
Frontiers in Aging Neuroscience 01 frontiersin.org

Challenges and prospects in 
geriatric epilepsy treatment: the 
role of the blood–brain barrier in 
pharmacotherapy and drug 
delivery
Xin Chen 1, Juan Luo 1,2, Min Song 1, Liang Pan 3, Zhichuang Qu 4, 
Bo Huang 5, Sixun Yu 1* and Haifeng Shu 1,2*
1 Department of Neurosurgery, Western Theater General Hospital, Chengdu, Sichuan, China, 
2 Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 
Sichuan, China, 3 Department of Pediatrics, Western Theater General Hospital, Chengdu, Sichuan, 
China, 4 Department of Neurosurgery, Meishan City People's Hospital, Meishan, Sichuan, China, 
5 Department of Burn and Plastic, Western Theater General Hospital, Chengdu, Sichuan, China

The blood–brain barrier (BBB) is pivotal in maintaining neuronal physiology 
within the brain. This review delves into the alterations of the BBB specifically 
in the context of geriatric epilepsy. We examine how age-related changes in 
the BBB contribute to the pathogenesis of epilepsy in the elderly and present 
significant challenges in pharmacotherapy. Subsequently, we  evaluate recent 
advancements in drug delivery methods targeting the BBB, as well as alternative 
approaches that could bypass the BBB’s restrictive nature. We  particularly 
highlight the use of neurotropic viruses and various synthetic nanoparticles that 
have been investigated for delivering a range of antiepileptic drugs. Additionally, 
the advantage and limitation of these diverse delivery methods are discussed. 
Finally, we analyze the potential efficacy of different drug delivery approaches in 
the treatment of geriatric epilepsy, aiming to provide insights into more effective 
management of this condition in the elderly population.
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1 Introduction

Geriatric epilepsy, characterized by an onset at or beyond the age of 65 years (Cloyd et al., 
2006), presents a distinct epidemiological pattern. Epidemiological studies have delineated a 
bimodal distribution of epilepsy incidence, observing heightened rates in both young children 
and the elderly. Notably, the incidence of epilepsy escalates progressively post-50 years of age, 
reaching its zenith in individuals aged 75 and above (Hauser et al., 1993; Collaborators, 2019). 
In elderly patients, seizures are typically localized to specific brain regions, with convulsive 
symptoms being comparatively infrequent (Godfrey, 1989). This often leads to misdiagnoses 
of seizures as fainting or transient loss of consciousness in older adults (Ramsay et al., 2004). 
Such patients are at an increased risk of cognitive decline and psychiatric complications, 
factors that augment the likelihood of status epilepticus and related mortality (DeLorenzo 
et al., 1996; Martin et al., 2005).
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Furthermore, geriatric populations exhibit heightened sensitivity 
to antiepileptic drugs, necessitating lower initial dosages and a more 
meticulous approach to medication regimen (Werhahn et al., 2011). 
Cerebrovascular disease is identified as the predominant cause of 
epilepsy in the elderly (Hauser et al., 1993), while blood–brain barrier 
(BBB) dysfunction emerges as a common pathological feature in this 
cohort (van Vliet and Marchi, 2022). Alterations in BBB functionality 
significantly influence drug delivery to the brain (Movahedpour et al., 
2023), underscoring the need for a nuanced understanding of BBB 
dynamics in the context of elderly epilepsy treatment.

This review aims to elucidate the structure and function of the 
BBB and its role in the pathogenesis of geriatric epilepsy. It will also 
examine the impact of BBB on pharmacotherapy in elderly epileptic 
patients. Finally, the paper will explore innovative approaches to 
antiepileptic therapy, particularly strategies aimed at mitigating or 
circumventing BBB challenges, thereby offering fresh perspectives and 
strategies for treating geriatric epilepsy.

