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Background: Linear associations between circulating insulin-like growth 
factor-1 (IGF-1) levels and Parkinson’s disease (PD) have been evidenced in 
observational studies. Yet, the causal relationship between IGF-1 levels and 
PD remains obscure. We conducted Mendelian randomization to examine the 
correlation between genetically predicted IGF-1 levels and PD.

Methods: By reviewing genome-wide association studies (GWAS) that are 
publicly accessible, we uncovered SNPs linked to both serum concentrations of 
IGF-1 and PD. A two-sample Mendelian randomization (MR) analysis was carried 
out to evaluate the individual effect of IGF-1 on PD.

Results: In a primary causal effects model in MR analysis, employing the inverse-
variance weighted (IVW) method, IGF-1 levels exhibited a notable association 
with the risk of PD (OR, 1.020, 95% CI, 1.003–1.038, p  =  0.0215). Multiple 
evaluations revealed that horizontal pleiotropy was improbable to distort the 
main results (MR-Egger: P PD intercept =0.719), and no bias was detected by 
leave-one-out analysis.

Conclusion: This study unearthed evidence indicating that heightened IGF-1 
levels might be causally correlated with an increased risk of PD.
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1 Introduction

Research into human aging has intensified, and the investigations into brain health have 
become more in-depth. Parkinson’s disease (PD) is predominantly an age-associated condition. 
Although PD presents in a minor percentage of younger adults, the majority of patients (over 
75%) are over the age of 65 (Pringsheim et  al., 2014; Deuschl et  al., 2020). PD is a 
neurodegenerative disease attributed to progressive neuronal loss in the substantia nigra pars 
compacta, with typical clinical features including tremor, rigidity, bradykinesia/akinesia, and 
postural instability (Scorza et al., 2021). Moreover, PD, inflicting a considerable societal and 
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economic burden worldwide, serves as a principal cause of disability 
and mortality among the elderly (Heemels, 2016; Berson et al., 2018). 
In clinical practice, there are no established curative methods for PD, 
and age stands as the sole universally accepted risk factor (Dorsey 
et al., 2007; Kalia and Lang, 2015; Lee and Gilbert, 2016; Scorza et al., 
2018; Balestrino and Schapira, 2020).

In recent years, circulating insulin-like growth factor-1 
(IGF-1), a neurotrophic hormone integral to systemic development, 
has gained increasing recognition for its pivotal role in brain 
health, influencing both central nervous system plasticity and the 
development of all major neural cells (O’Kusky and Ye, 2012; Dyer 
et al., 2016).

In a recent investigation, a linkage between IGF-1 and PD risk has 
been unveiled (Cao et al., 2023). It explored and fully characterized 
the dose–response correlation between IGF-1 and PD risk within a 
sizable cohort of the general populace. Nonetheless, owing to the 
propensity for observational inquiries to incur confounding biases, 
such as the potential impact of diverse underlying maladies on the 
varying levels of IGF-1, novel methodologies are imperative for 
scrutinizing causal relationships.

Mendelian randomization (MR) is a technique that is used to infer 
causality by employing one or more genetic variants that influence a 
risk factor. These genetic tools help discern the impact of the risk 
factor on the disease (Davey Smith and Hemani, 2014). We used an 
MR design to explore the causal relationship between IGF-1 and 
PD risk.

2 Materials and methods

2.1 Study design

MR analysis, harnessing genetic allocation variation, remains 
impervious to the influence of confounding factors, thereby serving 
as a surrogate for risk factors in instrumental variable analyses. 
Genetic variation is deemed effective only when closely correlated 
with relevant risk factors and influences outcomes solely through 
exposure, rather than directly affecting results (Smith and Ebrahim, 
2003). Considering the susceptibility of observational studies to the 
impact of reverse causality and undiscovered confounding factors, this 
study employed a two-sample MR analysis to explore the causal 
relationship between circulating IGF-1 levels and PD. The SNP data 
for IGF-1 and PD were sourced from the Genome-Wide Association 
Studies (GWAS) database (Figure 1).

2.2 Genetic instrument selection

The data for IGF-1 were obtained from 358,072 European-descent 
participants in the UK Biobank, with a sample size of 342,439 for 
IGF-1. We  satisfied the conditions for SNPs to serve as effective 
instrumental variables (IVs): (i) strong correlation with exposure 
(p < × −

5 0 10
8

. ); (ii) SNP independence ensured by r2 0 01< .  over a 
10-kilobase (kb) region based on European samples from the 1,000 
Genomes data; (iii) avoidance of pathways where SNPs could directly 
influence outcomes (horizontal pleiotropy). Weak IV bias was 
mitigated using an F-statistic >10 (Huang et al., 2021). As a result, 574 
SNPs were selected from 13,586,000 available SNPs as IVs for 

circulating IGF-1 levels. Data were downloaded from Integrative 
Epidemiology Unit (IEU) GWAS database (see Table 1).

2.3 Data origin of PD

Summary-level data for PD (GWAS ID: ieu-b-7) were sourced 
from the International Parkinson’s Disease Genomics Consortium, 
comprising 33,674 cases among a sample size of 482,730. The 
aforementioned data can be retrieved through the OpenGWAS project 
(mrcieu.ac.uk) and are summarized in Table 1.

