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Introduction: Mild cognitive impairment (MCI) is an important stage in
Alzheimer’s disease (AD) research, focusing on early pathogenic factors and
mechanisms. Examining MCI patient subtypes and identifying their cognitive
and neuropathological patterns as the disease progresses can enhance our
understanding of the heterogeneous disease progression in the early stages
of AD. However, few studies have thoroughly analyzed the subtypes of MCI,
such as the cortical atrophy, and disease development characteristics of each
subtype.

Methods: In this study, 396 individuals with MCI, 228 cognitive normal (CN)
participants, and 192 AD patients were selected from ADNI database, and a
semi-supervised mixture expert algorithm (MOE) with multiple classification
boundaries was constructed to define AD subtypes. Moreover, the subtypes
of MCI were obtained by using the multivariate linear boundary mapping of
support vector machine (SVM). Then, the gray matter atrophy regions and
severity of each MCI subtype were analyzed and the features of each subtype
in demography, pathology, cognition, and disease progression were explored
combining the longitudinal data collected for 2years and analyzed important
factors that cause conversion of MCl were analyzed.

Results: Three MCI subtypes were defined by MOE algorithm, and the three
subtypes exhibited their own features in cortical atrophy. Nearly one-third of
patients diagnosed with MCI have almost no significant difference in cerebral
cortex from the normal aging population, and their conversion rate to AD are
the lowest. The subtype characterized by severe atrophy in temporal lobe and
frontal lobe have a faster decline rate in many cognitive manifestations than
the subtype featured with diffuse atrophy in the whole cortex. APOE €4 is an
important factor that cause the conversion of MCI to AD.

Conclusion: It was proved through the data-driven method that MCI collected
by ADNI baseline presented different subtype features. The characteristics and
disease development trajectories among subtypes can help to improve the
prediction of clinical progress in the future and also provide necessary clues to
solve the classification accuracy of MCI.
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1 Introduction

Mild cognitive impairment (MCI) is a stage between Alzheimer’s
disease (AD) and cognitive normal (CN; Knopman et al., 2021). It is
widely accepted that most late-onset AD patients originate from the
MCI process. Previous MCI studies focused on gray matter atrophy,
distinguishing MCI from AD or CN, and predicting MCI conversion.
However, the current classification or prediction of conversion for
MCI leaves much to be desired (van Oostveen and de Lange, 2021).
This can be attributed primarily to two factors: First, when compared
to AD, the disparity in cortical atrophy between MCI and CN
individuals is relatively minor, leading to decreased accuracy in
classification. Second, the variability in brain structures and disease
progression among MCI patients complicates the classification and
prediction of conversion, as not all MCI cases are homogeneous
(Dubois and Albert, 2004; Bondi et al., 2014). Exploring the
distinctions among MCI subtypes can deepen our insight into the
cortico-cerebral, pathological, and neuropsychological aspects of
MCI. This knowledge can offer crucial references for improving the
accuracy of predicting MCI conversion and classification.

Studies on AD subtypes are theoretically grounded in the autopsy
findings of Murray et al., which identified three distinct AD subtypes:
typical AD, hippocampal-sparing AD, and limbic-predominant AD
(Murray et al., 2011). Recent studies have supported the definition of
on AD subtypes through cortical atrophy aligning with three identified
subtypes (Zhang et al., 2021). However, the use of autopsy results to
understand the majority of MCI patients is limited. This limitation
arises because of factor such as their extended survival, the intricate
progression of their condition, and the nuanced differences between
CN individuals. Moreover, the dependence on cognitive scales for
subtype discrimination could be influenced by patients’ educational
and cultural backgrounds, thereby introducing thus posing challenges
to MCI subtype research (Berezuk et al., 2021).

