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Objective: Early identification of cognitive impairment in older adults could 
reduce the burden of age-related disabilities. Gait parameters are associated 
with and predictive of cognitive decline. Although a variety of sensors and 
machine learning analysis methods have been used in cognitive studies, a deep 
optimized machine vision-based method for analyzing gait to identify cognitive 
decline is needed.

Methods: This study used a walking footage dataset of 158 adults named 
West China Hospital Elderly Gait, which was labelled by performance on the 
Short Portable Mental Status Questionnaire. We proposed a novel recognition 
network, Deep Optimized GaitPart (DO-GaitPart), based on silhouette and 
skeleton gait images. Three improvements were applied: short-term temporal 
template generator (STTG) in the template generation stage to decrease 
computational cost and minimize loss of temporal information; depth-wise 
spatial feature extractor (DSFE) to extract both global and local fine-grained 
spatial features from gait images; and multi-scale temporal aggregation (MTA), 
a temporal modeling method based on attention mechanism, to improve the 
distinguishability of gait patterns.

Results: An ablation test showed that each component of DO-GaitPart was 
essential. DO-GaitPart excels in backpack walking scene on CASIA-B dataset, 
outperforming comparison methods, which were GaitSet, GaitPart, MT3D, 
3D Local, TransGait, CSTL, GLN, GaitGL and SMPLGait on Gait3D dataset. The 
proposed machine vision gait feature identification method achieved a receiver 
operating characteristic/area under the curve (ROCAUC) of 0.876 (0.852–0.900) 
on the cognitive state classification task.

Conclusion: The proposed method performed well identifying cognitive decline 
from the gait video datasets, making it a prospective prototype tool in cognitive 
assessment.
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1 Introduction

Cognitive impairment, characterized by altered performance in 
specific cognitive tasks such as orientation, attention, comprehension, 
memory, reasoning, problem-solving, organizational skills, processing 
speed, perseverance, and motivation (Allain et al., 2007), can affect 
multiple domains of cognition simultaneously or consecutively, either 
gradually or abruptly. Cognitive impairment and dementia are the 
primary causes of disability in older adults, and promoting healthy 
brain aging is considered a critical element in reducing the burden of 
age-related disabilities (Lisko et al., 2021). It is estimated that 40% of 
dementia might be prevented or delayed by modifying its risk factors, 
improving activities of daily living (Livingston et al., 2020; Yun and Ryu, 
2022). Routine, non-cognitive evaluations alone are insufficient for 
physicians to accurately predict patients’ cognitive function. Therefore, 
cognitive assessment facilitates the diagnosis and potential intervention 
of disorders that impair thinking (Woodford and George, 2007).

The association between motor function and cognition can 
be  understood, in part, in the context of the evolution of human 
bipedalism (Leisman et al., 2016). Bipedalism served as a significant 
basis for the evolution of the human neocortex as it is among the most 
complex and sophisticated of all movements. Gait pattern is no longer 
regarded as a purely motor task but is considered a complex set of 
sensorimotor behaviors that are heavily affected by cognitive and 
affective aspects (Horst et al., 2019). This may partially explain the 
sensitivity of gait to subtle neuronal dysfunction, and why gait and 
postural control is associated with global cognitive function in very 
old people, and can predict the development of disease such as 
diabetes, dementia, or Parkinson’s disease years before they are 
diagnosed clinically (Ohlin et al., 2020).

Previous studies reported that slower walking speeds and a greater 
decline in speed over time are correlated with a greater risk of 
developing dementia independent of changes in cognition, supporting 
the role of gait speed as a possible subclinical marker of cognitive 
impairment (Hackett et al., 2018). Furthermore, spatial, temporal, and 
spatiotemporal measures of gait and greater variability of gait 
parameters are associated with and predictive of both global and 
domain-specific cognitive decline (Savica et al., 2017).

A variety of sensors and machine learning analysis methods 
have been used in cognitive studies. Chen et  al. (2020), for 
example, used a portable gait analysis system and collected gait 
parameters that were used in a machine learning classification 
model based on support vector machine and principal component 
analysis. Zhou et al. (2022) collected 23 dynamic gait variables 

using three-dimensional (3D) accelerometer data and used 
random forest and artificial neural network to classify 
cognitive impairment.

