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Introduction: The hierarchical network architecture of the human brain, 
pivotal to cognition and behavior, can be explored via gradient analysis using 
restingstate functional MRI data. Although it has been employed to understand 
brain development and disorders, the impact of aging on this hierarchical 
architecture and its link to cognitive decline remains elusive.

Methods: This study utilized resting-state functional MRI data from 350 healthy 
adults (aged 20–85) to investigate the functional hierarchical network using 
connectome gradient analysis with a cross-age sliding window approach. 
Gradient-related metrics were estimated and correlated with age to evaluate 
trajectory of gradient changes across lifespan.

Results: The principal gradient (unimodal-to-transmodal) demonstrated a 
significant non-linear relationship with age, whereas the secondary gradient 
(visual-to-somatomotor) showed a simple linear decreasing pattern. Among 
the principal gradient, significant age-related changes were observed in 
the somatomotor, dorsal attention, limbic and default mode networks. The 
changes in the gradient scores of both the somatomotor and frontal–parietal 
networks were associated with greater working memory and visuospatial ability. 
Gender differences were found in global gradient metrics and gradient scores 
of somatomotor and default mode networks in the principal gradient, with no 
interaction with age effect.

Discussion: Our study delves into the aging trajectories of functional connectome 
gradient and its cognitive impact across the adult lifespan, providing insights 
for future research into the biological underpinnings of brain function and 
pathological models of atypical aging processes.
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1 Introduction

The human brain undergoes complex processes of development, 
maintenance and reorganization throughout the lifespan, which are 
essential for human cognition and behavior. Cognition relies on the 
hierarchical organization of brain network connectome for the 
integration of information across spatial and temporal scales 
(Mesulam, 1998; Mesulam, 2012). For example, information in visual 
perception-related circuits is processed at lower levels of the hierarchy, 
whereas higher-level cognitive tasks rely on communication and 
information sharing between local and distal brain regions at the 
higher level of the hierarchy. However, such hierarchical organization 
may deteriorate during brain aging, accompanied by cognitive decline 
due to disruptions in the efficiency of information processing and 
integration between networks (Park and Reuter-Lorenz, 2009; Betzel 
et al., 2014). Therefore, identifying the changes in the hierarchical 
structures of the brain network throughout lifespan not only reveals 
the neural basis underlying brain maintenance during aging (Rajah 
and D'Esposito, 2005), but may also expedite early screening for 
accelerated aging-related neurodegenerative diseases (Abellaneda-
Perez et al., 2019).

To explore changes in human brain network across the lifespan, 
researchers have extensively studied the brain’s topological structure 
in-depth using approaches such as resting-state functional 
connectivity (FC) or graph theory. These approaches highlighted 
changes in higher-level hierarchy of the brain network, i.e., the 
maturation of default mode network (DMN) during adolescence (Fan 
et al., 2021) and the reconfiguration of whole-brain FC pattern in old 
age (Betzel et  al., 2014). From early to late adulthood, the key 
organizational features of the brain’s functional connectome include 
decreased connectivity within networks and increased connectivity 
between networks (Chan et  al., 2014; Spreng et  al., 2016), which 
reflects network dedifferentiation during aging process (Goh, 2011). 
Based on graph-theoretical analyses, studies suggest that normal aging 
is characterized by a decrease in segregation and modularity, and an 
increase in the participation coefficient of functional brain networks 
(Chan et al., 2014; Geerligs et al., 2015). Moreover, the decreased 
segregation of association networks with age has been related to the 
decline of episodic memory ability (Chan et al., 2014) and processing 
speed performance (Ng et al., 2016). These findings imply that brain 
network dedifferentiation, possibly coupled with altered functional 
hierarchies between lower- and higher-level areas, is a central aspect 
of aging. This dedifferentiation may be associated with the cognitive 
performance in older individuals.

However, brain connectome studies based on connectivity or 
graph theory have not fully captured the transitions of network 
hierarchy at the macroscale dimension during aging process. Recent 
research, using a non-linear dimension decomposition approach, has 
demonstrated a principal gradient of connectivity differentiation 
along the cortical surface in adult individuals, delineating the brain’s 
hierarchical architecture (Margulies et al., 2016). This connectome 
gradient places primary sensory and motor networks on one end and 
the higher transmodal networks on the other, which reflects the 
variances of connectivity patterns among them, in line with the earlier 
cortical core hierarchy hypothesis (Mesulam, 1998). The connectome 
gradient has been used to capture the cognitive performance spectrum 
from perception and action to abstract cognitive abilities (Margulies 
et al., 2016; Hong et al., 2019; Paquola et al., 2019; Xia Y. et al., 2022) 

and the contracted principal gradient was associated with higher 
cognitive load in young adults (Zhang et al., 2022). Setton et al. (2022) 
observed that, although functional gradients in older adults remained 
stable, they identified dedifferentiation in transmodal regions, yet 
found no significant link to cognitive decline. It is evident that the 
hierarchical changes in the brain’s connectome across lifespan remain 
elusive. The variation in network gradient properties might 
be nonlinear, necessitating further exploration into the changes in 
functional network gradients from adulthood to old age. In adulthood, 
Bethlehem et al. found that the dispersion distance within transmodal 
communities increased with age, and this escalating pattern was 
linked to the fluid intelligence (Bethlehem et al., 2020). However, it 
still needs to be elucidated how and whether the brain’s hierarchical 
organization changes at global and local scales across the adult 
lifespan, and furthermore, whether the changes in functional 
hierarchy can help individuals support various domain of cognition.

