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Background: Vascular depression (VaD) is a depressive disorder closely 
associated with cerebrovascular disease and vascular risk factors. It remains 
underestimated owing to challenging diagnostics and limited information 
regarding the pathophysiological mechanisms of VaD. The purpose of this study 
was to analyze the proteomic signatures and identify the potential biomarkers 
with diagnostic significance in VaD.

Methods: Deep profiling of the serum proteome of 35 patients with VaD 
and 36 controls was performed using liquid chromatography–tandem mass 
spectrometry (LC–MS/MS). Functional enrichment analysis of the quantified 
proteins was based on Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway, and Reactome databases. Machine learning 
algorithms were used to screen candidate proteins and develop a protein-based 
model to effectively distinguish patients with VaD.

Results: There were 29 up-regulated and 31 down-regulated proteins in the 
VaD group compared to the controls (|log2FC|  ≥  0.26, p  ≤  0.05). Enrichment 
pathways analyses showed that neurobiological processes related to synaptic 
vesicle cycle and axon guidance may be  dysregulated in VaD. Extrinsic 
component of synaptic vesicle membrane was the most enriched term in 
the cellular components (CC) terms. 19 candidate proteins were filtered 
for further modeling. A nomogram was developed with the combination of 
HECT domain E3 ubiquitin protein ligase 3 (HECTD3), Nidogen-2 (NID2), FTO 
alpha-ketoglutarate-dependent dioxygenase (FTO), Golgi membrane protein 1 
(GOLM1), and N-acetylneuraminate lyase (NPL), which could be used to predict 
VaD risk with favorable efficacy.

Conclusion: This study offers a comprehensive and integrated view of serum 
proteomics and contributes to a valuable proteomics-based diagnostic model 
for VaD.
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1 Introduction

Vascular depression (VaD) is a depressive syndrome occurring in 
individuals aged 50 years and older and is associated with 
cerebrovascular comorbidities and vascular risk factors (VRFs). It is 
characterized by the presence of deep white matter hyperintensity 
(DWMH) on T2-weighted brain magnetic resonance imaging (MRI) 
(Alexopoulos et al., 1997; Krishnan et al., 2004; Sneed et al., 2008). It 
is considered a distinct subtype of late-life depression (LLD), 
accounting for approximately 54% of LLD cases, with a prevalence of 
approximately 3.4%. It is more prevalent in middle-aged and older 
adult patients with cerebrovascular diseases (González et al., 2012; 
Park et al., 2015). Importantly, individuals with VaD often poorly 
respond to antidepressant therapy and exhibit more cognitive 
impairment (especially executive function decline) than those with 
depression without vascular risk factors (Steffens, 2019). Vascular 
depression is considered a clinical risk factor for dementia, and recent 
research shows that mild behavioral abnormalities occur earlier in 
people with dementia than in those with mild cognitive disabilities 
(Van der Mussele et al., 2013; Matsuoka et al., 2019).

Vascular depression pathogenesis is multifaceted and involves 
biological and psychological factors. Ischemic cerebrovascular 
processes significantly contribute to severe DWMH in LLD 
(Thomas et  al., 2002, 2003). The disruptions in white matter 
connectivity can result in cognitive impairments and depressive 
symptoms, supporting the “vascular depression hypothesis” (van 
Sloten et al., 2015; van Agtmaal et al., 2017; Geraets et al., 2020). In 
addition to cerebrovascular processes, the underlying mechanisms 
of VaD include neuroinflammation, oxidative stress, neurovascular 
dysfunction, and neurotransmitter imbalance (Strawbridge et al., 
2017; Jellinger, 2022).

Due to the diversity of symptoms and the complexity of the 
pathogenesis, the diagnosis of VaD is difficult with a lack of reliable 
biomarkers. Several studies have explored the biomarkers for 
depression via peripheral blood-based proteins and have mainly 
focused on five systems, involving inflammation (IL-6, CRP), 
neurotransmitter components (serotonin 1A receptor), 
neuroendocrine (cortisol), neurotrophic (brain-derived neurotrophic 
factor, BDNF) and metabolic processes (Kennis et al., 2020; Malik 
et  al., 2021). However, there is a significant disparity among the 
findings. The utilization of machine learning algorithms based on 
large proteomic data may be beneficial to address the challenges of 
biomarker heterogeneity and variability and to identify the optimal 
biomarkers in depression (Guo et al., 2022). When the low sensitivity 
and specificity of a single biomarker and the interactions between 
biomarkers are taken into account, the multiprotein panels were 
proposed to improve clinical diagnosis practice and better describe 
the complexity of disease phenotypes (Schmidt et al., 2011).