The purpose of this study was to develop a machine vision-based 
gait identification method for geriatric diseases without using contact 
sensors or indexes, and to explore its potential as a cognitive 
impairment screening tool that is convenient, objective, rapid, and 
non-contact. To this end, a series of hyperparameters in machine 
vision networks for gait feature extraction and identification were 
deeply optimized to produce a method called Deep Optimized 
GaitPart (DO-GaitPart), and the optimized components and 
DO-GaitPart were evaluated. The performance for dementia and mild 
cognitive impairment (MCI) evaluation was evaluated by receiver 
operating characteristic/area under the curve (ROCAUC). These 
methods may be suitable for community screening and generalize to 
any gait-related approach to disease identification.

2 Methods

2.1 Participants

The current research was a cross-sectional designed analysis that 
included collecting part of baseline data in the West China Health and 
Aging Trend study, an observational study designed to evaluate factors 
associated with healthy aging among community-dwelling adults aged 
50 years and older in western China. In 2019, we included a subset of 
158 participants in Sichuan province. All participants (or their proxy 
respondents) were recruited by convenience and provided written 
informed consent to the researchers, and our institutional ethics 
review boards approved the study. All researchers followed the local 
law and protocol to protect the rights of privacy and likeness and other 
interests of participants in this study.

2.2 Definition of cognitive impairment

The Short Portable Mental Status Questionnaire (SPMSQ), a 
widely employed cognitive assessment tool that encompasses location, 
character orientation, and calculation, was applied. The established 
cutoff point for differentiating between healthy participants and those 
with mild to more severe cognitive impairment was set at a level of 
exceeding 3 errors in 10 questions (Pfeiffer, 1975).

2.3 Recording of walking video

The set of recordings was similar to that used in our previous 
research (Liu et al., 2021). Gait videos were shot in spacious, warm, 
level, well-lit indoor environments. A complete recording of each 
participant included six 4 m walking sequences, with three 
synchronized video segments shot using three different cameras 
(F = 4 mm, DS-IPC-B12V2-I, Hikvison, Zhejiang, China) for each 
sequence. The height from ground to cameras was approximately 
1.3 m, and their angles were adjusted to ensure that the participant’s 
whole body could be  filmed for the entire gait process between 
benchmarks. Data were stored by the recorder (DS-7816N-R2/8P, 
Hikvison, Zhejiang, China) in MP4 format at 1080p resolution.

Abbreviations: BiLSTM, Bi-directional long short-term memory; Conv2d, 

Two-dimensional convolutional network; HP, Horizontal pooling; DO-GaitPart, 

Deep Optimized GaitPart; DSFE, Depth-wise spatial feature extractor; DS-Conv2d, 

Depth-wise spatial two-dimensional convolutional network; DW-Conv2d, Depth-

wise two-dimensional convolutional network; DW-D-Conv2d, Depth-wise dilated 

two-dimensional convolutional network; FConv, Focal convolutional network; 

GEI, Fait energy image; HP, Horizontal pooling; LSTM, Long short-term memory; 

LeakyReLU, Leaky rectified linear unit; MCI, Mild cognitive impairment; MTA, 

Multi-scale temporal aggregation; MTM, Multi-scale temporal module; ROCAUC, 

Receiver operating characteristic/area under the curve; SPMSQ, Short Portable 

Mental Status Questionnaire; STTG, Short-term temporal template generator; 

WCHEG, West China Hospital Elderly Gait;.
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2.4 Pretreatment of recording footage and 
data set

Then video files of each walking sequence were converted into 
static image frames (Figure  1A). The raw silhouette of walking 
participants was obtained through the RobustVideoMatting method 
(Figure  1B) (Lin et  al., 2022). The FindContours function of the 
OpenCV library in Python was used to segment the minimum 
external rectangle of the maximum silhouette for the more refined 
silhouettes, after the participant image was centralized and normalized 
to 256 × 256, the gait silhouette sequence was generated (Figure 1C). 
The measure for spatial information extraction of skeleton points from 
the gait silhouette sequence was HRNet (Figure 1D) (Sun et al., 2019). 
Our dataset, named West China Hospital Elderly Gait (WCHEG), was 
used to validate the model along with two open gait video databases: 
CASIA-B and Gait3D. CASIA-B (Yu et al., 2006), includes data from 
124 participants, with 6 normal walking sequences, 2 long clothing 
sequences, and 2 backpacking sequences per participant. Gait3D (Zhu 
et al., 2021) includes a large-scale outdoor dataset of 5,000 participants, 
with 1,090 total hours of gait video. The WCHEG dataset was used to 
test the effectiveness of the model in recognizing cognitive 
impairment. Each dataset uses gait skeleton images and silhouette 
images as model inputs, both of which have a size of 128 × 128.