To deepen our understanding of the aging effect on the human 
brain network organization, we  employed resting-state functional 
MRI and connectome gradient analysis. This study aims to investigate 
how the brain’s functional hierarchy changes with age in healthy adults 
and how these changes impact cognitive aging. We hypothesized that: 
(1) The principal connectome gradient may undergo pronounced 
age-related changes but still maintain its dominant position 
throughout adulthood; (2) On local scales, the relative hierarchical 
positioning of transmodal subnetworks might shift across the adult 
lifespan. Additionally, we  investigated the correlations between 
functional connectome gradient with both the general cognition and 
working memory ability. We  postulated that the alterations in 
hierarchical structure of subnetworks might be  associated with 
domain-specific cognitive decline.

2 Materials and methods

2.1 Participants

This study initially included 387 healthy adults from the Taiwan 
Aging and Mental Illness Neuroimaging Database (Huang et  al., 
2020). Thirty-seven participants with personal or family history of 
psychiatric disorders, neurological disease, medium or severe 
cognitive impairment (Mini-mental State Examination, MMSE <24, 
or Clinical Dementia Rating scale >0.5), incomplete demographic 
information and unqualified T1-weighted or resting-state functional 
magnetic resonance imaging (rs-fMRI) data were excluded. The data 
of 350 participants (age = 44.74 ± 15.91 years, female = 213, education 
level = 15.66 ± 3.73 years) were finally included in the statistical 
analysis. The study obtained ethical approval from the Institutional 
Review Board of Taipei Veterans General Hospital and all participants 
gave the written informed consent. Details are described in 
Supplementary materials.

2.2 Imaging data acquisition

MRI scans were performed at National Yang-Ming University in 
Taiwan using a 3 T Siemens MAGNETOM Tim Trio MRI Scanner 
(Siemens Healthcare, Erlangen, Germany) with a 12-channel head 
coil. Participants were instructed to relax with their eyes closed, 
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without falling asleep. High-resolution structural T1-weighted (T1w) 
images were acquired with three-dimensional magnetization prepared 
rapid gradient-echo sequence (3D-MPRAGE; repetition time, 
TR = 2,530 ms, echo time, TE = 3.5 ms, TI = 1,100 ms, field of view, 
FoV = 256 mm, flip angle = 7°, 192 sagittal slices, voxel size = 1.0 mm3, 
no gap). Resting-state functional MRI was acquired using a gradient 
echo-planar imaging (EPI) sequence (TR = 2,500 ms, TE = 27 ms, 
FoV = 220 mm, flip angle = 77°, matrix size = 64 × 64 × 43, voxel 
size = 3.44 mm × 3.44 mm × 3.40 mm). The rs-fMRI scan consisted of 
200 contiguous EPI volume, which was acquired along the anterior 
commissure–posterior commissure plane. Total scan time for T1w 
and rs-fMRI was 17 min for each participant (Localizer: <1 min, T1w: 
8 min, Resting: 8 min).

2.3 Imaging data preprocessing

fMRI images preprocessing was performed using fMRIPrep 20.2.1 
(Esteban et al., 2019). The overall preprocessing included the following 
steps: removal of the first 10 volumes from the whole series; slice-
timing correction; head motion correction; co-registration to the T1w 
images; physiological noise regressors extraction; estimation of several 
confounding parameters and time-series; spatial smoothing with a 
Gaussian-smoothing kernel of 6 mm full-width at half-maximum 
(FWHM); and regressing out the confounding variables. Participants 
with brain structural abnormalities, mean frame-wise displacement 
(FD) parameters >0.3 mm, or maximum head motion >1.5 mm or 1.5 
degrees, and or more than 10% of the frames FD > 0.5 mm were 
excluded. Details are described in Supplementary materials.

2.4 Connectome gradient analysis

We constructed a region-wise FC matrix for each participant, 
based on Schaefer’s cortical parcellation map of 400 regions (Schaefer 
et  al., 2017), by computing the Pearson correlation coefficients 
(converted to Fisher’s Z-values) between the averaged time series of 
each pair of brain regions. The functional connectome gradients 
(Margulies et al., 2016) were estimated using the BrainSpace toolbox1 
(Vos de Wael et al., 2020). The FC profile vector of each brain region 
was thresholded by retaining the top 10% strongest connections and 
the remaining connections were set to zero, as was done previously 
(Margulies et  al., 2016). We  then calculated the cosine similarity 
matrix that captures similarity in connectivity patterns between each 
pair of regions. The diffusion embedding mapping algorithm with a 
manifold learning parameter of α = 0.5 (Margulies et al., 2016; Hong 
et  al., 2019) was then applied to the similarity matrix to identify 
multiple low-dimensional gradient components. To ensure the 
comparability of the gradient pattern among participants, we used the 
Procrustes rotation alignment approach to align each individual’s 
original gradient distribution pattern to a group-level gradient 
template that based on the overall healthy adults. For each connectome 
gradient, a gradient score was assigned to each brain region, which 
represents the relative hierarchical position along the gradient axes.

1 https://brainspace.readthedocs.io/en/latest/index.html

To quantify the global connectome gradient pattern, we calculated 
the global gradient metrics (post-alignment), including gradient 
explanation ratio, range and variation for all participants. The gradient 
explanation ratio, defined as the eigenvalue of the given gradient 
divided by the sum of all eigenvalues, represents the percentage of 
connectivity variance accounted for by that gradient. The gradient 
range indicates the difference of gradient scores in the encoded 
connectivity pattern between the regions localized at the gradient 
ends. The gradient variation, i.e., the variance of the given gradient, 
reflects the heterogeneity in the connectivity structure across regions.

