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Objective: To determine whether the brain-derived neurotrophic factor 
(BDNF) Val66Met polymorphism is associated with cognitive impairment (CI) 
in community-dwelling Chinese older adults, and to investigate whether this 
relationship is modified by the Apolipoprotein E (APOE) ɛ4 allele.

Methods: The study is a secondary analysis of 703 participants aged ≥60  years 
randomly enrolled from the Beijing Longitudinal Study of Aging II prospective 
cohort. The education-adjusted Mini-Mental State Examination and the Clinical 
Dementia Rating Scale were used to measure the cognitive performance of the 
subjects. The main effects and interactions (additive and multiplicative) of the 
BDNF Met and the APOE ε4 alleles on CI were estimated by logistic regression 
models.

Results: In total, 84 out of 703 older adults aged ≥60  years old had CI. No 
significant difference was observed in the risk of CI between participants with 
the BDNF Met allele and that of subjects without the BDNF Met allele (p  =  0.213; 
p  =  0.164). Individuals carrying both the BDNF Met and APOE ε4 alleles had 
an almost 1.5-fold increased odds of CI compared with carriers of the BDNF 
Met allele but without the APOE ε4 allele. The additive association indicated 
a positive interaction of both BDNF Met and APOE ε4 alleles with wide CIs 
(p  =  0.021; p  =  0.018).

Conclusion: The results suggest that the APOE ε4 allele may be  a potential 
modifier for the association of the BDNF Val66Met polymorphism with CI in 
community-dwelling older adults.
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Introduction

Aging is usually described as a multifaceted deterioration within 
cognitive disorders and other physical dysfunctions that are known to 
induce the loss of functional capacity and decreased quality of life in 
older adults. Aging is often accompanied by a decline in some 
cognitive domains including memory, learning, concentration, 
execution, and calculation. However, cognitive dysfunction ascribed 
to senescence is not equally observed in adults, and a substantial 
proportion of individuals still maintain healthy cognitive function 
even into old age. It has been reported that some genetic predisposition 
to different cellular and molecular neurobiological factors affecting 
long-term cognitive ability may explain the heterogeneity seen in 
cognitive performance in older people (Alzheimer's, 2012). 
Comprehending the genetic sources of heterogeneity in cognitive 
aging could provide crucial contributions to future endeavors aimed 
at screening, treatment, or prevention of neurodegenerative diseases 
such as Alzheimer’s disease (AD).

It has been reported that some cognitive disorders observed in the 
elderly may be  associated with disruptions in the neurotrophic 
systems (Mattson et al., 2004). Genetic studies have indicated that 
variations of alleles within the neuroplasticity-related gene encoding 
for neurotrophins may be  potential sources of some individual 
variations in cognitive aging (Barha et  al., 2019). Brain-derived 
neurotrophic factor (BDNF) is characterized to partake in neuronal 
growth and differentiation and synaptic plasticity, which performs an 
essential role in memory storage and learning (Song et al., 2015). The 
human BDNF gene located on chromosome 11p14.1, is composed of 
11 exons and 9 functional promoters. A guanine to adenine single 
nucleotide polymorphism (SNP) within the pro-domain region of the 
BDNF gene at position 196 of exon 2 results in an amino acid 
substitution from valine (Val) to methionine (Met) at codon 66, which 
is associated with reduced levels of the activity-dependent neuronal 
secretion of the mature form of BDNF (Egan et al., 2003; Chen et al., 
2008). Although numerous studies have shown a relationship between 
Val66Met polymorphism in the BDNF gene and cognitive 
performance, some have failed to establish such an association (He 
et al., 2007; Bicalho et al., 2018; Zhao et al., 2018); the influence of the 
Met allele, in particular, has not been determined (Toh et al., 2018). 
Even the relationship between BDNF Val66Met polymorphisms and 
cognitive function remains controversial (Brown et al., 2020). Previous 
studies have confirmed that older adults with the Met allele have a 
higher risk of cognitive impairment (CI) compared to Val 
homozygotes carriers (de Azeredo et al., 2017; Lim et al., 2018; Tan 
et al., 2018), and some have found that the Val allele may increase this 
risk (Ventriglia et al., 2002; Matsushita et al., 2005; Rezaei et al., 2017). 
These contradictory findings may be partly due to the omission of 
some confounding factors such as age (Brown et al., 2020), sex (Li 
et al., 2017; Barha et al., 2019) and other neurodegenerative pathologies.