2 The structure and function of BBB

Comprehensive understanding of the BBB’s structure and the 
regulatory mechanisms of its permeability is paramount for 
developing diagnostic tools to assess BBB integrity and therapeutic 
interventions aimed at preserving or restoring normal BBB function 
in CNS diseases. The BBB is a critical selective barrier (Figure 1), 
constituted by brain endothelial cells, which regulates molecular 
exchanges between the bloodstream and neural tissue (Abbott et al., 
2006). Its functionality hinges on the integrity of the neurovascular 
unit, comprising endothelial cells, pericytes, astrocytes, neurons, and 
the basement membrane (Sá-Pereira et al., 2012; Sweeney et al., 2016; 
Wang et al., 2021). Structurally, the BBB primarily consists of brain 
microvascular endothelial cells (BMECs) interconnected by tight 
junctions, adherens junctions, and gap junctions (Beard Jr et al., 2011; 
Spéder and Brand, 2014; Li et al., 2015). These intercellular junctional 
complexes significantly restrict the paracellular diffusion of solutes 
(Petty and Lo, 2002). Moreover, brain pericytes, astrocytic end-feet, 
neurons, and the extracellular matrix coalesce to form the 
neurovascular unit alongside BMECs, playing a pivotal role in 
inducing BBB properties during development and maintaining its 
integrity in adulthood (Kadry et al., 2020).

According to Yu et  al. (2015), BMECs are distinguished from 
peripheral endothelial cells by their markedly low pinocytic activity and 
absence of fenestrations. The transcellular pathway across the BBB is 
intricately regulated by an array of membrane transporters and 
metabolic enzymes expressed in BMECs (Pottiez et al., 2009). Key efflux 
transporters such as P-glycoprotein (P-gp) and breast cancer resistance 
protein actively expel xenobiotics back into the bloodstream, whereas 
solute carrier transporters facilitate the influx of nutrients and ions into 
the brain (Kodaira et al., 2011). Additional membrane proteins and 
enzymes play crucial roles in controlling transcellular permeability 
(Raleigh et al., 2010; Del Vecchio et al., 2012; Sweeney et al., 2016). 
BMECs, in conjunction with the neurovascular unit, dynamically 
regulate BBB permeability to balance the metabolic demands of the 
central nervous system and protect against blood-borne toxins and 
pathogens (Daneman and Prat, 2015; Yan et al., 2021).

In various central nervous system disorders, including stroke 
(Bernardo-Castro et al., 2020), seizures (Uzüm et al., 2006), multiple 

sclerosis (Cramer et al., 2014), Alzheimer’s disease (Rosenberg, 2014), 
and brain tumors (Gerstner and Fine, 2007), BBB disruption is 
implicated, leading to increased permeability. This disruption 
facilitates the influx of potentially neurotoxic plasma components into 
the brain parenchyma (Keaney and Campbell, 2015). Diseases 
common in the elderly population, such as aging, hypertension, and 
diabetes, can further impair the integrity and functionality of the BBB 
(Zlokovic, 2008; Popescu et  al., 2009; Prasad et  al., 2014; Katsi 
et al., 2020).

3 Impact of aging on BBB alterations 
associated with the onset of geriatric 
epilepsy

Neuroimaging studies of the living human brain have revealed 
that disruptions in the BBB within the hippocampus are strongly 
linked to aging, a correlation that is particularly pronounced in 
patients with mild cognitive impairment (van de Haar et al., 2016; 
Sweeney et  al., 2018; Nation et  al., 2019). This phenomenon is 
corroborated by animal model studies, which have shown that the 
downregulation of tight junction proteins such as claudin-5 and 
occludin occurs with age, resulting in increased paracellular 
permeability of the BBB (Keaney and Campbell, 2015; Bors et al., 
2018; Knox et al., 2022).

As part of the aging process, the BBB undergoes considerable 
structural and functional degradation (Figure 1). This degradation 
becomes evident when the BBB is compromised, manifesting in 
extensive alterations in comparison to a healthy state (Persidsky, 1999; 
Knox et al., 2022). Notable age-related changes in the BBB include 
significant modifications in cell-to-cell interactions, resulting in 
endothelial cell degeneration or atrophy and the reduced expression 
or mislocalization of tight junction proteins (Obermeier et al., 2013; 
Sweeney et al., 2019b). These alterations critically affect paracellular 
transport mechanisms (Erdő et al., 2017). Pathological conditions 
further lead to the upregulation of leukocyte adhesion molecules in 
endothelial cells, promoting leukocyte infiltration into the brain 
parenchyma and exacerbating oxidative stress through the release of 
reactive oxygen species, cytokines, and other mediators (Brochard 
et al., 2009; Gerwien et al., 2016; Profaci et al., 2020; Iannucci and 
Grammas, 2023; Figure 2). The heightened Reactive oxygen species 
consumption within the brain amplifies its vulnerability to oxidative 
stress (Segarra et al., 2021), with deleterious effects including oxidative 
damage to cellular components, activation of matrix 
metalloproteinases, and dysregulation of tight junction proteins and 
inflammatory mediators (Pun et al., 2009; Olmez and Ozyurt, 2012; 
Obermeier et  al., 2013). These disruptions impair key cellular 
functions, including transport, energy production, and ion 
homeostasis (Olmez and Ozyurt, 2012). Additionally, the efficiency of 
P-gp in the BBB diminishes from middle age onwards, exacerbating 
the BBB’s transport dysfunction in conjunction with neuropathological 
burdens (Chiu et al., 2015; Banks et al., 2021).