2.5 Statistical analysis

2.5.1 Cross-age sliding window analysis
To delineate the aging process of connectome gradients at the 

population level aged 20 to 85, we  conducted a cross-age sliding 
window analysis. Specifically, we defined the age windows based on 
participants’ age in ascending order, with each window spanning 
5 years and taking a step size of 1 years. This processing generated 62 
subgroups, with the average age of participants in each window 
ranging from 22.85 to 82.6 years (Figure 1C). For each age window, 
we averaged the aligned gradients across all participants and computed 
three global gradient metrics, including the gradient explanation ratio, 
range and variation.

2.5.2 The aging trajectories of the connectome 
gradient patterns

We used generalized linear regression model (GLM) to quantify 
the age-related changes of three global gradient metrics. At the 
population level, considering the potential linear and nonlinear effects 
of age, we used the linear, quadratic, cubic and bi-quadratic models, 
with global gradient metrics as dependent variable, age as independent 
variable, and education level and mean FD parameters as covariates. 
These models were defined as follows:

Linear model:

 Y b age education meanFD� � � � �� � � �1 2 3

Quadratic model:

 Y b age age education meanFD� � � � � �� � � � �1 2
2

3 4

Cubic model:

 Y b age age age education meanFD� � � � � � �� � � � � �1 2
2

3
3

4 5

Bi-quadratic model:

 

2 3 4
1 2 3 4
5 6

Y b age age age age
education meanFD

β β β β
β β ε

= + + + +
+ + +

Where Y is the global gradient metrics, b is the random effect, and 
ε  is the residual.
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We used the Akaike Information Criterion (AIC) index, Bayesian 
Information Criterion (BIC) index, R-squared and root mean square 
error (RMSE) to determine the best-fit model that best captured the 
age effects. Models with higher R-squared and lower AIC, BIC and 
RMSE are considered to achieve better balance between the goodness 
of fit and simplicity of the model. To determine which model 
performs best-fit to the current dataset, we conducted 1,000 times 
bootstrap resampling in each age window to assess the above best-fit 
metrics on linear, quadratic, cubic and bi-quadratic models, and 
identified the final fitting model using ANOVA to compare these 
criterions between models. Finally, we pinpointed the turning point 
age by identifying the inflection point with the lowest slope of the 
model curve.

Additionally, we  examined the relationship between age and 
gradient scores of functional subnetworks (Yeo’s 7 networks) (Thomas 
Yeo et al., 2011) and regions using the same models mentioned above, 
with the false discovery rate (FDR, Genovese et al., 2002) correction 
q  < 0.05. At the individual level, the aging trajectories of global 
gradient metrics and gradient scores of functional subnetworks and 
regions were also examined, with the FDR correction q < 0.05.

2.5.3 Association between the connectome 
gradients and functional network topographical 
properties

To determine whether the connectome gradients capture the 
functional network property, we  associated the topographical 
integration and segregation of the connectome network with the 
global gradient metrics, controlling the effect of age, gender, education 
level and mean FD parameters. These topographical properties 
included clustering coefficient, characteristic path length, global 
efficiency and small-worldness. To maintain consistency between the 

network density used in this analysis and used in the connectome 
gradient analysis, the top 10% strongest connections were retained. 
The network topographical properties were calculated based on the 
thresholded binary sparse matrix using Brain Connectivity 
Toolbox (BCT).2

To assess the sensitivity of connectome gradients to healthy aging 
compared to the network topology, we conducted a commonality 
analysis and estimated the unique and common variance between 
gradient metrics and topographical properties that explains normal 
aging. The model as follows:

 
1 2 3
4 5

Age b gradient graph gender
education meanFD

β β β
β β ε

= + + +
+ + +

Where b is the random effect, and ε  is the residual.

2.5.4 The cognitive implications of the 
connectome gradient patterns

We measured the working memory ability of each participant 
through digit span forward (DSF) and backward (DSB) tests and 
assessed the general cognition using MMSE. The MMSE consists of 
11 questions divided into six subscales, namely orientation, 
registration, attention and calculation, recall, language, and 
visuospatial skills (Folstein et al., 1975; Cameron et al., 2013; Arevalo-
Rodriguez et al., 2021). The relationship between the connectome 
gradients and cognition abilities were examined in this study. To 

2 https://sites.google.com/site/bctnet/

FIGURE 1

The aging process of functional connectome gradients across the adult lifespan. (A) The principal unimodal-to-transmodal gradient pattern (left). The 
gradient score distributions based on functional subnetworks (Yeo’s 7 networks atlas) in the principal gradient (right). (B) The secondary visual-to-
somatomotor gradient pattern (left). The gradient score distributions based on functional subnetworks in the secondary gradient (right). (C) The 
histogram of sample size distribution in the cross-age sliding window analysis. (D) The global metrics of the principal gradient, including gradient range 
(left), variation (middle) and explanation ratio (right), showed significant non-linear cubic association with age (blue dots and lines). The global metrics 
of the secondary gradient showed a simple linear decreasing aging pattern (orange dots and lines). Surface rendering was generated using BrainNet 
Viewer (www.nitrc.org/projects/bnv/). LIM, limbic network; DMN, default mode network; FPN, frontal–parietal network; VAN, ventral attention 
network; DAN, dorsal attention network; VIS, visual network; SMN, somatomotor network.
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conduct the regression analysis in the population level, we computed 
the mean scores of DSF, DSB and MMSE subscales of 62 cross-age 
sliding windows. The averaged DSF, DSB and MMSE subscale scores 
in age windows were associated with global gradient metrics and 
gradient scores of functional subnetworks using linear regression 
models, controlling the effect of age, education level and mean FD 
parameters. The statistical significance was set at p  < 0.05 after 
Bonferroni correction for the multiple comparisons [Working 
memory: global metrics, p < 0.05/12 (2 gradients × 3 metrics × 2 digital 
span tests); subnetworks: p < 0.05/28 (2 gradients × 7 subnetworks × 2 
digital span tests). MMSE subscales: global metrics, p  < 0.05/36  
(2 gradients × 3 metrics × 6 subscales); subnetworks, p  < 0.05/84  
(2 gradients × 7 subnetworks × 6 subscales)]. At the individual level, 
the association between the connectome gradients and the cognition 
abilities were also examined using linear regression models and 
Bonferroni correction (p < 0.05), with age, gender, education level and 
mean FD parameters as covariates.

