex), temporal gyrus,

and hippocampus. The regions with significant differences in the

entorhinal cortex and hippocampus are also identified as the loss

hub regions, which is consistent with prior research and related to

the impairment of memory (Seo et al., 2013; Hrybouski et al., 2023).

Compared with CN, altered BC was found in the inferior frontal

gyrus in MCI, which was revealed in a prior study (Seo et al., 2013).

The superior temporal gyrus was found to decrease significantly

in BC in MCI and AD, which was also marked in a previous

study (He et al., 2008; Zhang et al., 2021), which involved auditory

(e.g., language) processing and social cognition (Bigler et al., 2007).

Additionally, significant BC increased in the occipital gyrus (e.g.,

cuneus). The increased hub region in AD, is consistent with a study

in which structural connectivity was applied to understanding the

association between disrupted integrity of the network and the

underlying cognition (He et al., 2008), and which may serve as a

compensatory system.

A previous study proved that regional CBF values decreased

in patients with AD, and they were mainly distributed in the

entorhinal cortex and hippocampus. The regional CBF values in

the parietal cortex and precuneus were reduced in MCI when

compared with CN, and our findings are consistent with these

results (Binnewijzend et al., 2013; Mattsson et al., 2014). Moreover,

a higher amyloid-β load was considered to have associations

with those lower regional CBF values mentioned above (Maier

et al., 2014; Mattsson et al., 2014). Although we did not estimate

the association between the amyloid-β load and network-based

changes of CBF, the abnormality of hub regions and connections

in the entorhinal cortex and hippocampus in AD in this study may

be related to the high load of amyloid-β.

4.4 Altered connections in CBF correlation
networks

In Figure 9, details of the changes with significant differences

(P<0.001) of groups with CN-AD and MCI-AD are shown.

Compared with CN, the decreased correlations in AD are mainly

distributed in the frontal lobe, temporal lobe (e.g., middle temporal

gyrus and parahippocampus), parietal lobe (e.g., precuneus and

cingulate gyrus), and subcortical nuclei (e.g., hippocampus).

The disrupted hub regions with apparently reduced BC are

also linked by significantly decreased edges. They occurred in

parahippocampus, precuneus, and hippocampus. Most of the

altered connections in the hippocampus, middle temporal gyrus,

cingulate gyrus, and precuneus in current CBF correlation

networks are consistent with changes in the functional networks

of AD in earlier studies (Wang et al., 2006; Zhou et al., 2008;

Seo et al., 2013). Specifically, the alteration of the hippocampal–

cortical (e.g., hippocampal-inferior frontal gyrus) connectivity is

consistent with previous studies (Wang et al., 2006; Allen et al.,

2007) and may link the decline of memory and cognitive function

in AD since the hippocampal-cortical memory system contains

interacting brain regions that are activated during episodic memory

retrieval (Vincent et al., 2006; Buckner et al., 2008). In addition,

the connection of the hippocampus to the right insular reduced in

AD is in agreement with a prrevious study (Wang et al., 2011) and

the changes in connections may underlie memory impairment. In

earlier studies, the inferior parietal gyrus and/or precuneus were

proved to have an association with mental orientation in CN and

aMCI (Peer et al., 2015; Oishi et al., 2018). Our findings in this study

showed the connection of the precuneus to the inferior parietal

lobe decreased significantly, which may be the underlying reason

for cognitive dysfunction of disorientation.

Moreover, the disruption of hub regions with altered

connections occurred in the middle temporal gyrus, middle

frontal gyrus, and cingulate gyrus. Of note, connectivity between

precuneus and PCC decreased significantly in AD, which is

consistent with prior studies (Rami et al., 2012; Yokoi et al.,

2018). The functional connectivity with significantly decreased

precuneus/PCC was assumed to have an association with cognitive

function and plays a key role in developing AD (Yokoi et al., 2018).

4.5 Limitations

This study has several limitations. First, the modest sample

size of 3D PCASL data from the ADNI database may limit

its statistical power. Second, the results of the CBF map

calculations were affected by the parameters selected. Third,

in this study, we only studied the group-level correlation

networks due to the limitations of time series with current

GE ASL data, and the individual-level networks were not

analyzed. Finally, we found significant differences in cognitive

scores (MMSE, MoCA, and ADAS13) among the three

groups, while no correlation analysis of cognitive scores and

network parameters of CN, MCI, and AD was performed in

this study.

5 Conclusion

In this study, we estimated the abnormality of the topological

organization of 3D PCASL-based CBF correlation networks in

subjects with MCI and AD. The CBF correlation networks

of CN, MCI, and AD all showed small-world properties.

Compared with CN, global efficiency decreased significantly

in AD. Significant differences in nodal properties and a loss

of hub regions were observed in the middle temporal lobe

in both MCI and AD. In the frontal lobe, BC was reduced

in MCI while it increased in the occipital lobe in AD. The

identified altered hub regions with significant differences in

MCI and AD were mainly distributed in the hippocampus and

entorhinal cortex. In addition, disrupted hub regions in AD with

significantly decreased connections were mainly found in the

precuneus/PCC and hippocampus-cortical cortex. The observed

disruptions in the topological organization of 3D PCASL-based

CBF correlation networks may underlie the cognitive decline and

provide new insight into understanding the mechanism of MCI

and AD.
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