The approach of defining MCI subtypes based on magnetic
resonance imaging (MRI) features and data-driven methods has
attracted the interest of researchers. In recent years, the extraction of
features and construction of classifiers using deep learning or machine
learning techniques based on MRI data have become prominent
research areas. These methods have yielded promising results in AD
classification and the investigation of abnormal brain connectivity
patterns (Zuo et al,, 2023, 2024). In subtype studies, the uncertainty of
subtype categories often necessitates the use of unsupervised or semi-
supervised methods. However, minor differences among MCI subjects
can limit the effectiveness of simple clustering for subtype definition.
Some studies have categorized MCI into subtypes that align closely
with AD (e.g., A-CI, MCI-AD) or normal aging (e.g., N-CI, MCI-CN),
potentially overlooking other subtypes (Kwak et al., 2021; Zhao et al.,
2022). To augment the effectiveness of unsupervised clustering
methods, some studies have integrated cerebrospinal fluid (CSF)
markers to form clusters or statistical characteristics. For instance,
Nettiksimmons et al. utilized 11 variables, including total brain
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volume, hippocampal volume, cortical thickness, and CSE, to segregate
138 baseline MCI subjects from ADNI into four subgroups. This
segregation was based on disease severity and employed minimum
variance and Euclidean distance measurement clustering methods
(Nettiksimmons et al., 2014).

Dongetal. (2017) and Ten Kate et al. (2018) applied the definition
of AD subtypes to construct MCI subtypes, confirming the feasibility
of this method for several MCI subtypes. However, these studies have
only limitedly explored MCT’s longitudinal development, lacking
longitudinal subtype attribution and correlation analysis of conversion
to AD. Edmonds et al. (2015) utilized cognitive scale scores to classify
the MCI population within the ADNT into distinct subtypes: dynamic
MCI, dysexecutive MCI, amnestic MCI, and cluster-derived normal
MCI. Their findings affirm MCI heterogeneity from a cognitive
standpoint. They suggested that about a third of the population-
derived groups diagnosed as MCI may have false positives, advocating
for more biological markers in future MCI groupings (Edmonds et al.,
2016). While this false-positive theory is not widely accepted yet, their
proposed four subtypes serve as a reference for future research. Thus,
MCI subtyping based on MRI features warrants further study
regarding subtype definition subtype, biomarker correlation, and
subtype disease progression.

Given that MCI is typically the prodromal stage of AD, these
subtypes were delineated through a semi-supervised mixture of
experts (MOE) approach, leveraging cortical thickness measurements
from T1-weighted MRI images to develop several support vector
machine (SVM) classifiers. The subtype attribution of MCI was
determined by the minimum distance from MCI subjects to each
SVM’s hyperplane. Compared to AD, the longitudinal development of
the disease is a unique research focus of the MCI stage, such as
whether patients convert into AD and the conversion time (Nelson
etal, 2021). This study found that in ADNT’s longitudinal acquisition,
some MCI subjects’ tracking data were missing, potentially affecting
the subtype analysis in the disease’s longitudinal development, a factor
overlooked in previous studies. Hence, a relatively reasonable
longitudinal data screening process was established to conduct a
detailed analysis of neuropsychology and pathology in the subtypes’
longitudinal development.

2 Materials and methods
2.1 Participants and MRI processing
The data for this study were sourced from the ADNI database,’

accessed on August 30, 2023 (Mueller et al., 2005). Established in
2004, the ADNI project comprises a collection of MRI scans along

1 www.adni.loni.usc.edu
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with neuropsychological and neuropathological data. During the
initial phase (ADNI-1), approximately 800 participants aged between
55 and 90 years were enrolled. This cohort included CN individuals,
patients diagnosed with AD, and those with MCI. The specific criteria
for participant inclusion and exclusion have been detailed by Petersen
etal. (2010).

The eligibility criteria for the MCI group adhered to the NINCDS/
ADRDA standards and included a mini-mental state examination
(MMSE) score between 24 and 30, self-reported memory complaints,
objectively measured memory loss (adjusted for education) using the
Wechsler memory scale logical memory II, a clinical dementia rating
(CDR) of 0.5, no significant impairments in other cognitive domains,
and reasonably preserved daily living activities. For the CN group, the
inclusion criteria were an MMSE score between 24 and 30 and a CDR
of 0. Participants classified as having probable AD had an MMSE score
ranging from 20 to 26 and a CDR of 0.5 or 1. Based on these inclusion
criteria of each group in ADNI, all subjects who effectively underwent
baseline MRI were included in subsequent studies. This resulted in a
total of 192 AD patients, 396 MCI patients, and 188 CN participants
(Table 1).

MRI scans were conducted using 1.5 T scanners with the following
parameters: a repetition time (TR) of 3,000 ms, an echo time (TE) of
3.55ms, slice thickness of 1.2mm, and a voxel size of
1.2%0.94%x0.94mm’ (Jack et al., 2008). All subjects adhered to a
uniform MRI acquisition standard.