Non-targeted proteomic methods based on liquid chromatography–
tandem mass spectrometry (LC–MS/MS) are powerful tools for 
investigating potential biomarkers. In contrast to traditional data 
acquisition, data-independent acquisition (DIA) systematically and 
repeatedly separates and fragments the m/z range, enabling in-depth 
protein profiling with low sample requirements in an unbiased manner 
(Demichev et al., 2020).

This study conducted a comprehensive proteomic analysis of 
serum samples from VaD and control patients to identify the 
differential proteins and biological pathways and to develop a 

promising protein-based model with diagnostic significance for 
VaD using machine learning methods.

2 Materials and methods

2.1 Participants

We used a convenience sample of 71 right-handed participants 
aged 55–75 years, including 35 patients with VaD and 36 
non-depressive individuals (controls). The participants were part of 
an ongoing cohort study conducted in the Department of Neurology, 
Zhongnan Hospital of Wuhan University. Two trained clinicians 
performed the diagnosis of VaD by referring to criteria from the 
consensus report (Aizenstein et al., 2016), including (1) having any 
depressive disorder type as defined in the Diagnostic and Statistical 
Manual of Mental Disorders, fifth edition (DSM-V); (2) having the 
cerebrovascular disease; (3) with at least one of the VRFs (including 
smoking, hypertension, diabetes mellitus [DM], cardiovascular 
disease, and hyperlipidemia); and (4) with no suspicious depressive 
episodes preceding obvious cerebrovascular disease. The criteria for 
inclusion in the VaD group were: (1) meeting the diagnosis standard 
of VaD; (2) presence of severe DWMH in MRI, which was defined as 
Fazekas score ≥ 2; (3) depressive behavioral symptoms lasting over 
2 weeks; (4) not using antidepressants or antipsychotics for at least 
3 months; and (5) with Mini-Mental State Exam (MMSE, Beijing 
version) scores ≥17 for illiteracy, ≥ 20 for individuals with 1–6 years 
of education, and ≥ 24 for individuals with 7 or more years of 
education. The criteria for inclusion in the control group were: no 
history of major depressive disorder (MDD) or any other mental 
disorders; and no mild cognitive impairment (Li et al., 2016).

The exclusion criteria were as follows: (1) WMH owing to 
non-vascular dysfunction; (2) stroke history in 6 months; (3) recent 
life events; (4) a severe physical disability; (5) comorbid 
neurodegenerative diseases (such as Parkinson’s disease or Alzheimer’s 
disease) or other acute, severe, or unstable medical conditions; and (6) 
hearing and comprehension dysfunction and inability to cooperate 
with neuropsychological assessments.

This study was approved by the institutional ethics committee of 
Zhongnan Hospital, Wuhan University (2,020,124/2023133 K). For all 
participants, written informed consent was obtained. The Declaration 
of Helsinki was followed in the conduct of the study.

2.2 Clinical and neuropsychological 
assessments

We collected data on clinical and demographic characteristics, 
including age, sex, education, BMI, and VRFs. Medical records 
established the presence of VRFs, which were either diagnosed by 
a physician or self-reported. An experienced psychologist 
performed the neuropsychological assessments of all participants. 
The Hamilton Depression Scale 17-items (HAMD-17) and 
Hamilton Anxiety Scale 14-items (HAMA-14) were used to 
evaluate depressive and anxiety symptoms, respectively 
(Goldberger et al., 2011). MMSE was applied to assess cognitive 
function and dementia screening (Li et al., 2016). The Trail Making 
Test consisted of two parts evaluated separately (A and B). Part A 
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evaluated psychomotor speed, and Part B assessed visual and 
spatial working memory and cognitive flexibility (Wei et al., 2018).