2.5 Machine vision approach and analysis

Our gait dataset WCHEG included more than 400,000 frames of 
raw static images and corresponding silhouette and skeleton gait 

images. The main purpose of our optimized design was to balance 
computational power consumption and accuracy of the model 
classification. A temporal part-based module, GaitPart (Fan et al., 
2020), which was designed based on the idea that the local short-range 
spatiotemporal features (micro-motion patterns) are the most 
discriminative characteristics for human gait, was applied as the 
original analysis work frame in the current study. To better adapt this 
method to the mission of cognitive impairment assessment, three 
novel components were designed in our analysis pipeline to achieve 
the proposed DO-GaitPart (Figure 2): short-term temporal template 
generator (STTG), depth-wise spatial feature extractor (DSFE), and 
multi-scale temporal aggregation (MTA).

2.6 STTG

To ensure that the input gait sequence contains a complete gait 
cycle with less computational cost and minimal loss of temporal 
information, we  designed an STTG. We  grouped the input dual-
channel gait sequence Xin into M per frame and created a short-term 
temporal template using systematic random sampling. Most of the 
previous work (Fan et al., 2020; Huang X. et al., 2021; Kaur et al., 2023) 
directly input gait sequences into the network frame by frame, with 
each input gait sequence including at least one gait cycle, which meant 
that the sequence mean size was usually 30 frames, equivalent to more 
than 1 s. Because part of our participant data has the feature of 
cognitive impairment as well as a low stride frequency, a gait cycle 
often contained far more than 30 frames. As shown in Figure 3A, 
adjacent frames are highly similar, which generates a large amount of 

FIGURE 1

Flow of pretreatment: (A) static image sequence, (B) raw silhouette sequence, (C) gait silhouette sequence, and (D) gait skeleton sequence.
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information redundancy and increases unnecessary computational 
costs. Creating the template with the gait energy image (GEI) method 
(Han and Bhanu, 2006), as shown in Figure 3B, leads to the loss of 
temporal information, because the template is based on the average of 
each group image. Generating the template though equidistant 

sampling (Figure 3C), in which fixed positions in each group are 
picked up and only 1 / M  gait images are retained in the dataset, causes 
a lot of waste. Generating the template using simple random sampling 
(Figure 3D) picks up some adjacent frames at the same time, resulting 
in information redundancy. STTG extracts the kth frame in each 

FIGURE 2

Overview of proposed gait analysis model. Extract the original gait sequence from the raw gait footage, which includes silhouette and skeleton gait 
images. Then, input the gait sequence into STTG to generate the template sequence, and input it into DSFE to extract depth-wise spatial features. 
Then, horizontally cut the output into n parts to obtain depth-wise part features. Furthermore, input each part into MTM separately to obtain the 
output multi-scale spatial–temporal features. Obtain the feature matrix through full connection and batch normalization, train the model through a 
series of loss functions such as triplet loss and cross entropy loss, and test through evaluation indicators such as ROC to achieve cognitive assessment.

FIGURE 3

Different temporal template generating methods, with M = 4 : (A) raw image sequence X x i ti� |,,, 1 |,,,2|,,, |,,, ,�� �  (B) gait energy image method, 
(C) equidistant sampling method sampling the image with equal M − 1  spacers from the beginning, (D) simple random sampling every M  images, and 
(E) short-term temporal template generator, which divides the whole gait sequence into M  sets and randomly selects a set at a time.

https://doi.org/10.3389/fnagi.2024.1341227
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Qin et al. 10.3389/fnagi.2024.1341227

Frontiers in Aging Neuroscience 05 frontiersin.org

group, where k is a random value from the set 1 2, , ,�� �M  with the 
equivalent probability, and in every training epoch k revalues 
(Figure  3E), which can avoid all the disadvantages of the above 
methods. In the current study, we  compared the situation of 
M = 2 3 4 5, , ,  and found that the best results were achieved at M = 4.

2.7 DSFE

We develop a DSFE to extract both global and local fine-grained 
spatial features from gait images. Many previous models (Huang 
X. et al., 2021; Li et al., 2023) used only basic convolutional neural 
network (CNN) modules to extract spatial features from gait images, 
which leads to failure of capture all the gait details. Some networks, 
such as GaitPart (Fan et  al., 2020) developed a component focal 
convolutional network (FConv) to extract part features, but then just 
combined those part features, and as a result ignored the connections 
between part features. However, the DSFE extracts partial spatial 
features and keeps the relation between part features. The DSFE 
consists of three blocks. The first block contains one two-dimensional 
convolutional network (Conv2d) layer and one depth-wise spatial 
Conv2d (DS-Conv2d) layer. The following two blocks contain two 
Conv2d layers each. The specific network structure is shown in 
Table 1. For the DSFE module, we compared the location and quantity 
of replacing Conv2d with DS-Conv2d in Block 1, Block 2, and Block 
3, respectively. We found that using DS-Conv2d in the second layer of 
Block1 had the best performance.