2.2 ROIs feature extraction

Cortical reconstruction and regions of interest (ROIs)
segmentation for all subjects, including those with MCI, AD and CN,
were performed using FreeSurfer version 4.3,> accessed on August 30,
2023 (Fischl, 2012). The ADNI website supplied cortical and
subcortical data on gray matter thickness using the Desikan-Killiany
atlas (Desikan et al., 2006; Klein and Tourville, 2012), it divides the left
and right brain into 68 ROIs (Figure 1). We use the FreeSurfer software

2 http://freesurfer.net/
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to extract the cortical thickness of these 68 ROIs. These data were then
used for further MOE subtype definition and analysis.

2.3 Cognitive scales and neuropathological
data

The used neuropsychological data were grouped into three
categories: global cognitive scales, Functional Activities Questionnaire
(FAQ), and ADNI-composite scores. The first group included
assessments like MMSE, CDR-Sum of Boxes (CDR-SB), and AD
assessment scale-cognitive subscale (ADAS-Cog). The latter group
comprised four specific sub-domains: memory, executive function,
language, and visuospatial abilities. Gibbons et al. used item response
theory techniques to develop composite scores for memory (ADNI-
MEM), executive function (ADNI-EF), composite scores for language
(ADNI-LAN) and visuospatial abilities (ADNI-VS) using methods
comparable to the ADNI neuropsychological battery (Shaw et al.,
2011; Gibbons et al., 2012; Choi et al., 2020).

All study subjects had apolipoprotein E (APOE) status
information, which includes two alleles. Additionally, CSF data was
collected from about half of the participants. Of the 228 CN
participants, CSF data was available for 111. For the 192AD
participants, CSF beta-amyloid 1-42 (AP, 4,) and phosphorylated tau
(p-tau) data were available for 98 participants, while CSF total tau
(t-tau) data was available for 96 (Shaw et al., 2009, 2011).

2.4 Definition of MCI subtype using MOE

In defining subtypes, we utilized the MOE semi-supervised
method proposed by Eavani et al. (2016), which combines multiple
linear SVMs with unsupervised Fuzzy-C-means (FCM). The choice
to not directly use SVMs to differentiate between MCI and CN groups
is due to the subtle differences between these cohorts, which lead to
relatively low classification accuracy. Similarly, the definition of MCI
subtypes was approached using the AD-to-MCI mapping method,
following the methodologies of Dong et al. (2017) and Ten Kate
etal. (2018).
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ch participant received a binary label, y,€ {—1,1}. The control

group (CN participants) was taken as the “anchor;” and labeled as —1,
while the AD patients were labeled as 1. In equation (1), K is the

expert
count,

count, m is the membership value, # is the total AD subject
C is the loss penalty, and t is the SVMs and FCM balancing

trade-off parameter. Parameters C and t were jointly optimized using

a grid search approach, with a search range from 27 to 2'°, respectively.
We used 10-fold cross-validation for the MOE. Parameters selection
mainly depended on cross-validated accuracy (Acc), maximum pair-
wise inner-product (W,), and Bezdek partition coefficient (BPC;
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The specific implementation process is as follows (Figure 2):

L.

The cortical thickness values of a total of 68 brain regions in the
left and right cerebral hemispheres of the Desikan-Killiany
atlas were obtained. To account for individual variability,
factors such as age, sex, years of education, and intracranial
volume (ICV) were considered extraneous variables (Sun et al.,
2019). For each feature, the regression coefficient for cognitively
normal controls (Scy) was calculated using a generalized
linear model (GLM) as equation (2):

thickness _valuecy = Pcy %
(1 +agecy + sexcn +educy + ICVey ) +0 )

10.3389/fnagi.2024.1328301

As shown in equation (3), then the effects of age, sex, years of
education and ICV were regressed out of all subjects (MCI, AD and CN):

residual 411 = thickness value 411 — Pcn %
(1+ageALL +sex 11 + educn +[CVALL) (3)

Thus, the obtained thickness _valueyrj served as the input
feature for MOE.

2. The MOE program was executed with the number of experts set

to n=2, 3, 4. The class-weight for AD and CN were set at 1:1,
2:1,... 5:1. Optimal C and t were determined through evaluation
indices: cross-validated Acc, W,, and BPC. This process led to
the definition of AD subtypes, and for corresponding number
of experts, the SVM hyperplane equations were derived.