2.3 Magnetic resonance imaging evaluation

Magnetic resonance images were obtained with a 3.0 T MR 
scanner (Siemens Healthcare, Erlangen, Germany). The FLAIR 
sequence parameters were as follows: repetition time (TR) = 6,000 ms, 
echo time (TE) = 388 ms; echo train length = 848, bandwidth = 781 Hz/
pixel; voxel size, 1 × 1 × 1 mm; field of view, 256 × 256 mm; and 176 
sagittal slices. The WMHs were evaluated using the visual rating scale 
(Fazekas et al., 1988). Periventral hyperintensities (PVH) and DWMH 
were rated separately by two radiologists.

2.4 Proteomic analysis

2.4.1 Sample preparation
The samples were enriched using superparamagnetic iron oxide 

nanoparticles. Twenty μl of the sample was diluted with loading buffer 
(10 mM Tris-Cl, 1 mM EDTA, 150 mM KCl, 0.05% CHAPS) and 
mixed with 1 mg of magnetic beads. The mixture was incubated at 
37°C for 1 h. The beads were washed twice with loading buffer and 
then once with CHAPS-free buffer (10 mM Tris-Cl, 1 mM EDTA, 
150 mM KCl). The magnetic beads were collected on a magnetic rack 
and the supernatant was discarded to obtain the protein-rich magnetic 
beads. The sample was then added with lysis buffer (1% SDC/100 mM 
Tris–HCl, pH = 8.5/10 mM TCEP/40 mM CAA) and incubated at 
60°C for 30 min for protein reduction and alkylation. An equal volume 
of ddH2O was added to dilute the SDC to a concentration below 0.5%, 
and 1 μg of trypsin was added. The mixture was incubated overnight 
at 37°C for enzymatic digestion. The next day, the pH was lowered to 
6.0 with TFA to complete the digestion. After centrifugation, the 
supernatant was subjected to peptide purification using a home-made 
SDB-RPS desalting column. The peptide eluate was vacuum dried and 
stored at −20°C for later use.

2.4.2 LC–MS/MS analysis
All samples were analyzed on timsTOF Pro (Bruker Daltonics). 

An UltiMate 3,000 RSLCnano system (Thermo) was coupled to 
timsTOF Pro with a CaptiveSpray nano ion source (Bruker Daltonics). 
Peptides were injected into a C18 Trap column with dimensions of 
75 μm by 2 cm, consisting of particles that were 3 μm in size and 100 Å 
pore size from Thermo. They were subsequently separated in a 
reversed-phase C18 analytical column that measured 75 μm by 25 cm, 
comprising particles that were 1.6 μm in size and 100 Å pore size from 
IonOpticks. Mobile phase A (0.1% formic acid in water) and mobile 
phase B (0.1% formic acid in ACN) were utilised to establish a 
separation gradient lasting 60 min. This gradient began with a mixture 
of 6 to 11% B within 5 min, followed by a gradual increase to 25% B 
within 35 min, leading to a further rise to 50% B in 15 min, then 
ending with a 3-min wash at 90% B and a 2-min re-equilibration at 
6% B. Meanwhile, a flow rate of 300 nL/min was maintained. The MS 
was operated in diaPASEF mode (Meier et al., 2020). The capillary 
voltage was set to 1,400 V, and the MS and MS/MS spectra were 
obtained from 100 to 1700 m/z. The ion mobility was scanned from 
0.6 to 1.6 Vs/cm2. The accumulation and ramp times were 100 ms. The 

timsControl software (Bruker Daltonics) was used to define the 
diaPASEF acquisition scheme based on the m/z-ion mobility plane. 
The collision energy was linearly ramped with mobility, from 59 eV at 
1/K0 = 1.6 Vs/cm2 to 20 eV at 1/K0 = 0.6 Vs/cm2.

2.4.3 Proteomics preprocessing
The library-free mode of DIA-NN (V1.8.1) was used to analyze 

DIA raw data (Demichev et al., 2020). Spectra files were searched 
against the sequence database downloaded from UniProt (The 
UniProt Consortium, 2023). Search parameters were set to default 
with the following modifications: Precursor ion generation options 
were enabled for in silico-predicted spectral library generation; 
Trypsin/P with a maximum of two missed cleavages was used; 
Carbamidomethyl on C was applied as a fixed modification; Oxidation 
on M and N-terminal acetylation were used as variable modifications 
for proteins. Mass and MS1 accuracy were adjusted to 15 ppm, MBR 
was enabled, and Heuristic protein inference was used. For reliable 
identifications, Precursor FDR was set at 1%. MaxLFQ algorithm was 
used to normalize protein intensities (Cox et al., 2014).