2.5.5 Gender effects on the connectome gradient 
patterns

To examine the gender effects on global gradient metrics and 
gradient scores of functional subnetworks and regions at the 
individual level, we conducted the multivariate analysis of covariance 
(MANCOVAN3), with age, education level and mean FD parameters 
as covariates. To identify gender differences in the aging process of the 
connectome gradients, we tested the age-by-gender interaction effects 
on the connectome gradient.

2.5.6 The potential influences of the cross-age 
sliding window parameters

To ascertain the robustness of the main results and investigate the 
potential influences of the cross-age sliding window parameters, 
we conducted validation analysis on the effects of sample size in age 
windows, gender, window width and step size on the main findings. 
The statistical analysis details are described in Supplemental materials.

3 Results

In the studied population, the principal unimodal-to-transmodal 
gradient explained 12.48 ± 1.07% of the total connectivity variance. As 
shown in Figure 1A, this gradient was organized along a gradual axis, 
from the primary visual/somatomotor networks (VIS/SMN) to the 
DMN and limbic network (LIM). The second most significant 
gradient accounted for 11.53 ± 1.32% of the connectome variance, 
with a gradual axis defined by the VIS at one end and the SMN at the 
other (Figure 1B).

3.1 The aging process of the functional 
connectome gradients

At the population level, the global metrics of the principal 
unimodal-to-transmodal gradient, including gradient explanation 

3 https://www.mathworks.com/matlabcentral/fileexchange/27014-mancovan

ratio (t = −5.446, p = 1.187 × 10−6), range (t = −4.906, p = 8.383 × 10−6), 
and variation (t  =  −4.113, p  = 1.292 × 10−4), showed significant 
non-linear cubic associations with age (Table 1 and Figure 1D; Results 
for bootstrap resampling 1,000 times, Supplementary Table S1). The 
principal gradient range and variation initially decreased with age, 
with a minimum value at age 34.58, and then increased until a 
dramatic decline after age 62.05. The corresponding minimum and 
maximum value of gradient explanation ratio at age 30.62 and 68.44. 
Additionally, three subgroups of young, middle-aged and elderly 
individuals were grouped based on the age of min- and max-value of 
explanation ratio. The principal gradient’s explanation ratio was 
significantly greater than that of the secondary gradient in the young 
(Pair t-test. Population level, t = 14.866, p = 1.219 × 10−7; individual 
level, t  = 4.099, p  = 8.507 × 10−5), middle-aged (Population level, 
t = 10.85, p = 4.742 × 10−13; individual level, t = 9.033, p = 1.11 × 10−16) 
and elderly group (Population level, t  = 15.12, p  = 1.252 × 10−9; 
individual level, t = 3.863, p = 0.0014).

The secondary visual-to-somatomotor gradient metrics showed 
simple significant linear decreasing aging patterns (gradient 
explanation ratio: t = 0.153, p = 0.879; range: t = −6.961, p = 3.41 × 10−9; 
variation: t = −6.203, p = 6.3 × 10−8, Figure 1D).

In the principal gradient, significant non-linear cubic aging 
trajectories were detected for SMN (t = 3.719, p_FDR = 0.003), dorsal 
attention network (DAN, t = 2.858, p_FDR = 0.027), LIM (t = −4.111, 
p_FDR = 0.001) and DMN (t  =  −4.186, p_FDR = 0.002) gradient 
scores (Figures 2A,C). The secondary gradient scores of VIS (t = 6.427, 
p_FDR = 4.85 × 10−7), SMN (t  =  −2.749, p_FDR = 0.036), ventral 
attention network (VAN, t  =  −3.473, p_FDR = 0.0098) and DMN 
(t = −2.793, p_FDR = 0.043) showed significant linear association with 
age (Figures 2B,C). At the region level, the regions showed age-related 
increase in principal gradient scores were mainly located around the 
supplemental motor area (SMA), pre- and postcentral gyrus, superior 
(SPL) and inferior parietal gyrus (IPL), superior (SOG) and inferior 
occipital gyrus (IOG), while age-related decreasing gradient score 
were mainly found in the medial prefrontal cortex (mPFC), anterior 
(ACC) and posterior cingulate cortex (PCC), middle temporal gyrus 
(MTG) and superior frontal gyrus (SFG, FDR corrected q  < 0.05. 
Figure 3A and Supplementary Table S2). In the secondary gradient, 
the regions showed age-related increasing score were mainly covered 
the fusiform gyrus, lingual gyrus, SOG, middle occipital gyrus (MOG) 
and cuneus, while age-related decreasing gradient score were mainly 
located around the postcentral gyrus, superior temporal gyrus (STG), 
insula, medial superior frontal gyrus (mSFG), medial orbital frontal 
gyrus (mOFG), ACC and middle cingulate cortex (MCC, FDR 
corrected q  < 0.05, Figure  3B and Supplementary Table S2). The 
age-related changes of the principal and secondary connectome 
gradients at the individual level were shown in Supplementary Results 
and Supplementary Figures S1, S2.