At the cellular level, the process of aging is correlated with a 
notable reduction in the density and coverage of BMECs and pericytes. 
This reduction is particularly pronounced in brain regions that are 
more susceptible to age-related degeneration, such as the hippocampus 
(Montagne et  al., 2015; Verheggen et  al., 2020). Importantly, this 
decline associated with aging encompasses not just cellular density but 
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also includes significant changes in the heterogeneity of astrocytes, 
oligodendrocytes, and microglia. These alterations collectively exert a 
profound impact on brain clearance mechanisms, myelination 
processes, and immune surveillance within the central nervous system 
(Kettenmann et  al., 2011; Rodríguez-Arellano et  al., 2016). 
Furthermore, changes in pericyte behavior, alongside alterations in 
glial cell function, are known to adversely affect BBB permeability and 
are implicated in the exacerbation of brain inflammation, further 
complicating the pathophysiological landscape (Rustenhoven et al., 
2017; Sweeney et al., 2019a).

Consequently, this decline in BBB integrity and functionality has 
profound implications for neuronal health. BBB damage can 
precipitate epileptic seizures through various interconnected 
mechanisms. The compromised barrier allows for the leakage of 
substances such as potassium, albumin, or immune cells, which are 
intrinsically associated with abnormal neuronal firing (Seiffert et al., 
2004; David et  al., 2009; Fabene et  al., 2010). Furthermore, BBB 
deterioration alters the balance of adenosine and glutamate 
transporters and catalytic enzymes, characterized by a decrease in 
adenosine and a elevation in glutamate levels, contributing to an 
increase in neuronal excitability (Grant et al., 2003; Parkinson et al., 
2003). Additionally, BBB disruption can lead to a decrease in pH, 
negatively impacting the coupling of cerebral blood flow to neuronal 
activity and resulting in enhanced neuronal firing (Aaslid, 2006). 

These changes disrupt the central nervous system’s ‘excitation-
inhibition’ balance, potentially initiating or intensifying 
epileptic symptoms.

Among the various pathways implicated in this disruption, the 
role of transforming growth factor beta (TGFβ)-associated pathway 
stands out as particularly significant in the progression of epilepsy, 
especially among the elderly (Figure 2). Research utilizing rodent 
models to emulate BBB leakage has elucidated that the infusion of 
serum albumin precipitates the activation of TGFβ signaling within 
astrocytes. This activation is implicated in engendering age-related 
neurological dysfunctions, brain aging phenotypes, heightened 
susceptibility to epilepsy, and cognitive impairments, as evidenced by 
several studies (Cacheaux et  al., 2009; Milikovsky et  al., 2019; 
Senatorov Jr et al., 2019). Itai et al. have highlighted the crucial role of 
the astrocyte ALK5/TGF-β pathway in mediating excitatory 
synaptogenesis post-BBB disruption, leading to seizures (Weissberg 
et  al., 2015). Furthermore, the presence of albumin in the brain 
mediates the downregulation of potassium channels in astrocytes 
through TGFβ receptors, impacting potassium buffering and leading 
to increased extracellular potassium levels and neuronal 
overexcitability, thereby inducing epileptic discharges. The blockade 
of TGFβ receptors has been shown to significantly reduce the 
incidence of albumin-induced epilepsy (Ivens et al., 2007). Subsequent 
research revealed that serum-derived albumin preferentially activates 