2.4.4 Biological analysis
Statistical significance was assessed by unpaired t-test to identify 

the differentially expressed proteins (DEPs). Proteins with p < 0.05, 
fold change (FC) > 1.2, or < 1/1.2 were considered significantly 
changed. Functional enrichment analysis of quantified proteins was 
based on Gene Ontology (GO),1 Kyoto Encyclopedia of Genes and 
Genomes (KEGG),2 and Reactome database3 (Gillespie et al., 2022). 
CytoScape software and the “CytoHubba” plug-in were used to 
establish a protein–protein interaction (PPI) network of DEPs based 
on the STRING database (Shannon et al., 2003).

2.5 Statistical analysis

Depending on the distribution of the data, the differences between 
the two groups were compared by the following tests: two-sample 
t-test, χ2 test, or Mann–Whitney U test. Partial correlation analysis 
was performed after controlling for age, sex, education, BMI, smoking, 
hypertension, DM, cardiovascular disease, hyperlipidemia, PVH, and 
DWMH. The extreme gradient boosting (XGBoost) method and the 
least absolute shrinkage and selection operator (LASSO) regression 
were used to screen protein features. Proteins were sorted by 
importance score (gain percent). The protein features with gain 
percentages greater than zero were included for subsequent analysis. 
Following 10-fold cross-validation, the parameters for LASSO 
regression analysis with the smallest model fitting error were utilized 
to further filter the variables. Logistic regression (LR), a widely used 
machine learning algorithm, was performed for model training and 
parameter optimization. For modeling data processing, it was 
proposed that 75% of the data was used as a training set and 25% of 
the data as a testing set. The best model with diagnostic accuracy was 
found by calculating the area under the curve (AUC) using receiver 
operating characteristic (ROC) curves (de Hond et al., 2022). The 

1 www.geneontology.org

2 http://www.genome.jp/kegg/

3 https://reactome.org
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calibration curve was used to evaluate the clinical prediction model, 
and the clinical effect of the model was assessed by clinical decision 
curve analysis. A nomogram was further conducted to predict the risk 
of VaD (Alba et al., 2017). Statistical analyses and model formulation 
were performed using R software (version 4.2.0) or Python 
(version 3.10).

3 Results

3.1 Clinical characteristics

We included 36 controls (26 male and 10 female participants) and 
35 patients with VaD (20 male and 15 female participants). 
Significantly higher degrees of severity of PVH and DWMH were 
observed in the VaD group (p < 0.05), and no significant differences 
were found in age, sex, BMI, education, and VRFs (except 
hypertension) between the two groups (Table 1).

Neuropsychological assessment revealed significantly higher 
HAMD-17 and HAMA-14 scores in the VaD group than in the 
controls (p < 0.01) (Table 2). Significant cognitive impairment was 
observed in the VaD group (p < 0.01, MMSE; p = 0.023; TMT-B score, 
p = 0.036) (Table 2).

3.2 Protein identification by 
whole-proteome analysis

We analyzed 71 samples from the entire cohort using DIA and 
quantified 2,351 proteins and 23,769 peptides (Figures 1A,B). An 
overview of the dataset quality is presented in Supplementary Figure S1. 
Serum proteomic analysis revealed 60 significantly altered proteins in 
patients with VaD, of which 29 were significantly up-regulated, and 31 
were significantly downregulated compared to the controls 
(Figures 1C,D). All samples’ principal component analysis (PCA) 
showed that VaD and controls could be differentiated effectively with 
the 60 DEPs (Figure 1E). The whole-proteome expression analysis is 
shown in Supplementary Figure S2.

3.3 Functional enrichment and PPI network 
analysis of DEPs

GO enrichment analysis showed that the 60 DEPs were associated 
with 14 distinct biological processes (BP) and 8 molecular functions 
(MF). The most enriched terms of cellular components (CC) were 
related to extrinsic component of synaptic vesicle membrane and 
perisynaptic extracellular matrix (Figure 2A). KEGG analyses revealed 
that the enriched pathways included the synaptic vesicle cycle, 
extracellular matrix (ECM)-receptor interaction, and focal adhesion 
(Figure 2B). The top 10 enriched Reactome pathways were presented, 
involving vesicle-mediated transport, nervous system development, 
and axon guidance (Figure 2C).