3.2 Association between the connectome 
gradients and functional network 
topographical properties

We examined the association between topographical properties 
and global gradient metrics to determine if connectome gradients 
capture functional network properties. The results showed that the 
global metrics of principal and secondary gradients were significantly 
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associated with clustering coefficient, characteristic path length, global 
efficiency and small-worldness property (Table  2 and 
Supplementary Figure S3). No significant correlation was found 
between the secondary gradient metrics and small-worldness 

property. The commonality analysis showed that the unique 
contribution of global gradient metrics was greater than topographical 
properties or the common contribution of these two on the normal 
aging (Supplementary Table S3).

TABLE 1 Goodness-of-fit metrics for generalized linear regression model.

Gradient 
metrics

Fitting 
model

Unimodal-to-transmodal gradient Visual-to-somatomotor gradient

R2 RMSE AIC BIC R2 RMSE AIC BIC

Range Linear 0.274 0.817 154.774 163.283 0.822 0.597 115.838 124.346

Quadratic 0.37 0.762 146.958 157.594 0.82 0.602 117.703 128.338

Cubic 0.551 0.643 126.792 139.555 0.817 0.606 119.573 132.336

Bi-quadratic 0.588 0.648 128.753 143.644 0.814 0.611 121.334 136.224

Variation Linear 0.249 0.263 14.283 22.791 0.8 0.181 −32.35 −23.842

Quadratic 0.352 0.245 6.096 16.732 0.798 0.182 −30.758 −20.122

Cubic 0.493 0.216 −8.27 4.493 0.795 0.183 −29.032 −16.269

Bi-quadratic 0.511 0.212 −9.597 5.294 0.792 0.185 −27.032 −12.142

Explanation ratio Linear 0.45 0.0026 −560.015 −551.506 0.529 0.0025 −565.369 −556.86

Quadratic 0.582 0.0022 −576.039 −565.403 0.548 0.0024 −566.939 −556.303

Cubic 0.722 0.0018 −600.391 −587.629 0.54 0.0024 −564.985 −552.222

Bi-quadratic 0.764 0.0017 −609.84 −594.95 0.537 0.0024 −563.68 −548.79

RMSE, root mean squared error; AIC, Akaike information criterion; BIC, Bayesian information criterions.

FIGURE 2

The aging process of connectome gradients in functional subnetworks across the adult lifespan. (A) The principal gradient scores of functional 
networks in age windows. (B) The secondary gradient scores of functional networks in age windows. (C) The cubic and linear aging trajectories of the 
principal (blue dots and lines) and secondary (orange dots and lines) gradient scores in functional networks (Yeo’s 7 networks). FDR corrected q <  0.05. 
VIS, visual network; SMN, somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; LIM, limbic network; FPN, frontal–
parietal network; DMN, default mode network.
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3.3 The cognitive implications of the 
connectome gradient patterns

To investigated the cognitive implications of connectome gradients 
at the population level, we examined the association between the global 
gradient metrics and the scores of DSF, DSB and MMSE subscales. The 
results showed a positive association between the principal gradient 
range and the DSF score (t = 3.208, Bonferroni-corrected p = 0.026; 
Figure 4A). Further analysis revealed that the gradient scores of SMN 
and frontal–parietal network (FPN) were significantly related with the 
DSF score (SMN: t = −3.861, Bonferroni-corrected p = 0.004; FPN: 
t = 4.008, Bonferroni-corrected p = 0.0025; Figures 4B,C).

Among the MMSE subscale scores, greater visuospatial skill was 
significantly correlated with the lower degree of principal gradient 
metrics (gradient range: t = −3.942, Bonferroni-corrected p = 0.008; 
variation: t = −4.628, Bonferroni-corrected p = 7.84 × 10−4; explanation 
ratio: t = −5.607, Bonferroni-corrected p = 2.26 × 10−6, Figure 5A). In 
the functional subnetworks, the gradient scores of VIS (t  = 3.68, 

Bonferroni-corrected p  = 0.044), SMN (t  = 5.402, Bonferroni-
corrected p  = 1.12 × 10−4), FPN (t  =  −4.224, Bonferroni-corrected 
p = 0.007) and DMN (t = −5.082, Bonferroni-corrected p = 3.62 × 10−4) 
were significantly associated with the visuospatial skill (Figures 5B–E 
and Supplementary Table S4). Additionally, there were also 
relationships between the language ability and the gradient scores of 
DAN (t  =  −5.73, Bonferroni-corrected p  = 3.33 × 10−5) and LIM 
(t  = 4.669, Bonferroni-corrected p  = 1.58 × 10−3; 
Supplementary Table S4). The association between the connectome 
gradients and the cognitive scores did not detected at the 
individual level.

3.4 Gender effects on the principal 
unimodal-to-transmodal gradient

We found significant gender effects on the principal gradient 
range (t  = 6.26, p  = 0.013), variation (t  = 9.51, p  = 0.0022) and 

FIGURE 3

The age-related changes in regional gradient scores in principal and secondary gradients. (A) The regions showed age-related increase in principal 
gradient score, including the supplemental motor area (SMA), pre- and postcentral gyrus, superior (SPL) and inferior parietal gyrus (IPL), superior (SOG) 
and inferior occipital gyrus (IOG); the regions showed age-related decrease, including the medial prefrontal cortex (mPFC), anterior (ACC) and 
posterior cingulate cortex (PCC), middle temporal gyrus (MTG) and superior frontal gyrus (SFG). (B) The regions showed age-related increase in 
secondary gradient score, including the fusiform gyrus, lingual gyrus, SOG, middle occipital gyrus (MOG) and cuneus; the regions showed age-related 
decrease, including the postcentral gyrus, superior temporal gyrus (STG), insula, medial superior frontal gyrus (mSFG), medial orbital frontal gyrus 
(mOFG), ACC and middle cingulate cortex (MCC). Higher/lower t-value are presented as warm/cold colors. FDR-corrected q <  0.05.