2.4 Statistical analysis

In models devoid of horizontal pleiotropy, IVW yields results of 
maximal efficiency, rendering it as the reference in this study employing 
a random-effects model (Burgess et al., 2016; Burgess and Thompson, 
2017; Davies et al., 2019). Several other approaches were utilized to 
ascertain the consistency of results. These include the simple median 
method, which provides reliable estimates even in the presence of at 
least 50% non-effective IVs; the weighted median method, which, 
building upon this premise, accounts for differences in estimation 
accuracy; and the maximum likelihood method, characterized by its 
smaller standard errors, used to obtain parameters of the probability 
density function for the database (Milligan, 2003; Burgess et al., 2017).

Furthermore, to ascertain potential impacts on MR outcomes and 
eliminate violations of MR assumptions due to heterogeneity and 
pleiotropy within the utilized IVs, a comprehensive assessment was 
conducted. This included heterogeneity, pleiotropy, and sensitivity, 
corresponding to Egger regression combined with MR-PRESSO 
global tests, Cochran’s Q statistic, and single SNP analysis combined 
with leave-one-out sensitivity analysis, respectively. Egger regression 
analysis and MR-PRESSO global tests were deemed to evaluate 
potential directional pleiotropy (Verbanck et  al., 2018; Ong and 
MacGregor, 2019). If directional pleiotropy was detected with a 
p-value <0.05 based on the intercept from MR-Egger, MR-PRESSO 
was utilized for secondary assessment, followed by outlier removal 
and subsequent recalculation of causal effects. Cochran’s Q statistic 
from IVW and MR-Egger was utilized to examine the magnitude of 
heterogeneity (Storey and Tibshirani, 2003). MR-PRESSO was also 
utilized to test for it. Single SNP analysis and leave-one-out sensitivity 
analysis were utilized to determine if individual SNPs were sufficient 
to impact overall results. In leave-one-out plots, the harmonious 
distribution of all lines around 0 indicated that results were unaffected 
by which SNP was removed.

When p < 0.05 with two-tailed testing, the results are considered 
significant. All primary outcomes were obtained using the 
“TwoSampleMR” package within the R (version 4.1.2) environment.

3 Results

On the basis of a primary causal effects model with MR analyses 
through the IVW method, IGF-1 was significantly associated with the 
risk of PD (OR, 1.020; 95% CI, 1.003–1.038, p = 0.0215, Figure 2). The 
maximum likelihood results were consistent with IVW (OR, 1.020, 
95% CI, 1.006–1.035, p = 0.0047). The directions of MR-Egger, weighted 
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median, and simple median results were exactly in line with the 
estimates of IVW revealing significant robustness of the main analysis.

There might be  heterogeneity 
(P P PIVW MRPRESSO MREgger< < <0 001 0 001 0 001. ; . ; . , Table  2). 
Regardless, the IVW estimate remained unbiased, affirming the 

conclusion’s reliability and acceptability. In addition, despite some 
contradiction noted in the horizontal pleiotropy assessment between 
MR results (p = 0.719) and MR-PRESSO, the uniformity in results 
(OR, 1.020; 95% CI, 1.004–1.036, p = 0.0140, Table 3) persisted across 
outlier-corrected analysis in MR-PRESSO.

FIGURE 1

Flowchart of MR in this study. The study data were from the IEU Open GWAS project, where SNPs for exposure and outcome were first extracted, and 
instrumental variables were screened based on the SNPs for exposure. The causal effect was further explored using two-sample Mendelian 
randomization, and sensitivity analyses were used to test the stability of the results. MR, Mendelian randomization; SNP, Single Nucleotide 
Polymorphisms; IEU, Integrative Epidemiology Unit; GWAS, Genome-Wide Association Studies; IGF-1, Insulin-like growth factor-1.

TABLE 1 Data sources for exposure and outcome.

Samples size (case/
control)

GWAS ID Author Consortium SNPs 
available

IGF-1 342,439 ukb-d-30770 Neale lab NA 13,586,000

PD 482,730 (33,674/449,056) ieu-b-7 Nalls MA International Parkinson’s Disease Genomics Consortium 17,891,936
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The leave-one-out analysis guarantees the resilience, as no 
individual SNP exhibits a significant impact (Supplementary Figure S1). 
Furthermore, the symmetry observed in the funnel plot (Figure 3) 
indicates the satisfactory fulfillment of the INSIDE assumption 
(Bowden et al., 2015). A scatter plot is presented in Figure 4, which 
shows consistency in the results.

4 Discussion

Within our investigation, leveraging GWAS data from 
those of European ancestry, two independent MR analyses 
unveil a causal association between IGF-1 and PD risk to a 
degree. The robust findings and thorough sensitivity 
analyses adeptly validate the fulfilment of the three fundamental 
assumptions: relevance, independence, and exclusion 
restriction assumption.