The PPI network of DEPs was constructed using the STRING 
database (Figure 3A). The top nine proteins in the four algorithms 
(DEGREE, DMNC, MCC, and MNC) were calculated and exported 
as hub proteins (Figures  3B–E). Moreover, eukaryotic translation 
initiation factor 2 subunit 1(IF2A), collagen alpha-1(VI) chain 

(COL6A1), collagen alpha-1(V) chain (COL5A1), thrombospondin-2 
(THBS2), ribosomal protein L29 (RPL29), ribosomal protein S13 
(RPS13), ribosomal protein S25 (RPS25), ribosomal protein S25 
(RPS17), and Nidogen-2 (NID2) were identified as hub proteins 
(Figure 3F).

3.4 Selection and development of the 
model

Based on a previously described computational pipeline, 
we selected the important proteomic variables as Figure 4A (Shu 
et  al., 2020). 34 proteins were selected from the DEPs for 
subsequent analysis based on their intersection with the depression 
proteomic database (MENDA)4 (see Supplementary Table S1 for 

4 http://menda.cqmu.edu.cn

TABLE 1 Demographic and clinical characteristics of participants.

VaD n =  35 Controls n =  36 p value

Female (%)b 15 (42.86) 10 (27.8) 0.184

Age (years)c 64.1 (7.1) 62.1 (5.1) 0.262

Education (years)c 10.8 (3.6) 11.6 (3.1) 0.356

BMIa 24.46 (3.21) 23.45 (2.71) 0.155

Number of VRFsa 1.8 (0.9) 1.9 (1.0) 0.790

Smoking (%)b 10 (28.57) 15 (41.67) 0.248

DM (%)b 11 (31.42) 12 (33.34) 0.864

Hypertension (%)b 30 (85.71) 20 (55.56) 0.005*

Hyperlipidemia 

(%)b

11 (31.42) 17 (47.22) 0.173

CVD (%)b 2 (5.71) 4 (11.12) 0.414

DWMHc 2.6 (0.4) 1.6 (0.8) 0.000*

PVHc 2.3 (0.8) 1.9(0.9) 0.041*

VaD, vascular depression; BMI, body mass index; CVD, cardiovascular disease; PVH, periventricular 
white matter hypertension; DWMH, deep white matter hypertension. Data are presented as  
the mean (standard deviation [SD]) or number of participants in each group (% of total).  
*p < 0.05.
aIndependent-samples t test.
bChi-squared test.
cMann-Whitney U test.

TABLE 2 Neuropsychological assessment of participant.

VaD n =  35 Controls n =  36 p value

HAMD-17c 15.6 (5.25) 3.2 (2.25) 0.000*

HAMA-14c 10.1 (4.98) 3.7 (2.55) 0.001*

TMT-A (s)c 59.21 (25.84) 83.63 (43.81) 0.023*

TMT-B (s)c 106.11 (74.48) 140.91 (85.11) 0.036*

MMSEc 25.1 (2.41) 26.5 (2.04) 0.011*

HAMD-17, hamilton depression scale 17-item; HAMA-14, hamilton anxiety scale 14-item; 
MMSE, mini-mental state examination; TMT-A/B, trail making test A/B. Data are presented 
as the mean (standard deviation [SD]) *p < 0.05. cMann-Whitney U test.
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FIGURE 1

Analysis of whole proteomics data. (A,B) Quantification of the quantity distribution of proteins and peptides. (C) Volcano plot of all identified proteins 
(|log2FC|  ≥  0.26，p  ≤  0.05) (up-graded shown in red and down-graded shown in blue). (D) Heatmap showing 60 significantly different proteins in VaD 
and control groups. (E) PCA plots. Each point represents an individual protein. VaD: vascular depression.
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FIGURE 2