The apolipoprotein E epsilon 4 (APOE ε4) allele is a major genetic 
risk factor for sporadic AD (Reiman et al., 2007). In recent years, 
BDNF Val66Met polymorphism has been reported to interact with 
APOE ɛ4 on working memory, verbal and visual episodic memory, 
and the progression of mild cognitive impairment (MCI) (Forlenza 
et al., 2010; Ward et al., 2014; Lim et al., 2015; Gomar et al., 2016). 
While some studies did not indicate the influence of BDNF/APOE 
gene–gene interaction on cognitive performance, incidents of AD or 
MCI (Forlenza et al., 2010; Richter-Schmidinger et al., 2011; Zhao 

et al., 2018). There is limited information and uncertain conclusions 
regarding the interactive effect of the BDNF Val66Met gene 
polymorphism and the APOE ε4 allele on the risk of CI in community-
dwelling elderly. The purpose of this study is to investigate whether 
the BDNF Val66Met polymorphism may confer CI risk through the 
modifying effect of APOE ε4, based on data from the Beijing 
Longitudinal Study of Aging II (BLSA II) prospective cohort.

Materials and methods

Study design and participants

This is a secondary analysis of data from the BLSA II prospective 
cohort project, which randomly enrolled 10,039 community-dwelling 
residents aged ≥55 years old in Beijing in 2009 (Ji et al., 2020). All 
eligible residents provided their informed consent. The research ethics 
committee of Xuanwu Hospital at Capital Medical University provided 
approval for the protocol of this study.

DNA samples were available for 8,405 subjects of the BLSA II 
prospective cohort, among which 730 older adults aged ≥60 years 
were randomly enrolled in the present study and completed both 
BDNF Val66Met and APOE genotype testing. For the current analysis, 
27 participants without completed cognitive assessments (n = 21) or 
education data (n = 6) were excluded.

Cognitive measures and CI definition

The global cognitive function of the subjects was measured using 
the Mini-Mental State Examination (MMSE) and the Clinical 
Dementia Rating Scale (CDR). As described elsewhere (Cui et al., 
2011), CI was defined by the CDR score ≤ 1, and the MMSE 
score ≤ 17 (illiterate) ≤ 20 (primary school) or ≤ 24 (secondary school 
or above).

Assessment of covariates

These covariates were selected a priori as potential confounders 
based on the literature (Stuck et  al., 1999; Kalaria et  al., 2008). A 
standardized self-administered questionnaire comprising information 
on demographics, smoking and drinking history, comorbidities (i.e., 
cerebrovascular disease, hypertension, heart disease, diabetes, 
cataracts, hearing impairment) and depression was administered in a 
face-to-face interview by trained physicians and nurses. Smoking or 
drinking status was categorized as “never” or “past and current.” 
Depression was assessed by the 15-item Geriatric Depression Scale 
(GDS) with a score of ≥5 (Almeida and Almeida, 1999).

Genotyping

DNA was isolated from peripheral venous blood using the 
standard phenol-chloroform method. Genotyping of APOE 
polymorphism (APOE ε2, 3, 4) and BDNF Val66Met polymorphism 
was examined by polymerase chain reaction (PCR) (Xiu et al., 2017). 
The following primers were designed to amplify APOE and BDNF 
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genes, respectively: (APOE) 5′-TCCAAGGAG-GTGCAGGCGGC 
GCA-3′ (forward) and 5′-ACAGAATTCGCCCCGGCCTGGTACA 
CTGCCA-3′ (reverse); (BDNF) 5′ -GGACTCTGGAGAGCGTGAA-3′ 
(forward) and 5′ -CGTGTACAAGTCTGCGTCCT-3 (reverse). 
Genotyping of the PCR products was subsequently performed using 
Sanger sequencing. BDNF Val66Met and APOE genotype assays and 
calls were conducted by researchers blinded to clinical data.

Statistical analysis

Allele and genotype frequencies were determined by counting and 
calculating sample proportions, and the Hardy- Weinberg equilibrium 
was estimated by the Chi-squared (χ2) test. Continuous variables were 
described as mean ± standard deviation (SD) and analyzed by the 
Mann–Whitney U test based on distributional properties. Categorical 
variables were presented as percentages and frequencies and analyzed 
by the χ2 tests.