FIGURE 1

The blood–brain barrier (BBB) in the healthy brain and geriatric epilepsy patients’ brain. Left: In a healthy brain, the BBB consists of endothelial cells that 
are tightly connected through tight junction proteins, forming a primary physical barrier along the brain’s blood vessels. These cells are intricately 
surrounded by pericytes and perivascular macrophages embedded within the basement membrane. Additionally, the basement membrane is 
enveloped by the end feet of astrocytes. Furthermore, this unit contains inactive microglia and functional neurons, essential for the brain’s normal 
activation. Right: With advancing age, a convergence of adverse physiological processes can intersect with the pathogenesis of epilepsy. Age-related 
alterations include an increase in BBB permeability, leukocyte infiltration, pericellular shedding, mislocalization of tight junction, leakage of ions and 
activation of special signal pathway. Additionally, perivascular inflammation, along with the accumulation of amyloid and tau proteins, contributes to 
this complex scenario. These neuropathological changes, occurring concurrently, may collectively precipitate neurological disorders such as epilepsy 
and cognitive decline. The interplay of these factors underscores the multifaceted nature of age-associated neurological deterioration and highlights 
the need for targeted therapeutic strategies in the aging population. These alterations critically disrupt the central nervous system’s (CNS) delicate 
‘excitation-inhibition’ balance, thereby potentially initiating or exacerbating the symptoms of epilepsy. Created with BioRender.com.
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the TGF-β receptor I  activin receptor-like kinase 5 pathways in 
astrocytes. Notably, the TGF-β signaling inhibitor losartan effectively 
inhibits this pathway, preventing delayed recurrent spontaneous 
seizures, with effects lasting for weeks after drug discontinuation, 
highlighting its therapeutic potential (Bar-Klein et al., 2014).

4 Impact of BBB alterations on 
pharmacological challenges in 
geriatric epilepsy

In the management of epilepsy among elderly patients, 
antiepileptic drugs (AEDs) play a crucial role (Vu et  al., 2018). 
Compared to their younger counterparts, older adults may derive 
greater benefits from AEDs but are simultaneously at an elevated risk 
for potential side effects (Hernández-Ronquillo et  al., 2018). 
Consequently, in geriatric epilepsy treatment, the initial dosing and 
dosage increments of AEDs are typically reduced to half of those 
prescribed for younger individuals to enhance drug tolerance. It is 
often observed that elderly patients require only half the standard dose 
recommended for patients under 65 years of age (Sen et al., 2020). 
Moreover, the selection of appropriate AEDs for older adults is 
constrained by the increased likelihood of side effects and drug–drug 
interactions. For instance, traditional AEDs such as carbamazepine 
and phenytoin are often eschewed due to their adverse impacts on 
bone health, lipid metabolism, balance, and their propensity for 

enzyme induction (Sen et al., 2020). A meta-analysis has indicated 
that lamotrigine is better tolerated than carbamazepine in the elderly 
with epilepsy. Additionally, levetiracetam demonstrated a higher 
probability of seizure control compared to lamotrigine, with no 
significant difference in tolerability. Furthermore, no notable 
differences in efficacy and tolerability were observed between 
carbamazepine and levetiracetam (Lezaic et al., 2019). Another meta-
analysis posited that lacosamide, lamotrigine, and levetiracetam are 
the most effective in terms of achieving seizure remission for old 
patients (Lattanzi et al., 2019). Patients with drug-resistant epilepsy, 
particularly older adults, may require an increased number of 
medications to control seizures and are more vulnerable to the 
neurotoxic effects of specific drugs (Trinka, 2003). This situation 
highlights the ongoing need for research into various drug delivery 
methods, including those involving the BBB.

The BBB defined by its intricate tight junctions and 
sophisticated efflux transport systems, is a critical physiological 
structure. Its role extends beyond the mere obstruction of drug 
delivery to the brain; it also regulates the distribution of therapeutic 
agents within brain tissues, presenting a significant challenge in 
treating central nervous system disorders (Cardoso et al., 2010; Li 
et al., 2011). Contemporary research has identified three protective 
mechanisms that drugs targeting the central nervous system 
encounter when interacting with the BBB (Angelow and Yu, 2007; 
Pardridge, 2007). The first is the enzymatic barrier, which restricts 
the entry of drugs and organic substances into capillary endothelial 