The structure of the DS-Conv2d module is shown in Figure 4 and 
can be expressed as Equation (1):

 

DS Conv d Conv d DW D

Conv d DW Conv d
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2 2

2 2

· ·

·
 (1)

where depth-wise two-dimensional convolutional network 
(DW-Conv2d) represents depth-wise convolution (Guo et al., 2023). As 
shown in Figure 4, depth-wise convolution is the extraction of local 
features from a single-channel spatial feature map. Each convolutional 
kernel only performs convolution operations on a single channel. Depth-
wise dilated two-dimensional convolutional network (DW-D-Conv2d) 
is a special type of depth-wise convolution that introduces dilated 
convolution to increase the model’s receptive field and extract long-range 

features from a single spatial feature map. The combination of the two 
parts takes into account local contextual information, enlarges the 
receptive field, and enables the extraction of richer spatial information 
from the gait sequence. Leaky rectified linear unit (LeakyReLU) is the 
activation function, which can be expressed as Equation (2):
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2.8 MTA

MTA is composed of multiple parallel multi-scale temporal 
modules (MTMs), each of which is responsible for extracting features 
from the corresponding part of the gait sequence, acquiring multi-
scale temporal features. The input to the DSFE module passes through 

the horizontal pooling (HP) module to obtain F
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represents the temporal features of the j th horizontal part. Then, the 
part is input into the MTM, as shown in Figure 5, extracting both 
frame-level F f j pj

f f
|,,, |,,, |,,, |,,,� � �� �1 2  and long short-term 

temporal features F f j pj
ls ls

|,,, |,,, |,,, |,,,� � �� �1 2 , which are then 
aggregated into multi-scale temporal features 
F f j pj
MTA MTA

|,,, |,,, |,,, |,,,� � �� �1 2 , expressed as Equation (3):
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where f jf , fl
j
s  and f j

MTA
 represent the frame-level time 

characteristics, long short-term time features, and multi-scale time 
characteristics of the j th horizontal part, respectively, and for now 

TABLE 1 Detailed parameters for depth-wise part feature extractor.

Block Layer In C Out C Kernel Dilation Padding

Block1

Conv2d 2 32 5 1 2

DS-Conv2d 32 32 3 2 1

MaxPool2d, kernel size = 2, stride = 2

Block2

Conv2d 32 64 3 1 1

Conv2d 64 64 3 1 1

MaxPool2d, kernel size = 2, stride = 2

Block3

Conv2d 64 192 3 1 1

Conv2d 192 192 3 1 1

MaxPool2d, kernel size = 2, stride = 2

Conv2d, two-dimensional convolutional network; In C, input channels; Out C, output channels; kernel, kernel size; dilation, dilation rate; padding, zero padding.
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FIGURE 4

The convolution part of Block 1 in frame of DSFE, including Conv2d, DS-Conv2d and LeakyReLU. The DS-Conv2d’s convolution operation process of a 
pixel (pink cube) of a three-dimensional feature map of a single frame (the whole cube). The information (all color cubes) contained in the receptive 
field is weighted and aggregated into the pink cube. The H, W, and C of cube represent the height, width, and channel dimensions of the feature map. 
The dark cubes indicate the position of the convolution kernel. The convolution core size of Conv2d, DW-Conv2d, and DW-D-Conv2d are all 3  ×  3, 
and the dilation rate of DW-Conv2d is 2. Note: The operation process has omitted the zero filling.

FIGURE 5

The calculation process of MTA and the details of MTM. The input is the three-dimensional gait feature maps, where P represents the component 
dimension, S represents the time dimension, C represents the channel dimension, and a semi transparent cube represents the omission of the feature 
maps. Along the component dimensions, input FHP  into the MTMs module to obtain multi-scale time features.
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F F F c p
f ls MTA, , � � 2 . BatchNorm ·� �  indicates normalized data to 

mean of 0 and standard deviation of 1 by Batch. BiLSTM ·� � is a special 
type of long short-term memory (LSTM) (Hochreiter and 
Schmidhuber, 1997) known as bi-directional LSTM (BiLSTM), which 
is capable of accessing both past and future information in a time 
series, introducing more contextual dependencies and performing well 
in extracting short-term and long-term relationships. Concat ·� �  
represents the concatenation operation, connecting the frame-level 
time feature Ff  with the long short-term feature Fls along the channel 
dimension. Attention ·� � represents using the attention mechanism of 
SENet (Hu et al., 2018), which introduces the attention mechanism to 
focus on the relationships between channels and performs feature 
weighting on the channel dimension; the greater the weight equivalent 
the higher the correlation between the channel and key temporal 
information. Meanwhile, we introduce the Dropout (Srivastava et al., 
2014) technique in Attention ·� �, which can mitigate the overfitting 
phenomenon and enhance the model’s ability to generalize to new 
data. TP ·� �  represents temporal pooling, and according to previous 
research (Fan et al., 2020), selecting TP · max ·� � � � � yields better results.