. We calculated the distance from MCI’s cortical thickness

features to the three SVM hyperplanes, identified the group
with the smallest distance d,,,;,, and assigned MCI to this group.

. We used Freeview, a visualization and analysis tool from the

FreeSurfer software suite, to examine cortical atrophy in each
MCI and AD subgroup. Using Freeview, we generated statistical
graphs that illustrated the degree of cortical atrophy, enabling
us to visually contrast structural changes across variouspatient
groups. This analysis specifically focused on regions with
significant reductions in cortical thickness. We then conducted
statistical comparisons of these measurements among the MCI,
AD, and CN groups to identify areas of significant atrophy. If
the cortical thickness of an ROI in CN differs from that in AD
or MCI, as indicated by a p-value less than 0.05, it will
be highlighted in yellow or red.

2.5 Baseline analysis of MCI subtypes

MCI subtype analysis involved neuropsychological and
pathological features, including cognitive tests such as MMSE,
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ADAS-Cogl3, CDR-SB, and executive function tests like FAQ, and
ADNI composite scores. Quantitative statistical analysis of subtypes
involved pairwise comparisons using the one-way analysis of variance
(ANOVA) and Dunnett-t tests. The proportions of abnormal CSF and
APOE carriers were determined using Chi-square tests (%), with the
abnormality proportion calculated after excluding missing data.

2.6 Longitudinal data screen

The 24-month mark post-baseline data (M24) collection was set
as the cut-off for participant screening, detailed as follows:

1. During the data screening phase, we initially screened all
baseline data, MCI data for 6-month mark post-baseline
(MO06), MCI data for 12-month mark post-baseline (M12),
MCI data for 18-month mark post-baseline (M18), and M24.

2. Referencing to the ADNI-1 acquisition protocol and
description, we obtained 391 subjects in baseline. Here,
we used D_bl (diagnostic baseline) indicted the disease state
during the subjects’ baseline data collection.

3. Using subjects with D_bl=MCI, and M24 as the reference, data
was screened in reverse order from M18, M12, to M06. For
instance, M18 = (‘M24 yes’ + ‘M18 Yes’ N ‘M24 No' N M36 yes)
belonging to MCI (M36: 36-month mark post-baseline). This
screening process was also used for M12 and M06. ‘MX Yes’
indicates the subject underwent an MRI scan at MX; ‘MX No’
signifies the absence of the subject’s MRI scan at MX.

4. To maximize subject retention, if a subject lacked tracking data
at M24 but had data at M06, M 12, M 18, and M36, and if the M36
state was MCI, this subject would be included in MCI. However,
if the M36 state was AD or CN, indicating an indeterminable
transformation time, the subject would be excluded.

5. Data were sequentially screened according to the order of M06,
MI12, M18, and M24. Any data already been converted or
reversed converted in the next period was excluded. For
instance, if subjects at MO6were converted to AD or reverse
converted to CN, such subjects would be excluded from the
M12 data and would not be included in the conversion rate
for M12.

The data was screened sequentially from M06 to M24. Subjects
already converted or reverse-converted in the next period were
excluded. For instance, if subjects at M06 had transformed into AD or
reverse-converted into CN, they would be excluded from M12 and not
factored into M12’s conversion rate.

2.7 Longitudinal analysis of MClI subtypes

The longitudinal analysis incorporated cognitive scales like
MMSE, CDR-SB, ADAS-Cogl3 and ADNI composite scores. Based
on the cognitive scores at M06, M12, M18, and M24 post-baseline
data collection, we plotted time-dependent change curves for each
scale’s score.

The longitudinal data screened in Section 2.4 were utilized in the
statistical analysis of MCI conversion. The conversion rates of the three
subtypes at M06, M12, M18, and M24, following baseline data
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acquisition were calculated, respectively. Numerous studies have
indicated that APOE €4 and APOE €2 are pivotal factors contributing
to the progression of AD (Tanzi, 2012; Belloy et al., 2023). In this study,
all subjects undergoing MCI conversion were subjected to APOE
analysis. Finally, the features of the converted MCI subjects who
converted at the time point of AD conversion were input into the SVM
hyperplane equations for AD subtype definition. The subtype with the
minimum distance existed was identified, and the subtype to which
each transformed subtype was attributed was calculated accordingly.