TABLE 2 The association between the connectome gradient global metrics (gradient range, variation and explanation ratio) and functional network 
topographical properties (clustering coefficient, characteristic path length, global efficiency and small-worldness).

Clustering coefficient
Characteristic path 

length
Global efficiency Small-worldness

t p t p t p t p

Principal unimodal-to-transmodal gradient

Range 17.298 <0.001 19.758 <0.001 −19.689 <0.001 −3.265 0.0012

Variation 14.795 <0.001 18.257 <0.001 −18.152 <0.001 −2.976 0.0031

Explanation ratio 4.888 <0.001 8.204 <0.001 −8.13 <0.001 −2.858 0.0045

Secondary visual-to-somatomotor gradient

Range 15.915 <0.001 12.576 <0.001 −12.682 <0.001 −1.366 0.173

Variation 15.042 <0.001 12.369 <0.001 −12.458 <0.001 −1.504 0.134

Explanation ratio 8.074 <0.001 7.66 <0.001 −7.684 <0.001 −0.317 0.751
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explanation ratio (t = 13.53, p = 0.0003), with females showing larger 
values than males (Figure 6A). No age-by-gender interaction effects 
were observed.

In the principal gradient, the SMN exhibited significantly higher 
gradient score in male than female (t  = 8.87, p_FDR = 0.028; 
Figure 6B), while the gradient score of DMN was significantly greater 
in female than in male (t = 10.38, p_FDR = 0.025; Figure 6B), and no 
age-by-gender interaction effects were observed. The gradient score of 
brain regions showed significantly greater in males than in females 
were mainly concentrated in STG, middle frontal gyrus (MFG), 
cingulate cortex and Rolandic opercularis, while the gradient score of 
the precuneus, angular gyrus (AG), IPL and MOG were significantly 
greater in females than in males (Figure  6C and 
Supplementary Table S5). In the secondary gradient, the gradient 

score of regions (SFG and precuneus) from the attention network were 
significantly greater in males than in females (Supplementary Table S5).

3.5 The potential influences of the 
cross-age sliding window parameters

Overall, the cross-age sliding window parameters, including the 
sample size in age windows (Supplementary Figure S4 and 
Supplementary Table S6), the potential effects of gender 
(Supplementary Figure S5), the window width (4, 5, 6, 7, 8, 9, 10; 
Supplementary Figure S6) and step size (1, 2, 3, 4; 
Supplementary Figure S7) did not affect or alter our main findings. 
For full results of these validation analysis, see Supplemental materials.

FIGURE 4

Association between the connectome gradient and working memory ability. (A) The association between the principal unimodal-to-transmodal 
gradient range and the DSF score residuals. (B,C) The association between the gradient scores of SMN (B), FPN (C) and the DSF score residuals. 
Bonferroni correction p <  0.05. DSF, digital span forward; SMN, somatomotor network; FPN, frontal–parietal network.

FIGURE 5

Association between the connectome gradient and the visuospatial skill score of MMSE. (A) The association between the principal unimodal-to-
transmodal gradient metrics [gradient range (left), variation (middle) and explanation ratio (right)] and the visuospatial skill score residuals. (B–E) The 
association between the gradient scores of VIS (B), SMN (C), FPN (D) and DMN (E) and the visuospatial skill score residuals. Bonferroni correction 
p <  0.05. VIS, visual network; SMN, somatomotor network; FPN, frontal–parietal network; DMN, default mode network.
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4 Discussion

The present study investigated the aging process of the brain’s 
functional hierarchical organization across the adult lifespan, utilizing 
cross-age sliding window approach. Our findings demonstrated a 
significant non-linear aging pattern for the principal unimodal-to-
transmodal gradient, contrasted by a linearly decreasing pattern for 
the secondary visual-to-somatomotor gradient. Furthermore, the 
changes in the gradient scores of both the somatomotor and frontal–
parietal networks were associated with greater working memory and 
visuospatial ability. The study also revealed that the principal gradient 
metrics and the gradient scores of SMN and DMN exhibited 
significant gender differences, which were independent of age. The 
current findings enrich our comprehension of the aging trajectories 
of the human brain’s functional hierarchical architecture, which would 
inform future research on pathological models of atypical aging.

Previous studies on the adult brain have demonstrated the 
existence and topography of the principal unimodal-to-transmodal 
and secondary visual-to-somatomotor gradients in the functional 
connectome (Margulies et al., 2016; Hong et al., 2019; Xia M. et al., 
2022). Our study demonstrated that the principal and secondary 
gradient patterns from early to late adulthood are generally maintained 
with age. The variances explained by these two gradient components 

(approximately 24%) were relatively smaller compared to conclusions 
drawn in other studies (Margulies et al., 2016; Bethlehem et al., 2022; 
Xia Y. et  al., 2022). The lower explanation ratio of the principal 
gradient may indicate the less differentiated connectivity pattern 
between the primary and transmodal areas in the studied population, 
which aligns with a prior research (Xia M. et al., 2022). By investigating 
the aging trajectories of gradients, we support the findings by Setton 
et al. (2022) that the gradient pattern may remain stable throughout 
the lifespan. Moreover, we further demonstrated that the principal 
gradient may change nonlinearly, differing from secondary gradient, 
and is associated with cognitive performance. A previous study has 
examined age effects using cross-sectional resting imaging data in 
individuals aged 18 to 88 years and detected an increase in dispersion 
within transmodal communities (DAN, VAN, FPN and DMN), 
reflecting more diverse functional connectivity profiles within each 
community (Bethlehem et al., 2020). In contrast to this study, which 
focused on the ordering of functional networks in a multi-dimensional 
hierarchical framework, our study specifically uncovered age-related 
changes at global and local scales in the hierarchical gradient pattern 
throughout the adult lifespan.