Pathway enriched analyses and PPI network of DEPs. (A) GO-based enrichment analysis of DEPs (two-sided hypergeometric test, p ≤ 0.05), GO terms 
were sorted by p-value, and the top 5 terms of each category were displayed. (B) KEGG-based enrichment analysis of DEPs (two-sided 
hypergeometric test, p  ≤  0.05), KEGG terms were sorted by p-value, and the top 5 terms were displayed. (C) Reactome-based enrichment analysis of 
DEPs (p-adj  <  0.05). The different biological levels sorted Reactome terms, and the top 5 terms of each level were displayed.
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detailed information). The importance matrix plot for the XGBoost 
method revealed the top 25 variables contributing to the prediction 
in the training cohort (Figure  4B). LASSO regression analysis 
further filtered the protein features that were considered candidate 
biomarkers for predicting VaD (Figures 4C,D). Consequently, 19 
candidate proteins were selected for model development. Using 
five-fold cross-validation, and following the principle of a random 
combination of less than or equal to 5 proteins, we identified the 
combination with the optimal AUC value, including HECT 
domain E3 ubiquitin protein ligase 3 (HECTD3), NID2, FTO 
alpha-ketoglutarate-dependent dioxygenase (FTO), Golgi 
membrane protein 1 (GOLM1), and N-acetylneuraminate 
lyase (NPL).

3.5 Model evaluation

The diagnostic model with satisfactory discrimination was 
constructed. The AUC [95% confidence interval (CI)] for the training 
and testing cohorts were 0.9046 (0.8257–0.9834) and 0.8643 (0.688–1), 
respectively (Figure  5A). A calibration curve was constructed to 

evaluate the reliability of the machine learning strategy, which showed 
good performance compared with the ideal model (Figure 5B). In 
addition, the model showed promising clinical performance according 
to decision curve analysis (DCA) (Figure 5C). The confusion matrix 
showed excellent efficacy in differentiating between groups with an 
accuracy of 78.9% (56/71) (Figure 5D). This model had a sensitivity 
of 85.7% (30/35) and a specificity of 72.2% (26/36). The positive 
prediction values were 75.0% (30/40) and the negative were 83.9% 
(26/31). The nomogram visualized the risk prediction model based on 
the serum relative expression levels of the 5 identified proteins 
(Figure 5E).

Based on this algorithm, ROC curves for the 5 individual proteins 
were plotted and showed less favorable diagnostic performance than 
the biomarkers combination (Figure  6A). Multivariable logistic 
regression showed that the high relative expression level of NID2, 
GOLM1, and NPL, and the low expression level of HECTD3, and FTO 
were associated with a high risk of VaD (see Supplementary material). 
After controlling the confounding factors, the level of HECTD3 and 
FTO demonstrated moderate correlations with HAMD-17 scores 
(Figures  6B,C). No significant correlation was found between the 
other three proteins and the severity of depressive symptoms.

FIGURE 3

PPI network analysis of DEPs. (A) Network graph depicting the correlation of proteins derived from DEPs. (B–E) The hub proteins were calculated 
under (B) DEGREE, (C) MNC, (D) DMNC, and (E) MCC. (F) The Venn diagram is based on cross-analysis under four algorithms (DEGREE, DMNC, MCC, 
and MNC). Circles indicated the gene symbol of protein, in which red and blue indicated up-regulated and down-regulated proteins, respectively. The 
thickness of the lines represented the strength of the interaction. The darkness of the colors represented the magnitude of the discrepancy.
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4 Discussion

Depression is one of the most important public health issues in 
the older adult population. Approximately 14% of individuals aged 
over 55 years exhibit depressive syndrome, with only 2% having MDD 
(Kok and Reynolds, 2017). It is important to identify biomarkers that 
can monitor and predict the development of this disease and 
understand its pathogenesis. Our study presents the first 
comprehensive serum proteomic analysis of VaD and developed a 
proteomics-based diagnostic model with machine learning, including 
HECTD3, NID2, FTO, GOLM1, and NPL.

Current research on protein markers of VaD is limited. The anti-aging 
gene Sirtuin 1 (SIRT1) was confirmed to be a depression and stroke-
related gene (Martins, 2016; Li et al., 2022). Sirtuin 1 is a critical nuclear 
deacetylase that participates in regulating the transcription of various 
transcription factors and cellular signal transduction proteins, involving 
inflammation, neurogenesis, glucose/cholesterol metabolism, and 
amyloidosis (Lu et al., 2018; Man et al., 2019; Ministrini et al., 2021). 
Sirtuin 1 plays a crucial role in the development of vascular and 
cerebrovascular diseases. Previous studies have implicated the 
hippocampal SIRT1 pathway in chronic stress-induced depression-related 

phenotypes and abnormal dendritic atrophy (Abe-Higuchi et al., 2016). 
Notably, it has been reported that Sirtuin 1 exerted the degradation of 
FTO, which was significantly decreased in VaD and negatively associated 
with depressive symptoms in our study (Liu et al., 2020). The potential of 
Sirtuin 1 as a marker for VaD deserves validation in more research.