FIGURE 2

The role of proinflammatory proteins in the geriatric epilepsy brain. Thrombin, a key regulatory factor produced by endothelial cells during 
neuroinflammatory processes in the brain, impacts a variety of inflammatory mediators. These include inflammatory cytokines, matrix 
metalloproteinases (MMPs), reactive oxygen species (ROS), and nitric oxide (NO). The activity of these mediators can lead to the destruction of healthy 
neurons and precipitate neuronal degeneration, thereby exacerbating the neurological consequences of BBB disruption. On the other hand, 
compromised BBB integrity results in the leakage of serum albumin into the brain, subsequently triggering the activation of the TGFβ/ALK5 signaling 
pathway in astrocytes. This activation exerts a dual effect: it modulates the expression of potassium ion channels in astrocytes, affecting extracellular 
ion homeostasis, and concurrently promotes the formation of excitatory synapses in neurons. Together, these processes enhance neuronal excitability, 
potentially leading to epileptic discharges. Created with BioRender.com.
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cells. The second is the cellular barrier, composed of contacts 
between BBB cells, where endothelial cells limit the passage of 
water-soluble substances and regulate vesicular transport and 
endocytosis. The third mechanism involves the ATP-binding 
cassette protein transport system, actively extruding certain drugs 
from the endothelial cells of brain blood vessels.

The BBB’s significance is particularly notable in epilepsy 
treatment, as it impedes the penetration of biotechnological drugs into 
the brain, thereby diminishing the effectiveness of antiepileptic 
medications (Zhao et  al., 2020). In elderly epilepsy patients, a 
disrupted BBB structural integrity has been observed, which 
introduces complexities in traditional antiepileptic drug therapies. 
While it might seem intuitive that a compromised BBB would allow 
greater drug access to the brain, the reality is more nuanced. In fact, 
BBB leakage enables the entry of serum albumin into the brain, which 
adversely affects the brain distribution of many antiepileptic drugs 
that bind to plasma proteins, leading to suboptimal treatment 
outcomes (Marchi et al., 2009; Salar et al., 2014). Moreover, damage 
to the BBB can result in an increased expression of various drug 
transporters. This phenomenon contributes to pharmacoresistance in 
epilepsy, particularly due to the overexpression of ATP-binding 
cassette efflux transporters like P-gp and breast cancer resistance 
protein (van Vliet et al., 2014; Gonçalves et al., 2021). The excessive 
presence of these transporters restricts the entry of antiepileptic drugs 
into the brain, thereby playing a crucial role in the development of 
resistance to these drugs. Furthermore, oxidative stress, whether due 
to disease progression or AED side effects, may alter the expression of 
these BBB transport proteins (Grewal et  al., 2017). Additionally, 
genetic variations and the increased expression of efflux transporter 
genes could be  potential factors in pharmacoresistance. These 
transporters collaboratively act to inhibit antiepileptic drugs from 
delivering their therapeutic impact on the central nervous system 
(Soares et al., 2016).

Traditionally, one potential strategy to counteract the reduction 
in drug concentration within the central nervous system, caused by 
BBB disruption in elderly epilepsy patients, has been to increase the 
drug dosage. However, it is important to acknowledge that while most 
antiepileptic drugs can penetrate brain tissue, they also distribute to 
other organs, potentially leading to significant systemic toxicity 
(Perucca, 2002; Li and Ma, 2006). Such chronic toxicity, encompassing 
hematological disorders, hepatotoxicity, and other adverse effects, 
considerably constrains the clinical application of antiepileptic drugs 
(Perucca and Gilliam, 2012; Schmidt and Schachter, 2014). 
Consequently, developing targeted drug delivery systems specifically 
designed for the central nervous system may offer a promising 
approach to enhance drug efficacy in the brain while minimizing 
peripheral side effects. This strategy could prove invaluable in 
optimizing therapeutic outcomes in the treatment of epilepsy, 
particularly in the elderly.