The longitudinal data from 2.5 were used to calculate MCI
conversion rates for three subtypes at M06, M12, M 18, and M24 post-
baseline. All subjects undergoing MCI conversion were analyzed for
APOE. The features of MCI subjects at the AD conversion point were
input into SVM hyperplane equations for AD subtype definition. The
subtype with the minimum distance was identified, and the
corresponding transformed subtype was calculated.

3 Results
3.1 Atrophy patterns of MClI subtypes

Statistical parameter diagrams were used to analyze the cortical
thickness features of CN for each AD and MCI subtype. MCI and AD
each developed distinct subtypes within three atrophy region groups.
With three MOE experts, Acc=85.3+3.1%, r,=0.32+0.03, and
BPC=0.68+0.09. Each subtype represented varying atrophy severity.
Subtypes were named as minimal atrophy MCI (MIN-MCI), middle
atrophy MCI (MID-MCI), and diffuse atrophy MCI (DIF-MCI) based
on atrophy degree from low to high (Figure 3).

MIN-AD exhibited significant atrophy in the temporal lobe, while
MIN-MCI showed almost no atrophy. In the MID group, MID-AD
showed atrophy in all parts of the occipital lobe, while MID-MCI
showed atrophy mainly in the temporal and frontal lobes but less in the
parietal lobe. In the DIF group, both AD and MCI showed noticeable
diffuse atrophy, with AD’s atrophy regions being more widespread.

FIGURE 3
Identification of mild cognitive impairment (MCI) subtypes in
comparison with cognitive normal (CN).
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Regarding subtype proportions, the DIF group of AD accounted for
60.4%, whereas the DIF group of MCI was only 39.4%. The proportions
in the MIN group (26.0%) and MID group (34.6%) of MCI exceeded
those in the MIN (21.3%) and MID (18.2%) groups of AD (Table 1).

3.2 Analysis of MCI subtypes

The demographic and cognitive characteristics of three MCI
subtypes and the CN group were compared (Table 2). The DIF-MCI
subtype, which exhibited the highest degree of cortical atrophy, was
significantly different in age compared to the other two subtypes. The
cognitive performance of the MIN-MCI subtype was markedly
superior to the other two subtypes. Despite the differences in the
degree of atrophy, the cognitive evaluation differences between
MID-MCI and DIF-MCI were not substantial (p>0.05). As per
Table 3, the proportion of APOE €2 carriers was highest in the
MIN-MCI subtype, while the proportion of APOE €4 carriers was
lowest. No significant differences were observed between MCI
subtypes in terms of CSF markers, including Ap, 4,, t-tau and p-tau.
Notably, nearly half of the MCI subjects did not participate in the CSF
data collection. Data screening and conversion analysis.

3.2.1 Longitudinal data screening

The initial dataset for MCI in the ADNI-1 stage comprised
T1-weighted MRI data, with the original subject count recorded.
Subsequently, all longitudinal data underwent screening based on the
criteria outlined in Section 2.5. This screening process involved

TABLE 1 Demographic and cognitive characteristics of the subjects.

. Sex
Group iﬂmﬁg (ypégfs) (fe;nale MMSE
A)
MCI 364 754+7.4 | 127 (34.9%) | 27.0+18  1.6+0.9
AD 192 748+7.3 | 109 (47.8%) | 233420 = 43+16
CN 228 759450 | 91(47.4%) | 29.1+1.0  0.03+0.12

10.3389/fnagi.2024.1328301

assessing subjects at each acquisition time point and identifying those
who experienced subtype conversion. The subject numbers resulting
from this screening process are displayed in Figure 4. Furthermore, the
original data and the screened data were statistically compared, as
illustrated in Figure 5. Notably, as the acquisition time extended, the
discrepancy between the subject counts calculated by the two statistical
methods gradually widened. By adhering to the rules outlined in this
study and employing quantitative tracking data for each subtype,
MID-MCI achieved the relative minimum atrophy degree. At the
24-month follow-up (M24) after baseline, approximately 60% of the
subjects initially included in the baseline data acquisition were retained,
with a similar proportion observed in the other two subtypes (Figure 6).