Interestingly, the function of the proteins contained in the 
biomarkers panel and the signaling pathways involved have been 
implicated in multiple mechanisms of VaD.

FTO is a demethylase of N6-methyladenosine (m6A) enriched in 
brain neurons, playing an important role in the mechanism of 
depression (Jia et al., 2011; Mitsuhashi and Nagy, 2023). Its expression 
level and demethylase activity are severely affected after ischemic 
injury (Jia et  al., 2011; Xu H. et  al., 2020). It’s reported that the 
downregulation of FTO in the anterior cingulate cortex (ACC) by 
modulating matrix metalloproteinase-9 (MMP-9) mRNA methylation 
participates in anxiety- and depression-like behaviors in neuropathic 
pain (Wang et al., 2022). In addition, a recent study has confirmed the 
neuroprotective effects of FTO in acute ischaemic injury, regulating 
white and grey matter damage and ameliorating cognitive decline and 
depressive-like behavior after stroke (Chokkalla et al., 2023). FTO is 
suggested to be  a novel molecule mediating neurotransmitter 

FIGURE 4

The screening of candidate proteins for VaD was identified by machine learning. (A) Flow chart of the screening of the candidate proteins. (B) Feature 
importance map of proteins. The top 25 candidate proteins were selected by feature importance in XGBoosting analysis. (C) LASSO coefficient profiles 
of 25 proteins. (D) The relational graph between fitting error and log (λ). Dotted vertical lines were drawn at the optimal values using the minimum 
criteria (min criteria) and the 1 standard error of the minimum criteria (1se criteria). λ value was chosen when the fitting error was minimal.
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transmission, neuroplasticity, neurogenesis, and memory formation 
(Li et al., 2017; Yu et al., 2018). Previous studies have shown that FTO 
contributes to the BDNF processing, and up-regulates the BDNF–
TrkB pathway in the hippocampus through m6A modification 
(Spychala and Rüther, 2019; Xu K. et al., 2020; Chang et al., 2023). It 
is believed that the pathophysiology of MDD is specifically associated 
with a decrease in hippocampal BDNF activity and function. 
Numerous studies as well as the meta-analysis show that depressed 

populations have lower serum and plasma levels of BDNF, which was 
considered a promising biomarker for depression (Molendijk et al., 
2014; Nedic Erjavec et al., 2021). Polymorphisms of the FTO gene 
have been linked to depression and metabolic syndromes (Liguori 
et  al., 2014; Rivera et  al., 2017; Zarza-Rebollo et  al., 2021). Our 
findings reinforce previous evidence and suggest that abnormal 
expression of the FTO protein and related pathways also play an 
important role in susceptibility to VaD.

FIGURE 5

Logistic regression model evaluation. (A) The receiver operating characteristic curve (ROC). (B) The calibration curve and (C) DCA showed the model 
had a promising clinical performance. (D) Confusion matrix. (E) The nomogram with the relative expression level of HECTD3, NID2, FTO, GOLM1, and 
NPL for predicting the risk of VaD.
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Proteomic studies have identified altered expression of 
inflammatory proteins in individuals with LLD, particularly 
emphasizing the dysregulation of inflammation and immune 
responses (Diniz et al., 2016; Silva-Costa et al., 2022). It is evidenced 
by the vulnerable but significant correlation between the onset and 
development of depression and elevated levels of inflammatory 
markers such as CRP, TNF-α, IL-6, and IL-1 (Hacimusalar and Eşel, 
2017). It has been documented that HECTD3 participates in protein 
ubiquitination and modifies a range of substrate proteins, is exposed 
to multiple regulatory mechanisms, and is essential for cellular 
functions like immune response, neuroinflammation, and apoptosis 
(Cho et  al., 2019; Jiang et  al., 2020). HECTD3 promotes NLRP3 
inflammasome and pyroptosis, thereby exacerbating diabetes-related 
cognitive impairment by stabilizing MALT1 and regulating the JNK 
pathway (Ruan et al., 2022). Also, HECTD3 inhibits Stat1 to reduce 
the secretion of pro-inflammatory factors (Rangrez et  al., 2020). 
However, the mechanisms of HECTD3 mediating the inflammation 
in VaD remain unclear. In addition, GOLM1 is considered involved 
in immunoregulation and inflammation (Pu et al., 2021). No studies 
have yet discovered its underlying association with depression. 
However, it was reported that genetic variation in GOLM1 is 
associated with reduced gray matter volume in the left frontal gyrus 
in Alzheimer’s disease (AD) (Inkster et al., 2012). Diffusion tensor 
imaging studies revealed microstructural damage to white matter 

tracts connecting the prefrontal cortex in geriatric depression, which 
was related to executive dysfunction (He et al., 2021).