5 Overcoming the BBB: advancements 
in targeted drug delivery for brain

Contemporary approaches to drug administration across the 
BBB have been extensively reviewed in prior literature (van Vliet and 
Marchi, 2022), and thus, will not be reiterated here. In summary, the 
current therapeutic strategies for managing epilepsy in elderly 
patients predominantly encompass four mechanistic pathways: the 

modulation of pro- and anti-inflammatory balance (Fabene et al., 
2008), the PDGF/TGF signaling pathways (Shen et  al., 2019), 
pathways addressing oxidative stress (Luo et  al., 2018), and the 
manipulation of matrix metalloproteinases (Broekaart et al., 2021). 
While these methodologies have shown potential in restoring 
cerebral vascular integrity and broadly controlling brain 
inflammation, their efficacy in epilepsy management and the 
efficiency of drug delivery via these mechanisms warrant further 
investigation. Given the unique physiological attributes of the BBB, 
there is a critical need for research focused on enhancing drug 
delivery efficiency through the BBB. Alternatively, exploring 
methods to directly bypass the BBB for the targeted delivery of 
antiepileptic drugs to the central nervous system is equally 
imperative. Here, we  explore recent advancements in strategies 
designed to bypass the BBB for effective drug delivery to the central 
nervous system (Figure 3).

5.1 Neurotropic viruses

Neurotropic viruses exhibit a unique capacity to infiltrate the 
central nervous system via diverse mechanisms. These viruses 
inherently target the central nervous system, achieving entry by 
either directly crossing the BBB (Dahm et al., 2016) or utilizing 
immune cells as transport vehicles (Salinas et  al., 2010). This 
attribute is critical for facilitating the delivery of therapeutic genes 
to brain cells (Körbelin et al., 2016; Powell et al., 2016), positioning 
neurotropic viruses as potential vectors for central nervous system 
targeted drug delivery.

In research focused on chronic temporal lobe epilepsy, the 
overexpression of neuropeptide Y (NPY) induced by recombinant 
adeno-associated virus (rAAV) vectors in epileptogenic regions has 

FIGURE 3

Diagram of advancements in drug delivery for overcoming the BBB. 
Several innovative methods for bypassing the BBB have been 
developed, and while not yet directly applied in the delivery of 
antiepileptic drugs, these approaches have demonstrated 
considerable potential in this area, as evidenced by existing research. 
Created with BioRender.com.
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been shown to slow the progression of epileptic discharges. This 
approach has also been correlated with a notable reduction in the 
frequency of seizures (Noè et al., 2008; Noe et al., 2010). Moreover, 
the use of human foamy virus (HFV) as a gene transfer vector 
demonstrates efficiency in the expression of human glutamate 
decarboxylase (GAD) cDNA in hippocampal neurons. This 
expression leads to increased synthesis and release of gamma-
aminobutyric acid (GABA) upon stimulation, thereby elevating the 
neuronal excitability threshold and contributing to an antiepileptic 
effect (Liu et al., 2005).

However, the clinical application of these findings faces 
significant challenges. Primary challenges involve addressing the 
immunogenicity (Rapti et al., 2012; Rabinowitz et al., 2019) and the 
inconsistencies in intracranial transduction efficiency (Foust et al., 
2009; Gray et al., 2013) associated with these vectors. Additionally, 
the potential for inflammatory responses (Armangue et al., 2014; Ji 
et al., 2016) and toxicity underscores the need for rigorous evaluation 
and cautious application. Therefore, the optimization of viral vector 
designs is crucial. This entails minimizing immunogenicity and 
toxicity risks while maximizing targeting specificity to brain tissue. 
Such advancements are vital for ensuring the safe and effective 
utilization of neurotropic viral vectors in central nervous system 
drug delivery.

5.2 Nanoparticle

Nanoparticle (NP)-mediated drug delivery has emerged as a 
viable solution to the challenge of enhancing drug permeability 
across the BBB. Nanoparticles, defined as colloidal systems ranging 
from 1 to 1,000 nm in size, are adept at encapsulating therapeutic 
agents (Choradiya and Patil, 2021). This encapsulation not only 
improves the passage of drugs through the BBB but also enables 
precise targeting of specific brain regions affected by 
neurodegenerative and ischemic conditions (Solans et al., 2005). A 
diverse array of nanoparticles has demonstrated efficacy in brain 
delivery therapies. The effectiveness of these NPs is notably 
enhanced when their surfaces are modified with targeted moieties, 
thereby improving their specificity and efficiency in drug delivery 
(Farhoudi et al., 2022). In our investigation into the potential of 
nanoparticles to circumvent the BBB, we  found their distinct 
advantages. These include their capacity to encapsulate diverse drug 
types, encompassing both hydrophilic and lipophilic compounds 
(Fonseca-Santos et al., 2015; Kamaly et al., 2016; DeMarino et al., 
2017), and the potential for enhanced tissue-specific targeting 
through surface modifications (Saraiva et al., 2016). Furthermore, 
evidence suggests that nanoparticles can significantly increase the 
efficiency of drug delivery to the brain (Song et al., 2014; Maussang 
et al., 2016; Vilella et al., 2018), with exosome-based nanoparticles 
demonstrating enhanced stability in the bloodstream due to their 
resistance to phagocytic clearance (Yildiz et  al., 2012; Hovlid 
et al., 2014).