We compared the classification results of frame-level feature, long 
short-term feature, and multi-scale aggregated feature. We found that 
long short-term feature performed better than frame level feature and 
multi-scale aggregated feature achieved the best classification results. By 
extracting frame-level and long short-term temporal features, it captures 
abstract features at different scale levels in the gait sequence, and then 
uses an attention mechanism to aggregate more distinctive 
temporal information.

2.9 Loss function and sample

During the training stage, both the separate batch all (BA+) triplet 
loss (Hermans et al., 2017) and the label smoothing cross entropy loss 
(Szegedy et al., 2016) were used to achieve more effective training 
results. The multiply loss function Lmul can be  defined as 
L L Lmul � �� �tri tri cro cro, where Ltri and Lcro represent the BA+ triplet 
loss and the label smoothing cross entropy loss, respectively. λtri and 
λcro  represent the weight coefficients of the loss functions. Here, 
�tri �1 0.  = and �cro � 0 2. . The batch size was set to p k, ,� � � � �4 6 , 
which represents that every batch includes p participants, and k  gait 
image sequences will be picked up in every participant’s footage. The 
length of the analyzing sequence is 80 frames. If the length of the 

original sequence is less than 15 frames, it is discarded; if the length is 
between 15 and 80 frames, it is repeatedly sampled.

2.10 Comparison, ablation, and 
classification

CASIA-B and Gait3D was used in the comparison of individual 
recognition accuracy among previous gait analysis methods and 
DO-GaitPart. To determine which component in our model led to better 
adaptation for the gait analysis mission, components were removed from 
the total pipeline in a process known as ablation. We set eight groups of 
different hyperparameters for experiments and compared accuracy with 
that of GaitPart (composed of three Block + HP + temporal pooling 
modules, where each layer includes two convolutional layers and one 
maximum pooling layer), as baseline, in the individual recognition task. 
A two-class classification for mild or worse cognitive impairment gait 
and healthy gait features was designed to evaluate the performance of 
models as cognitive classifiers for the WCHEG dataset. The ground truth 
state for all gait features in this experiment was labelled using a previously 
performed SPMSQ assessment.

3 Results

The hardware environment is CPU, Intel i7-8700, 3.20 GHz, GPU, 
GeForce RTX 2080 Ti + GeForce RTX 1080 Ti. And the software 
development environment is Python 3.7.1, Pytorch 1.8.1.

3.1 Ablation study

We found that each component of our model is essential, and the 
addition of each component provides a positive gain in the 
identification results of both datasets. The best performance of the 
model was achieved when the three components were deployed 
simultaneously (Table 2). Furthermore, we conduct ablation studies 
on specific parameters of each module.

3.1.1 Analysis of different M numbers of STTG
The ablation experiments were designed to demonstrate the most 

appropriate choice of parameters for the STTG (Table 3), where the 

TABLE 2 Accuracy comparison (%) with different addition of the three components of our model on CASIA-B and WCHEG.

Group STTG DSFE MTA CASIA-B WCHEG

NM BG CL

A x x x 97.4 92.8 74.9 74.9

B ✓ x x 97.6 93.1 76.2 76.5

C x ✓ x 97.4 92.9 77.7 78.8

D x x ✓ 97.8 93.2 80.3 77.7

E ✓ ✓ x 97.9 93.4 79.9 79.1

F x ✓ ✓ 98.0 94.7 82.8 78.2

G ✓ x ✓ 97.8 94.1 83.5 77.3

H ✓ ✓ ✓ 98.1 95.4 84.6 82.5

NM, normal walking; BG, carrying bags; CL, wearing coats or jackets. Bold values mean best performance method, model, module or algorithm in comparison.
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inter-frame similarity of the gait sequence decreases as the value of 
M increases, and the same number of frames can contain more gait 
information, reaching an optimum at M = 4. Whereas, when the value 
of M is too large, it leads to a decrease in the continuity between 
frames and affects the learning of the complete action of the gait. 
Meanwhile in the WCHEG dataset, the introduction of STTG shows 
a more significant performance improvement because STTG allows 
the input to contain more complete gait cycles.