Participants were defined as BDNF Met allele carriers who had at 
least one allele of Met (Val/Met and Met/Met), and the others were 
defined as BDNF Met allele (Val/Val) negative. The association of the 
BDNF Val66Met polymorphism with CI was assessed by binary 
logistic regression analyses, which were performed with initial 
adjustment for age, sex, and years of education (model 1), and further 
adjustment for the variables in model 1 plus other potential 
confounding factors (model 2).

All individuals were divided into four groups to estimate possible 
joint effects of the BDNF Met and the APOE ε4 alleles on CI: 
participants carrying neither the BDNF Met allele nor the APOE ε4 
allele (group A, reference group), participants carrying the BDNF Met 
allele but not the APOE ε4 allele (group B), participants without the 
BDNF Met allele but with the APOE ε4 allele (group C) and 
participants with both the BDNF Met and APOE ε4 alleles (group D). 
The risk of CI in all groups was tested by binary logistic regression 
models (model 1 and Model 2). Possible additive effects of the BDNF 
Met and APOE ε4 alleles were examined by comparing the odds ratios 
(ORs) of group D with the summed ORs of groups B and C, with a 
calculation of the relative excess risk due to interaction (RERI) (RERI 
score>0: positive additive interaction; RERI score<0: negative 
interaction) (Hosmer and Lemeshow, 1992; Muller-Gerards 
et al., 2019).

The effect of the APOE ε4 allele on the relationship between the 
BDNF Val66Met polymorphism and CI was calculated with two 
logistic regression models (model 1 and model 2). The ORs for 
incident CI in APOE ε4 individuals carrying the BDNF Met allele were 
compared with the ORs in the subjects without the BDNF Met allele. 
The measure of interaction between the BDNF Met and APOE ε4 
alleles on a multiplicative scale was calculated based on the following 
logistic regression model (de Mutsert et al., 2009):

Ln [p/ (1−p)] = β0 + β1
⁎

 BDNF Met + β2
⁎

 APOE ε4 + β3
⁎

 BDNF 
Met

⁎
 APOE ε4 [p/ (1−p): the odds of the outcome, p/ (1−p) =1: no 

interaction, p/ (1−p)>1: positive interaction, p/ (1−p) <1: negative 
interaction; β3: the regression coefficient of the modification effect on 
a multiplicative scale]

Statistical significance was set at a two-tailed p value <0.05. SPSS 
version 25.0 (IBM Corp, Armonk, NY, United States) and R Statistical 
Software (version 3.4.2; R Foundation for Statistical Computing, 
Vienna, Austria) were used for data analysis.

Results

The full sample of this study consisted of 703 participants which 
included 84 (11.95%) individuals with CI and 619 subjects with 
normal cognitive function. There were 210 subjects carrying (29.87%) 
Val/Val homozygotes, 350 (49.79%) with Val/Met heterozygotes, and 
143 with (20.34%) Met/Met homozygotes, with no deviation from the 
Hardy–Weinberg equilibrium (p = 0.99). A total of 264 individuals 
carried at least one APOE ε4 allele. Table 1 shows the demographic 
and clinical characteristics.

Results of binary logistic regression analyses for the independent 
influence of the APOE ε4 or BDNF Met alleles on CI are shown in 
Table 2. Participants carrying the APOE ε4 allele had a higher risk of 
CI compared to those without the APOE ε4 allele (p < 0.001 for model 
1 and model 2). There was no significant variation in the distribution 
of CI status between participants with the BDNF Met allele and 
subjects without the BDNF Met allele (p = 0.213 for model 1; p = 0.164 
for model 2).

Tables 3, 4 show the results of logistic regression analyses for 
the interactive effect of the APOE ε4 and BDNF Met alleles on CI, 
with the highest OR for CI in group D (p = 0.006 for model 1; 
p = 0.003 for model 2). Among APOE ε4 allele carriers, individuals 
with the BDNF Met allele showed an almost 1.5-fold higher OR 
for CI compared with subjects without the BDNF Met allele 
(p = 0.041 for model 1; p = 0.036 for model 2), which was not 
observed in participants without the APOE ε4 allele (right column 
in Tables 3, 4). RERI scores indicated a positive additive interactive 
effect of both the BDNF Met allele and the APOE ε4 allele on the 
risk of CI (p = 0.021 for model 1; p = 0.018 for model 2). A possible 
multiplicative positive interaction was detected for the two 
adjusted models, but neither of the two multiplicative scales 
reached statistical significance (p = 0.081 for model 1; p = 0.089 for 
model 2).