NID2, identified as a hub protein in the PPI network analysis, is a 
basement membrane glycoprotein. It participated in cell-extracellular 
matrix interactions, essential for preserving the contractile 
characteristics of smooth muscle cells in blood vessels and regulating 
vascular homeostasis (Mao et al., 2021). Because of the links between 
risk factors for endothelial damage (i.e., hyperglycemia, hypertension, 
metabolic disorders) and depression, endothelial dysfunction may 
increase the vulnerability to VaD (Virtanen et al., 2017). NPL is a 
metabolic protein, involved in the N-glycolylneuraminic acid 
(Neu5Gc) degradation pathway (Da Silva et al., 2023). Overexpression 
of Neu5Gc in the brain resulted in abnormal axon myelination and 
impaired memory (Naito-Matsui et al., 2017). Overall, the alterations 
of protein levels in peripheral blood could reflect the pathological 
damage and be a potential diagnostic indicator for VaD.

Based on the bioinformatics analysis, we  confirmed previous 
findings that depression in older adults involves multiple biological 
processes related to vesicle-mediated transport, DNA modification, 
oxidative demethylation, and metabolism. Moreover, our study 
revealed that the synaptic vesicle cycle was dysregulated in VaD. In 
presynaptic terminal biology, the synaptic vesicle cycle plays a pivotal 
role in mediating a series of events that allow chemical 
neurotransmission between functionally linked neurons, which have 

FIGURE 6

The clinical values of the 5 proteins. (A) The ROC curves of HECTD3, FTO, GOLM1, NPL, and NID2, compared to the combination. (B,C) The results of 
correlation analysis of HECTD3 and FTO with HAMD-17 score.
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been connected to several different neuropsychiatric conditions, such 
as bipolar disorder, depression, and dementia (Sudhof, 2004; Si et al., 
2018; Wu et al., 2022; Tang et al., 2023). Chronically reduced cerebral 
blood flow induces ischemia and hypoxia, affecting the function of 
neurons and synapses and increasing vulnerability to stress and 
depression (Nobler et al., 1999; Yan et al., 2020; van Aalst et al., 2021). 
Our results indicate that abnormalities in the synaptic vesicle cycle 
and abnormal modulation of peri- and post-synaptic adhesion 
molecules are related to decreased synaptic plasticity, demonstrating 
that this could be a mechanism underlying VaD.

4.1 Limitations

The limitations of the study should be taken into account. Firstly, 
there was the probability of type I statistical error, and the results have 
yet to be independently replicated. The identified biomarkers panel 
needs verification and validation in external cohorts. In addition, mass 
spectrometry-based proteomics is inherently characterized by the 
specificity of detection and quantification, but relatively lower 
sensitivity in detecting lower abundance proteins, compared to ELISA 
and Western Blot, which can amplify the signal in a cascade (Bader 
et al., 2023). Also, many parameters characterize VaD, and we could 
not assess the impact of clinical factors (hypertension, WMH) on 
proteomic changes in VaD. Hypertension is associated with more 
severe white matter damage, leading to the susceptibility to VaD. It 
requires further subgroup analyses in larger samples to assess the role 
of these confounding factors in VaD. Nevertheless, the main strengths 
of our study are the development of the proteomics-based model with 
favorable effectiveness and the relatively large antidepressant-free 
sample source. The findings of participants with mild to moderate 
depressive symptoms are beneficial in the early diagnosis of VaD and 
deserve more research in MDD patients.

5 Conclusion

In conclusion, this study provides an indispensable proteomics 
resource to gain a better understanding of VaD, unravel its underlying 
pathogenesis, and identify a promising panel of biomarkers with the 
proteomics-based model in early screening for VaD. We speculate that 
some significantly altered proteins and related pathways identified in 
this work may be potential therapeutic targets for VaD.
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