3.1.2 Analysis of different insertion positions of 
DS-Conv in DSFE

We conducted the ablation study by replacing the second Conv 
layer with DS-Conv in three different Blocks of DSFE, respectively, 
(Table 4). By comparison, it can be found that adding DS-Conv in 
Block1 has the best performance, because no pooling operation has 
been performed at this time, which can avoid the effects of input 
distortion and information loss, and better fuse contextual 
information and large receptive field information. Meanwhile, too 
much use of this module can lead to the loss of fine-grained 
information, which in turn leads to poorer model performance.

3.1.3 Effectiveness of MTA
In order to validate the effectiveness of MTA, we set up ablation 

experiments (Table 5). It can be found that BiLSTM will obtain better 
results compared to LSTM for extracting long and short-term features, 

because BiLSTM has the characteristic of bidirectional computation, 
which acquires more comprehensive temporal features. Meanwhile, 
the use of Attention better fuses the multi-scale features and reduces 
the risk of overfitting by dropout method.

3.2 Comparison in gait identification task

As shown in Table 6, the accuracy of the proposed method on 
CASIA-B dataset was compared with several previous gait 
identification methods, including GaitSet (Chao et al., 2019), GaitPart 
(Fan et al., 2020), MT3D (Lin et al., 2020), 3D Local (Huang Z. et al., 
2021), TransGait (Han and Bhanu, 2006), CSTL (Lin et al., 2020), GLN 
(Huang Z. et al., 2021), GaitGL (Liang et al., 2022), SMPLGait (Zhu 
et al., 2021). The results show that DO-GaitPart has excellent gait 
recognition on the CASIA-B dataset, and is superior to the comparison 
methods in the BG walking scene. Meanwhile, DO-GaitPart has the 
best performance on the Gait3D dataset compared to the 
comparison methods.

3.3 Characterization of participants

We compared the background information of participants 
between the training/validation and test sets (Table 7). We found no 

TABLE 3 Accuracy comparison (%) with different M numbers of STTG on CASIA-B and WCHEG.

M CASIA-B WCHEG

NM BG CL

2 97.8 94.9 83.4 79.9

3 97.5 95.1 84.4 80.1

4 98.1 95.4 84.6 82.5

5 97.6 95.0 84.0 78.9

Bold values mean best performance method, model, module or algorithm in comparison.

TABLE 4 Accuracy comparison (%) with replacing Conv with DS-Conv in different blocks of DSFE on CASIA-B and WCHEG.

Block 1 Block 2 Block 3 CASIA-B WCHEG

NM BG CL

✓ x x 98.1 95.4 84.6 82.5

✓ ✓ x 97.5 93.9 83.1 78.1

✓ ✓ ✓ 97.1 94.3 83.7 79.2

x ✓ x 96.8 94.0 83.2 78.2

x x ✓ 95.2 89.1 72.6 71.1

Bold values mean best performance method, model, module or algorithm in comparison.

TABLE 5 Accuracy comparison (%) with different algorithms used by MTA on CASIA-B and WCHEG.

F f F1s Attention CASIA-B WCHEG

NM BG CL

x LSTM x 97.5 93.1 79.2 78.9

✓ LSTM ✓ 97.8 94.2 82.8 81.1

x BiLSTM x 97.7 93.7 81.2 81.3

✓ BiLSTM ✓ 98.1 95.4 84.6 82.5

Bold values mean best performance method, model, module or algorithm in comparison.
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significant differences in age, gender, education level, or cognitive 
status prevalence between the training/validation and test sets.

3.4 Classification

Table 8 presents a comparison of predictive performance among 
various methods for cognitive state classification, with a focus on gait 
features. Machine vision-based classification techniques, specifically 

DO-GaitPart, GaitSet, and GaitPart, exhibit notably superior 
performance when compared to approaches considering age, grip 
strength, and walking time characteristics. The significance levels for 
all methods, except for age and 3 m re-entry time, are less than 0.001, 
providing statistical evidence for the potential of these methods in 
identifying cognitive impairment. Notably, among these gait-based 
methods, DO-GaitPart achieves the highest ROCAUC value (0.876, 
Figure 6) with a 95% confidence interval of 0.852–0.900, indicating its 
robust predictive capability for cognitive impairment. This 

TABLE 6 Accuracy in comparison with previous gait identification methods on CASIA-B and Gait3D.