Discussion

In the present study, no independent effect of the BDNF 
Val66Met polymorphism on CI was observed in community-
dwelling older adults. Our results showed a higher risk of incident 
CI in individuals with the BDNF Met allele compared with Val/Val 
homozygotes in APOE ε4 allele carriers, and a positive interactive 
effect of carrying the BDNF Met allele and the APOE ε4 allele on CI, 
which suggested that BDNF Val66Met polymorphism might confer 
the risk of CI via the interaction of the APOE ε4 allele in community-
dwelling older adults.

Many studies have attempted to explore the correlation 
between Val66Met polymorphisms in the BDNF gene and CI with 
ambiguous findings. While some studies indicated that the BDNF 
Met allele was associated with cognitive dysfunction (Ventriglia 
et al., 2002; Matsushita et al., 2005; Lin et al., 2014), similar to our 
findings, other works failed to find this significant relationship 
(Desai et al., 2005; He et al., 2007; Kim et al., 2011). Our results 
provided a possible explanation that the BDNF Met allele might 
increase the risk of CI among community-dwelling elderly 
residents, potentially interacting with the APOE ε4 allele. A 
number of possible reasons could explain the modifying effect of 
the APOE ε4 allele.
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First, many lines of evidence suggest that BDNF Val66Met is a 
downstream mediator of amyloid beta (Aβ) toxicity on 
hippocampal function (Lim et al., 2013). Lim et  al. found that 
subjects with the BDNF Met allele showed significant cognitive 
decline as compared to Val/Val homozygotes, in healthy individuals 

with high levels of Aβ accumulation. BDNF Val66Met was not 
observed to be associated with cognitive deficits in subjects with 
low Aβ. These findings show that carrying the BDNF Met allele 
could hasten the onset of clinically significant cognitive 
dysfunction related to the presence of a high brain Aβ load (Lim 

TABLE 2 Odds ratios for CI by the occurrence of the APOE ε4 allele and the BDNF Met allele.

Model 1 Model 2

OR (95% CI) p-value OR (95% CI) P-value

BDNF Met allele 1.405 (0.823–2.397) 0.213 1.476 (0.853–2.553) 0.164

APOE ε4 2.325 (1.388–3.893) 0.001 2.683 (1.512–4.603) 0.001

Model 1: adjusted for age, sex, education.
Model 2: adjusted for all the comorbidities listed in Table 1.
CI, confidence interval; OR, odds ratio.

TABLE 3 Risk of CI for BDNF Met allele and APOE ε4 genotype groups (model 1).

BDNF Met allele (−) BDNF Met allele (+) OR (95% CI); P for BDNF Met allele 
within strata of APOE ε4

Risk of 
incident CI

CI/NC OR (95% CI) CI/NC OR (95% CI)

Model 1

APOE ε4 (−)
14/117 1 (reference) 31/277 0.928 (0.470–1.831) 0.928 (0.470–1.831)

Group A Group B p = 0.829 P = 0.829

APOE ε4 (+)
7/72 1.108 (0.411–2.984) 32/153 2.787 (1.346–5.771) 2.516 (1.036–6.106)

Group C p = 0.840 Group D P = 0.006 P = 0.041

Effect modification: RERI (95% CI) = 1.751 (0.179–3.323), P = 0.021.
Multiplicative scale: ratio of ORs (95% CI) = 2.711 (0.885–8.305), p = 0.081.
ORs are adjusted for age, sex, education.

TABLE 1 Study participant characteristics by cognitive function status.

Characteristics n% CI N  =  84 NC N  =  619 p-value

Age (years), mean (SD) 72.63 (6.87) 69.73 (6.65) <0.001

Sex: male, n (%) 26 (30.95) 245 (39.58) 0.127

Years of education, mean (SD) 7.68 (4.38) 8.25 (4.23) 0.277

MMSE scores, mean (SD) 18.48 (5.39) 27.57 (2.78) <0.001

Depression, n (%) 14 (16.67) 80 (12.92) 0.344

Cerebrovascular disease, n (%) 14 (16.67) 71 (11.47) 0.170

Hypertension, n (%) 42 (50.00) 334 (53.96) 0.495

Heart disease, n (%) 17 (20.24) 130 (21.00) 0.872

Diabetes, n (%) 21 (25.00) 135 (21.81) 0.509

COPD, n (%) 2 (2.38) 24 (3.88) 0.495

Tumor, n (%) 1 (1.19) 15 (2.42) 0.477

Cataract, n (%) 14 (16.67) 63 (10.18) 0.074

Hearing problems, n (%) 8 (9.52) 28 (4.52) 0.051

Past or current alcohol use, n (%) 9 (10.71) 92 (14.86) 0.309

Past or current smoking, n (%) 16 (19.05) 131 (21.63) 0.655

BDNF genotypes, n (%) 0.507

BDNF Val/Val 21 (25.00) 189 (30.53)