Biodegradable nanoparticles have demonstrated considerable 
promise in augmenting the efficacy of antiepileptic drug therapies. 
Notably, surface functionalization of these nanoparticles has markedly 
improved their ability to permeate the BBB (Bonilla et al., 2022). For 
instance, polyssorbate-80 coated albumin nanoparticles have been 
effectively utilized to target the delivery of levetiracetam, a widely used 

antiepileptic drug, enhancing its brain-specific delivery and thus 
optimizing the treatment of epilepsy (Wilson et al., 2020). Additionally, 
the overexpression of P-gp is recognized as a pivotal contributor to the 
development of antiepileptic drug resistance (Löscher and Potschka, 
2002; Löscher and Potschka, 2005; Luna-Tortós et  al., 2008). To 
counteract this challenge, researchers have investigated co-embedding 
P-gp inhibitors and antiepileptic drugs in Pluronic P85-modified 
nanocarriers. This strategy has shown effectiveness in surmounting 
P-gp mediated drug resistance, particularly in the delivery of 
phenytoin (Fang et  al., 2016). Furthermore, the innovative 
polypyrrole-poly-dopamine-phenytoin-Angiopep (PPY-PDA-
PHT-ANG) nanoparticle system developed by Wu et al. represents a 
significant advancement in the field. This system employing 
copolymerization and surface functionalization techniques, not only 
achieves efficient drug loading and electro responsive release but also 
ensures precise brain-targeted delivery. This system distinguishes itself 
from traditional delivery methods through its capacity to respond to 
abnormal brain electrical activity, potentially contributing valuable 
insights to antiepileptic treatment strategies (Wu et al., 2022).

While conventional research continues to explore ways to exploit 
the physiological properties of the BBB for efficient brain drug 
delivery, some researchers have pursued an alternative approach 
through intranasal administration. This method directly bypasses the 
BBB, circumventing digestive tract absorption and first-pass liver 
metabolism, thereby enhancing drug bioavailability (Illum, 2003). 
Intranasal delivery can also target brain tissue directly, allowing for 
reduced dosages to achieve therapeutic effectiveness while minimizing 
systemic side effects (Pardeshi and Belgamwar, 2013). Its non-invasive 
nature and rapid efficacy make it particularly suitable for acute seizure 
management (Grassin-Delyle et al., 2012). Moreover, the potential for 
controlled release formulations extends its utility in chronic treatment, 
improving adherence, especially in patient groups with special needs, 
such as the elderly, where oral administration or intravenous injection 
may pose challenges (Illum, 2012).

In pre-clinical investigations, nanoparticles synthesized from 
polymers such as polylactic-polyethylene glycol copolymer and 
chitosan have demonstrated substantial promise for encapsulating 
antiepileptic drugs (Musumeci et al., 2018). These nanoparticle-
based drug carriers have been notably effective in enhancing the 
transnasal cerebral delivery of drugs like carbamazepine and 
diazepam, significantly increasing their brain uptake (Sharma et al., 
2015; Musumeci et al., 2018). Additionally, the incorporation of 
oxcarbazepine into nanoemulsions facilitated its transport through 
the nasal mucosa, resulting in an extended drug release profile and 
prolonged residence time in the brain (El-Zaafarany et al., 2016). In 
animal model trials for epilepsy treatment, these nanoparticle-
encapsulated drugs exhibited superior antiepileptic efficacy 
compared to equivalent doses of the drugs in free form (Sharma 
et al., 2014; Musumeci et al., 2018). While these pre-clinical findings 
offer robust support for the utilization of nanocarriers in epilepsy 
treatment via the naso-brain route, comprehensive clinical studies 
are essential to validate their therapeutic effectiveness (Kapoor 
et  al., 2016). Overall, the deployment of polymer-based 
nanoparticles for drug delivery through the naso-brain pathway 
emerges as a highly promising approach in the management 
of epilepsy.