Method CASIA-B Gait3D

NM (%) BG (%) CL (%) R-1 (%) R-5 (%) mAP (%) mINP

GaitSet (Hermans et al., 2017) 95.0 87.2 70.4 42.6 63.1 33.7 19.7

GaitPart (Fan et al., 2020) 96.2 91.5 78.7 29.9 50.6 23.3 13.2

MT3D (Szegedy et al., 2016) 96.7 93.1 81.5 — — — —

3D Local (Chao et al., 2019) 97.5 94.3 83.7 — — — —

TransGait (Han and Bhanu, 2006) 98.1 94.9 85.8 — — — —

CSTL (Lin et al., 2020) 98.7 94.8 88.7 12.2 21.7 6.44 3.28

GLN (Huang et al., 2021) 96.9 94.0 77.5 42.2 64.5 33.1 19.6

GaitGL (Liang et al., 2022) 97.4 94.5 83.6 23.5 38.5 16.4 9.2

SMPLGait w/o 3D (Zhu et al., 2021) — — — 47.7 67.2 37.6 22.2

DO-GaitPart 98.1 95.4 84.6 49.2 68.2 39.1 24.1

NM, normal walking; BG, carrying bags; CL, wearing coats or jackets. Bold values mean best performance method, model, module or algorithm in comparison.

TABLE 7 Characterization and cognitive status of participants among 158 older adults.

Characteristic Prevalence, n (%) Within cognitive status, n (%) Within analysis set, n (%)

Healthy MCI or Worse Training and 
validation

Test

All participants 158 (100.0) 66 (41.1) 92 (58.3) 110 (69.6) 48 (30.4)

Age, years (Mean ± SD) 65.4 ± 8.2 64.5 ± 1.0 66.0 ± 0.9 65.5 ± 0.8 65.3 ± 1.2

Gender

Male 30 (19.0) 18 (27.3) 12 (13.0) 20 (18.2) 10 (20.8)

Female 128 (81.0) 48 (72.7) 80 (87.0) 90 (81.8) 38 (79.2)

Cognitive status

Healthy 66 (41.8) — — 46 (41.8) 20 (41.7)

MCI or Worse 92 (58.2) — — 64 (58.2) 28 (58.3)

Education level

Primary or illiterate 130 (82.3) 39 (59.1) 91 (98.9) 91 (82.7) 39 (81.3)

Junior high 22 (13.9) 21 (31.8) 1 (1.1) 14 (12.7) 8 (16.7)

Senior high or higher 6 (3.8) 6 (9.1) 0 (0.0) 5 (4.5) 1 (2.1)

Marital status

Married 130 (82.3) 55 (83.3) 75 (81.5) 91 (82.7) 39 (81.3)

Others 28 (17.7) 11 (16.7) 17 (18.5) 19 (17.3) 9 (18.8)

Body and cognitive measurement (mean ± SD)

BMI, kg/m2 25.5 ± 3.7 25.2 ± 0.4 25.8 ± 0.4 25.6 ± 0.4 25.5 ± 0.5

Time of 4 m walking, s 7.2 ± 2.0 6.6 ± 0.2 7.7 ± 0.2 7.2 ± 0.2 7.2 ± 0.2

Wrong answers in SPMSQ 2.9 ± 2.0 0.9 ± 0.1 4.3 ± 0.1 2.9 ± 0.2 2.8 ± 0.3

MCI, mild cognitive impairment; BMI, body mass index.
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performance stands significantly ahead of other methods, as evidenced 
by the substantially lower significance values. Moreover, DO-GaitPart 
operates with remarkable efficiency, consuming a mere 0.013 s per gait 
sequence, ensuring swift response to gait-related information. 
Conversely, methods relying on age and grip strength exhibit 
comparatively lower ROCAUC values, signaling their limited 
effectiveness in cognitive state classification. In summary, these result 
underscores the efficacy of machine vision-based gait feature 
classification methods, particularly highlighting DO-GaitPart, in 
predicting cognitive impairment.

4 Discussion

In the current study, a machine vision method based on visible 
light camera footage of walking was implemented to identify mild and 
worse cognitive impairment among older adults. First, walking video 
dataset labelled using a cutoff of three errors on the SPMSQ consisting 
of 158 participants aged 50 and older was created. All images of gait 
sequences were segmented, normalized, and refined. Skeleton point 
information was extracted from sequences by HRNet application. Gait 
skeleton points and silhouette information were used in a trained 
recognition network, DO-GaitPart. To decrease computational cost 
and minimize the loss of time information, STTG was applied in the 

template generation stage. DSFE was used to extract more spatial 
features and keep the relation between features. Attention mechanism-
based MTA extracted more multi-scale temporal features, including 
frame-level and long short-term temporal features, and aggregated 
more characteristic features.