We found that the principal gradient-related metrics change 
nonlinearly with age, and a notable decline can be observed around 
the aged of 62. This finding is consistent with, and supported by 

FIGURE 6

Gender effects on the principal unimodal-to-transmodal gradient. (A) The significant gender effects on the principal global gradient metrics, including 
gradient range, variation and explanation ratio. *p < 0.05; **p <  0.01; ***p <  0.001. (B) The significant gender differences of the principal gradient scores 
of SMN and DMN. FDR-corrected q <  0.05. *p <  0.05.  (C) The gender differences of the principal gradient scores in brain regions. The regions showed 
significantly greater gradient score in males than in females, including STG, MFG, cingulate cortex and Rolandic opercularis; the regions showed 
significantly greater gradient score in females than in males, including the precuneus, AG, IPL and MOG. Warm color: female  <  male. Cool color: female 
> male. FDR-corrected q <  0.05. SMN, somatomotor network; DMN, default mode network; STG, superior temporal gyrus; MFG, middle frontal gyrus; 
AG, angular gyrus; IPL, inferior parietal lobule; MOG, middle occipital gyrus.
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previous aging studies, which have consistently reported a nonlinear 
pattern in both brain structural and functional changes, suggesting the 
age of 60 as a critical point for accelerated aging (Scahill et al., 2003; 
Ramos et al., 2004; Huang et al., 2018; Zonneveld et al., 2019). Aging 
studies have also indicated a significant cognitive or behavioral decline 
occurring around 60 years old (Li et al., 2014; Salthouse, 2019; Nyberg 
et al., 2020). Such decline includes impairments in processing speed, 
working memory and long-term memory (Spreng and Turner, 2019), 
which have greater reliance on executive control supported by the 
brain function of frontal gyrus. These evidences suggest that normal 
brain aging predominantly focuses on frontal regions (Buckner, 2004). 
In our study, we observed significant hierarchical position changes in 
brain regions along the principal and secondary gradient axis with 
increasing age, particularly around the medial superior and middle 
frontal gyrus. This finding aligns with the frontal aging hypothesis, 
that the frontal cortex is the first to malfunction, leading to a decline 
in cognitive functions (West, 1996). Furthermore, a recent study has 
also found a “frontal preservation” pattern characterized by the 
structural network in elderly individuals who experienced successful 
cognitive aging (Yang et al., 2022). These findings not only suggest the 
frontal areas as the key region to deteriorate during the aging process, 
but also support the impact of brain function deterioration on the 
hierarchical nature of brain networks.

Compared to younger adults, older adults exhibited higher 
between-network and lower within-network connectivity in brain 
connectome (Chan et al., 2014; Geerligs et al., 2015; Stumme et al., 
2020). This pattern is generalizable across functional communities 
(Chan et al., 2014; Damoiseaux, 2017), indicating a reorganization of 
brain connectivity in older people. In line with previous findings, 
we observed the narrowing hierarchical distance between unimodal 
and transmodal areas in the principal and secondary gradient axis, 
including increasing gradient score of visual and motor areas and 
decreasing score of frontal, temporal areas and insula. This reflects an 
increase in between-network connectivity or integration in the older 
individuals. The increase of between-network connectivity could 
indicate the age-related alterations in information processing (Chan 
et al., 2014). For instance, Stumme et al. (2020) found increased FC 
between brain networks, suggesting a compensation process to 
maintain the cognitive performance in memory. According to the 
compensatory theory, older adults tend to recruit more brain regions 
or initiate a reorganization process in response to high cognitive 
demand (Cabeza et al., 2018). In particular, older adults may activate 
more anterior prefrontal regions to compensate for sensory processing 
deficits in posterior occipital regions when processing cognitive tasks 
(Li et  al., 2015). Therefore, the reorganization process aids in 
compensating for their higher-order abilities, such as executive and 
memory functions (Cabeza, 2002; Cabeza et al., 2002; Daselaar et al., 
2015; Cabeza et al., 2018), and for impoverished perceptual input, 
especially in the visual domain (Roberts and Allen, 2016). This 
compensation mechanism may influence the connectivity pattern 
between primary and higher-order regions in aging process (Cabeza 
et al., 2018), potentially giving rise to the relative position changes of 
these areas.

During the process of aging, the degeneration of working memory 
is widely regarded as an early sign of cognitive aging, and the 
associated neuropathological changes are highly vulnerable to both 
normal and pathological aging processes (Kirova et al., 2015; Zheng 

et al., 2023). Previous studies found that inferior working memory is 
linked to the decreased brain modularity, small-worldness, local 
efficiency and clustering coefficient (Stevens et al., 2012; Langer et al., 
2013; Stanley et al., 2015; Finc et al., 2020). In our study, we observed 
that the reduced segregation between brain networks located at the 
ends of gradient axis negatively impacts the cognitive performance in 
the population level. Further analysis indicated that the reduced 
functional segregation between the SMN and high-order subsystem, 
i.e., FPN, along the principal gradient axis was related to the 
degeneration of working memory ability. These findings also 
correspond well with the “tethering hypothesis,” which contends that 
the decreased divergence between association and primary cortex may 
impede the promotion of abstract information integration in the 
human brain (Buckner and Krienen, 2013; Smallwood et al., 2021). In 
this situation, the association cortex becomes susceptible to external 
stimuli interference. Within the current study, the shorter distance 
between the unimodal and transmodal areas along the principal 
gradient axis may threaten the performance of higher-order functions. 
This highlights the crucial role of network segregation in maintaining 
cognitive function during the normal aging process.