Despite these promising attributes, there are notable limitations 
associated with nanoparticle technology. Their susceptibility to 
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phagocytic engulfment and subsequent clearance from the circulatory 
system poses a significant hurdle (Hare et al., 2017). The intrinsic 
factors that influence drug release and targeting specificity further 
complicate their application. The necessity for brain-targeting ligands 
to enhance intracranial drug concentration introduces increased 
complexity and production costs (Saraiva et al., 2016). Moreover, the 
long-term stability of nanoparticles and potential issues of drug 
leakage warrant careful consideration (Dai et  al., 2018). Future 
research endeavors should concentrate on optimizing critical 
attributes of nanoparticles, such as their stability, targeting accuracy, 
and drug loading capacity (Hare et al., 2017). The development of a 
safe, effective nanocarrier platform, and elucidating its interaction 
with disease mechanisms, are paramount for the successful integration 
of this technology in medical applications.

5.3 Beyond conventional methods

Numerous methods currently exist for circumventing the BBB, 
while not yet directly applied to the delivery of antiepileptic drugs, 
have shown significant potential in this domain according to 
existing studies. A notable example is the application of magnetic 
resonance guided low-intensity focused ultrasound (FUS). This 
technique has been evidenced to reversibly open the BBB, thereby 
enhancing the targeted delivery of drugs for brain therapies. In this 
field, Ali et al. have reported the findings of a preliminary clinical 
trial. This trial assessed the safety, feasibility, and reversibility of 
employing FUS techniques to breach the BBB in the hippocampus 
and entorhinal cortex areas (Rezai et al., 2020). Considering that 
these regions are focal points in epilepsy treatment, the deployment 
of FUS technology for the precise delivery of high-dose 
antiepileptic drugs offers substantial promise (Wiest and 
Beisteiner, 2019).

Moreover, exosomes represent another area of potential 
breakthrough. Owing to their endogenous nature, reduced toxicity, 
enhanced resistance to macrophage clearance, and extended half-life 
in the bloodstream, they are garnering significant interest. Research 
indicates that extracellular vesicles secreted by intranasally injected 
human bone marrow mesenchymal stem cells manifest robust anti-
inflammatory properties in epileptic conditions. These exosomes are 
capable of reaching the hippocampal area within 6 h post-
administration, effectively mitigating the loss of glutamatergic and 
GABAergic neurons associated with the epileptic state, and 
consequently, substantially diminishing hippocampal inflammation 
(Long et  al., 2017). Despite the absence of studies on exosome-
mediated antiepileptic drug delivery and the limitations of exosomes 
in drug payload capacity and efficiency, their advantages in safety, 
targeting specificity, and in vivo circulation duration position 
them as promising contenders to synthetic nanoparticles in the 
realm of antiepileptic drug delivery (de la Torre et  al., 2020; Fu 
et al., 2020).

6 Conclusion and perspective

In summary, this review underscores the paramount importance of 
comprehending the dynamics of the BBB in managing epilepsy in the 

elderly. Although various innovative anti-epileptic strategies targeting the 
BBB have been discussed, their efficacy in elderly patients with epilepsy 
necessitates further exploration. With the rising prevalence of epilepsy 
in an aging population, unique pharmacological challenges emerge due 
to age-related alterations in the BBB. Future research endeavors should 
be directed towards understanding how these novel treatment strategies 
can be optimized in the context of such age-associated pathological 
changes. Given the intricacy of the BBB, advancements in targeted 
therapy and non-invasive drug delivery methods hold promise for 
enhancing treatment efficacy and, consequently, the quality of life for the 
elderly. The integration of precision medicine and emerging technologies 
in this field aims not only to ameliorate health outcomes but also to 
enrich our understanding of the aging nervous system. Adopting this 
approach will facilitate more personalized and compassionate care for 
our aging society, ultimately contributing to improved health 
management and enhanced quality of life for individuals with 
geriatric epilepsy.
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