BDNF Val/Met 43 (51.19) 307 (49.60)

BDNF Met/Met 20 (23.81) 123 (19.87)

APOE ε4 allele, n (%) 39 (46.43) 224 (36.19) 0.069

ε4/ε4 4 (4.76) 33 (5.33)
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et  al., 2015). Extensive brain Aβ deposition is well known to 
be associated with APOE genotype, particularly with the number 
of APOE ε4 alleles (Verghese et al., 2011; Villemagne et al., 2011; 
Liu et al., 2013). It has been reported that among APOE ε4 carriers, 
carrying the BDNF Met allele correlates to a greater Aβ load 
compared to Val homozygotes, particularly in the precuneus, 
orbitofrontal cortex, gyrus rectus, and lateral prefrontal cortex 
(Adamczuk et al., 2013). Also, BDNF Met within APOE ε4 carriers 
had significantly more amyloid deposition in regions typically 
affected by AD (Stonnington et  al., 2020). This supports our 
findings that APOE ε4 may influence the association of BDNF 
Val66Met polymorphism and CI through Aβ deposition.

Second, the interactive effect of APOE/BDNF on the integrity of 
brain functional connectivity may provide another explanation for our 
findings. Recent work showed slightly decreased functional 
connectivity within the Dorsal Attention Network (DAN) in BDNF 
Met carriers/APOE ε3 homozygotes compared to BDNF Met/APOEε4 
carriers in healthy older adults (Pietzuch et al., 2021).

However, the mechanism underlying the correlation between 
APOE/BDNF interactions and CI remains elusive. It’s reported that the 
Met allele alters the trafficking and packaging of intracellular 
pro-BDNF, thereby regulating the secretion of mature BDNF 
(mBDNF) (Chen et al., 2004). Although the BDNF gene Val66Met 
polymorphism does not appear to affect the secretion of pro-BDNF 
and mBDNF (Mo et  al., 2021), APOE ε4 blocks the secretion of 
mature-BDNF (Rainey-Smith et al., 2014; Sen et al., 2017). Pro-BDNF 
and mBDNF have opposing biological processes (Lu et al., 2005). 
There may be  a mechanistic link between the BDNF Val66Met 
polymorphism and APOE isoforms in regulating mature-BDNF 
secretion and conversion of pro-BDNF to mBDNF.

Although there have been many suggestions that BDNF Val66Met 
polymorphism is involved in cognitive dysfunction (de Azeredo et al., 
2017; Lim et  al., 2018; Tan et  al., 2018), no clear evidence of the 
association between BDNF Val66Met and CI has been explored in 
previous studies. The individuals in the current study were randomly 
selected from community-dwelling elderly subjects in the BLSA II 
prospective cohort. This increases the authenticity and reliability of 
the data and reduces recruitment bias. Our study adds cross-sectional 
evidence to a growing body of literature on the correlation of BDNF 
Val66Met polymorphism with CI. Our findings demonstrate the 
association of BDNF Val66Met with CI, and show the necessity of 
APOE ε4 for this relationship. The strength of these results provides 
more evidence to re-evaluate the effect of the BDNF Met and the 
APOE ε4 alleles on cognitive dysfunction in the elderly.

Our research has several limitations. First, the number of 
participants was limited, although individuals in the current study 
were randomly selected from the BLSA II cohort. Second, the MMSE 
and CDR scores with evidence of a marked ceiling effect were used to 
define CI, and may have missed important levels of CI. Additionally, 
the physical activity of older adults, which could potentially affect the 
association of BDNF Val66Met polymorphisms with cognitive 
function was not included in our analysis. Further longitudinal studies 
are required to explore the association of BDNF Val66Met 
polymorphisms with CI or other forms of cognitive decline of various 
etiologies to confirm our findings.

Conclusion

In conclusion, the results demonstrate the role of the APOE ε4 
allele in modifying the association between BDNF Val66Met and CI 
in community-dwelling older adults. This finding may provide further 
evidence to evaluate the influence of BDNF Val66Met polymorphism 
and the APOE ε4 allele on cognitive dysfunction in the elderly and 
contribute to the screening, treatment, or prevention of CI in 
the future.
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