On the contrary, visuospatial skill is an integrative ability that 
synthesizes some complex cognitive functions such as visual 
recognition, motor control and working memory (Kravitz et al., 2011; 
Bradford and Atri, 2014; Tres and Brucki, 2014; Muiños and 
Ballesteros, 2018) and it supported by the coordinated connectivity of 
neural circuits in visual, motor, executive control and default mode 
networks (Kravitz et al., 2011; Garcia-Diaz et al., 2018; Chen et al., 
2019). In our study, the principal gradient range served as a reverse 
representation of the brain integration between functional 
subnetworks. The decreased relative hierarchical position between 
VIS, SMN, FPN and DMN on the principal gradient axis resulted in 
the increase of visuospatial ability, reflecting the involvement of 
primary and transmodal areas in this combined cognitive process. 
Furthermore, Han et al. also reported opposite effects for functional 
connectivity strength in higher- and lower-order brain regions, where 
increased FC in higher-order regions and decreased FC in lower-order 
regions are associated with complex cognition in youth adults (Han 
et al., 2020). This supports our findings that the increase principal 
gradient range, higher gradient score in transmodal and lower in 
unimodal regions, are associated with working memory and 
visuospatial ability. Therefore, an age-related decrease in gradient 
range may represent reduced network segregation, with proximity in 
hierarchical positions of higher and lower-order brain regions 
impacting cognitive ability. Overall, this underscores the value of 
gradient analysis in the interpreting FC changes, highlighting that 
different coordination patterns are required in brain networks to 
support various complex cognitive abilities. Future research should 
focus on the microstructural changes in brain networks across 
different functional hierarchies to elucidate the neurobiological 
mechanisms underlying changes in network hierarchy during 
aging process.

Our present study also found significant gender-dependent effects 
on the principal gradient metrics, where the female group showed the 
wider range, larger variation and higher explanation ratio compared 
to male participants. This represented the more differentiated 
connectivity pattern between unimodal and transmodal regions in 
females and more integrated pattern in males, consistent with previous 
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findings (Satterthwaite et al., 2015; Goldstone et al., 2016; Stumme 
et al., 2020). Importantly, these gender effects on the principal gradient 
were independent of aging, indicating that the differences in 
connectome hierarchical organization persist from early to late 
adulthood. The identified gender differences in subnetworks’ gradient 
score were observed in the SMN (male > female) and DMN 
(female > male) that corroborated the previous works based on the 
connectome gradient analysis (Liang et al., 2021), machine learning 
approaches (Zhang et  al., 2018; Weis et  al., 2020) and brain 
connectivity (Ritchie et  al., 2018). This distinction in brain 
connectome may partly account for the advantages in specific 
behaviors and cognitive functions in males or females. The DMN, 
which is often considered as an important part of the “social brain” 
(Kennedy and Adolphs, 2012; Mars et  al., 2012), may indicate to 
higher abilities in domains such as social cognition in females, and the 
SMN may implicate better performance in spatial and motor tasks in 
males (Gur et al., 2012; Satterthwaite et al., 2015). While our findings 
align with previous researches on brain function and structure 
(Satterthwaite et  al., 2015; Sang et  al., 2021), some studies have 
reported age-by-gender interactions in brain development and aging 
(Zuo et  al., 2010; Wu et  al., 2013). Further investigations using 
multimodal neuroimaging and behavioral datasets are necessary to 
gain a better understanding of the gender effects on the brain 
organization mechanisms across the lifespan.

5 Limitations

Several limitations need to be addressed in our study. Firstly, the 
non-uniform sample size distribution across age windows may affect 
the final fitting model. We addressed this by randomly selecting five 
participants from each age window for validation using the same 
statistical analysis, confirming that our main results are not affected 
by sample size. However, larger datasets are required to further verify 
our findings. Secondly, while our aging trajectory analyses of 
principal gradient-related metrics suggest higher-order regression 
models may be  more suitable, we  chose the cubic model for its 
appropriateness in modeling brain developmental and aging 
trajectories, as demonstrated in previous studies including evidence 
from the anatomical structure (Ng et  al., 2016; Bethlehem et  al., 
2022), functional connectome (Zuo et  al., 2010; Ng et  al., 2016; 
Bethlehem et al., 2020; Setton et al., 2022) and topological properties 
(Cao et al., 2014; Chan et al., 2014). Moreover, the cubic model also 
showed statistical optimality in the bootstrap and validation analyses, 
particularly for modeling changes in gradient range, a key metric for 
functional hierarchical architecture. Thirdly, we  currently used 
MMSE subscales to determine cognitive relevance of brain functional 
hierarchy. Subsequent research may consider assessing different 
domains of cognitive abilities and enhancing the specificity and 
generality of findings in both context of normal and pathological 
aging process. Lastly, our results are based on the population cohort, 
and the discussion on aging process and its cognitive implications are 
restricted to the population level, rather than representing 
individualized aging processes. Future longitudinal studies will 
be needed to confirm whether connectome gradients are sensitive 
enough to detect changes in functional reorganization during aging 
in healthy or diseased individuals.

6 Conclusion

To summarize, we delineated the aging-related changes in the 
principal unimodal-to-transmdodal and secondary visual-to-
somatomotor functional connectome gradients throughout the adult 
lifespan. Additionally, we  demonstrated the independent effect of 
gender on network hierarchical organization. The principal gradient 
captured the topographical property of functional networks and was 
associated with the decline of working memory and visuospatial 
abilities. These findings provide evidence for further investigations 
into brain function and its biological basis, offering important 
implications for developing precise strategies to maintain cognitive 
ability throughout the lifespan in both health and disease.
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