After training, machine vision methods achieved better predictive 
performance globally than age, grip strength, or 4 m walking time in 
the healthy and cognitive impairment classification task. Although 
silhouettes contain information regarding variation in walking 
appearance and movement, long clothing and carrying a backpack 
could mislead the feature extrication process in silhouette-only 
methods. Here, both skeleton points and silhouette information were 
used to generate gait features, as skeleton points characterize human 
joint movement and decrease the impact of clothing and carried 
objects. The data input into the analysis model should contain a full 
gait cycle, which has a large computational cost. Compared with the 
previous sampling method, random sampling, STTG greatly increases 
the information entropy that the input sequence contains and 
maintains the same computational cost. GaitPart developed FConv to 
extract part features, but it ignored the connection between part 
features. With the applied depth-wise dilation convolution and depth-
wise dilation convolution, DSFE comprehensively extracted contextual 
information and long-range features. GaitPart considered long-range 
features to have little effect, and provided a micro-motion capture 
module to extract short-range features. In our experiments, long-
range features also have unique advantages in gait recognition, 
compared with short-range features. Therefore, we design an MTA 
module to aggregate multi-scale temporal features, including frame-
level features, short-term features, and long-term features. Although 
DO-GaitPart exhibited good performance in cognitive identification 
task, long clothing that covered the participant’s body could decrease 
the precision of skeleton point identification and segmentation, thus 
influencing the performance of the overall method. Like most 
nonlinear regression algorithms, part of the analysis process in the 
current study was not interpretable, understandable, and 
straightforward (Liang et al., 2022).

Research on cognitive MCI and Alzheimer’s disease increasingly 
emphasizes the application of machine vision and modal fusion 
algorithms. Key techniques, including prior-guided adversarial 
learning, brain structure–function fusion, and multimodal 
representation learning, are being actively explored to improve 
diagnostic precision and enable earlier predictions of cognitive decline 

TABLE 8 Predictive performance of cognitive state classification via different method.

Method ROCAUC (0.95 
confidence)

Significance Gink coefficient Max K-S

GaitSet (Hermans et al., 2017) 0.821 (0.793–0.849) <0.001 0.642 0.496

GaitPart (Zhu et al., 2021) 0.850 (0.824–0.875) <0.001 0.699 0.581

TransGait (Han and Bhanu, 2006) 0.864 (0.839–0.890) <0.001 0.729 0.626

DO-GaitPart 0.876 (0.852–0.900) <0.001 0.752 0.656

Age 0.531 (0.429–0.623) 0.508 0.062 0.113

Grip strength 0.663 (0.576–0.750) <0.001 0.327 0.269

4 m walking time 0.696 (0.613–0.779) <0.001 0.392 0.288

3 m re-entry time 0.646 (0.558–0.734) 0.001 0.292 0.261

ROCAUC, receiver operating characteristic/area under the curve. Bold values mean best performance method, model, module or algorithm in comparison.

FIGURE 6

Receiver operating characteristic/area under the curve (ROCAUC) of 
test set via DO-GaitPart, GaitPart, GaitSet, Grip strength, age, 4M 
walking time, 3M reentry time.
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(Zuo et al., 2021, 2023, 2024). As these techniques evolve, they are 
poised to significantly advance our comprehension and treatment of 
neurodegenerative conditions. However, its performance in cognitive 
impairment classification tasks is still limited by the dataset size and 
the uncertainty of cognitive impairment labels. In future work, 
expanding the dataset and incorporating additional cognitive function 
screening scales, such as MMSE and MoCA, will ensure more accurate 
and stable data labeling. Additionally, the analysis of gait features 
should be  extended to improve the model’s ability to recognize 
different levels of cognitive impairment.

5 Conclusion

This study introduces DO-GaitPart, a machine vision method 
for identifying cognitive impairment in the elderly from walking 
videos, featuring three key advancements: STTG, DSFE, and 
MTA. Addressing the global challenge of managing progressive 
cognitive decline (Jia et al., 2021), this non-invasive, cost-effective 
tool optimizes elder healthcare by conserving manpower and 
broadening its scope (Newey et al., 2015; Reynolds et al., 2022). 
Utilizing affordable cameras, it enables high-frequency, long-term 
cognitive assessments, potentially inspiring self-reporting tests and 
telemedicine for cognitive health (Charalambous et  al., 2020; 
Hernandez et al., 2022). The method’s machine learning algorithms 
also show promise for detecting other geriatric conditions, 
enhancing the toolkit for geriatric care.
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