Substantial evidence emphasizes the notable association between 
IGF-1 and brain health, particularly in conditions such as major 
depressive disorder (MDD), anxiety, and cognitive impairments 
(Mosiołek et  al., 2021; Shi et  al., 2023). Degenerative neurological 
conditions with greater impacts on populations have been linked to 
IGF-1 alterations (Watanabe et al., 2005; Gasperi and Castellano, 2010; 
Ghazi Sherbaf et al., 2018; Gubbi et al., 2018). However, the findings 
remain inconclusive when it comes to PD development. While both basic 
and translational research consistently assert that IGF-1 provides direct 
protection to all neuronal cells and can inhibit inflammatory cascade 
reactions at the cellular level (Fernandez et al., 2012; Labandeira-Garcia 
et al., 2017), there is currently a dearth of scholarly discourse addressing 
whether this anti-inflammatory effect holds protective implications in 
animal experiments. Furthermore, compelling evidence has linked IGF-1 
to the initiation and progression of PD (Castilla-Cortázar et al., 2020).

In a study using the UK Biobank, the male sex was identified as a 
primary risk factor for PD, with elevated levels of IGF-1 ranking closely 
behind. This underscored its significant role in the patho-mechanisms 
of PD and its potential as a predictive biomarker (Allwright et al., 2023).

Elevated serum IGF-1 levels in PD patients have been negatively 
correlated with nonmotor symptoms, such as anxiety, depression, and 
cognitive dysfunction, and combining IGF-1 with EGF enhances the 
diagnostic value for PD (Shi et al., 2023).

A prospective study confirmed a positive association between 
IGF-1 concentration and the risk of PD (Cao et al., 2023), which is 
consistent with the direction of effect results obtained from our MR 
analysis. This association may be due to the involvement of IGF-1 in 

FIGURE 2

A forest plot showing the association of genetically predicted circulating IGF-1 with PD. Five Mendelian randomization methods are used. nSNP is the 
number of instrumental variables selected for MR. OR is the PD risk ratio corresponding to each unit increase in circulating IGF-1 levels. When the OR 
(95% CI) is greater than 1, it means that the PD risk increases. On the contrary, the risk of PD is reduced. A p value less than 0.05 indicates statistical 
significance between circulating IGF-1 levels and PD risk. MR, Mendelian randomization; OR, Odds Ratio; CI, Confidence Interval; SNP, Single 
Nucleotide Polymorphisms; PD, Parkinson’s disease; IGF-1, Insulin-like growth factor-1.

TABLE 2 Heterogeneity and pleiotropy test results.

Disease Heterogeneity p 
value

Pleiotropy p value

IVW MR 
egger

MR-
PRESSO

Egger 
intercept

Parkinson’s 

disease
<0.001 <0.001 <0.001 0.719
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nerve growth and formation (Rabinovsky, 2004). IGF-1 serum 
concentrations might become an important biomarker for assessing 
the risk of PD, providing new perspectives on the prevention of PD.

The study had several strengths and limitations. The main strength 
was that Mendelian randomization analysis enhanced the 
comprehensive assessment of the association between circulating IGF-1 
and PD by reducing bias from residual confounding and reverse 
causation. Moreover, the study used a large amount of PD case–control 
data, which was sufficient to detect even small effects. In addition, the 
genetic tools for IGF-1 had good validity, which ensured the robustness 
of our results. Despite the strengths of this study, there were some 
weaknesses. Firstly, the implementation of sex-specific MR analysis 
serves to address the inquiry stemming from the sex correlation of 
growth hormone-stimulated IGF-1 (Brabant and Wallaschofski, 2007). 
Nevertheless, despite exhaustive online searches, suitable data sources 
for analysis is elusive. Hence, presently, the initiation of 

hormone-related gender-stratified GWAS and subsequent core MR 
analysis were warranted. Secondly, we  encounter a conspicuous 
limitation whereby the population is exclusively of European descent, 
hence precluding generalizability to other ethnicities, thereby rendering 
the applicability of our findings uncertain when extrapolated to different 
populations. Finally, the potential for a non-linear relationship between 
them cannot be disregarded, even though prevailing research indicates 
a linear relationship, necessitating analysis within the context of 
clinical practice.

5 Conclusion

This MR analysis report corroborates a causal nexus between 
serum IGF-1 levels and PD, establishing a pivotal groundwork for the 
forthcoming clinical diagnosis and management of PD.

TABLE 3 MR-PRESSO outlier-corrected analysis for PD.

Outcomes Exposure MR-PRESSO Number of 
outliers

OR (95% CI) p-value

Parkinson’s disease IGF-1
Raw / 1.020 (1.003–1.038) 0.0219

Outlier-corrected 4 1.020 (1.004–1.036) 0.0140

FIGURE 3

A funnel plot for circulating IGF-1 on PD. The figure shows that the scatter distribution exhibits a symmetrical shape with essentially no deviation from 
the overall. SE, Standard Error; MR, Mendelian randomization.
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overall effect of circulating IGF-1 levels on PD risk. SNP, Single Nucleotide Polymorphisms; IGF-1, Insulin-like growth factor-1; PD, Parkinson’s disease.
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