3.2.2 Analysis of longitudinal data conversion

In a comprehensive analysis of M24 data, the incidence of MCI
conversion to AD was examined across three subtypes: MIN-MCI: 23
subjects (M06: 3, M12: 10, M18: 5, M24: 5); MID-MCI: 52 subjects
(M06: 8, M12: 17, M18: 15, M24: 12); DIF-MCI: 64 subjects (M06: 11,
M12: 20, M18: 15, M24: 18). Among these subtypes, the conversion
rate for MIN-MCI was the lowest, while that of MID-MCI surpassed
that of DIF-MCI by the time M18 was reached. After M18, the
conversion rates of the MID-MCI and DIF-MCI were similar
(Figure 7). Notably, when considering APOE carriers among MCI
subjects who transitioned to AD, it was observed that the proportion
of APOE ¢2 carriers within each subtype remained below 5%, whereas
the prevalence of APOE €4 carriers exceeded 60% (Table 4). Figure 8
illustrates the subtypes associated with MCI subjects who converted
to AD, revealing that a majority of subjects were classified into the AD
subtype corresponding to their baseline MCI status, thus maintaining
a consistent attribution to the same disease group.

3.3 Cognitive and demographic
characteristics of longitudinal

Based on the average cognitive scores of all subjects in each
subtype, from Figures 9, 10, we can observe that over time, the

TABLE 2 Demographic and cognitive characteristics of the subtypes.

Characteristic CN MCI MIN-MCI MID-MCI DIF-MCI p-value
n (%) 228 396 103 (26.0%) 137 (34.6%) 156 (39.4%)

Age (years) 75.9+5.0 74.7+7.4 73175 73.1+8.0 76.7+6.3 <0.001%
Female, 1 (%) 109 (47.8%) 141 (35.6%) 34 (33.0%) 51(37.2%) 56 (35.9%) 0.485"
Education (years) 16.1£2.9 15.6%3.0 16.0+2.8 152£3.0 15.6%3.2 0.269
MMSE 29.1+1.0 27.0+1.8 27.3+1.7 26.7+2.0 27.0+1.8 0.137
CDR-SB 0.03+0.12 1.6%0.9 1508 1.5+0.8 1.7+1.0 0475
FAQ 0.14+0.6 3.8+4.5 33+42 3.6+4.3 43%47 0.141
ADAS-Cog 13 9.5+4.2 18.6+6.3 17.6%5.8 19.5+6.5 18.3+6.3 0.047¢
ADNI-MEM 0.97+0.53 —0.08+0.58 —0.04%0.58 —0.20+0.55 ~0.07+0.60 0.005%
ADNI-EF 0.64+0.75 —0.04%0.86 —0.22+0.74 ~0.10+0.85 —0.15+0.91 0.001%
ADNI-LAN 0.78+0.75 —0.06%0.76 —0.06+0.71 —0.07+0.76 —0.12£0.79 0.209
ADNI-VS 0.23+0.60 —0.13£0.79 —0.04%0.72 —0.13+0.79 —0.23+0.81 0.019"

*Significant differences (p<0.05) between MIN-MCI and MID-MCI; significant differences (p <0.05) between MIN-MCI and DIF-MCI “significant differences (p < 0.05) between MID-MCI
and DIF-MCI; dcz test was used.
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TABLE 3 Neuropathological characteristics of the subtypes.

10.3389/fnagi.2024.1328301

Characteristic CN MCI MIN-MCI MID-MCI DIF-MCI p-value
APOE 14 [n (carry %)] 60 (26.3%) 211 (53.3%) 48 (46.6%) 77 (56.2%) 86 (55.1%) 0.654
1 55 (24.1%) 164 (41.4%) 39 (37.9%) 57 (41.6%) 68 (43.6%) 0.578
2 5(2.1%) 47 (11.9%) 9 (8.7%) 20 (14.6%) 18 (11.5%) 0.032%
APOE 12 [n (carry %)] 21 (9.2%) 29 (7.3%) 11 (10.7%) 9 (6.6%) 9 (5.8%) 0.01244¢
AP, (ng/L) 205.8+54.7 81.9+55.1 85.4£60.5 87.4%53.2 712£53.4 0.787
AP, 1, (abnormal %) 44 (37.6%) 147 £75.3% 37 (71.2%) 58 (77.3%) 54 (76%) 0.170
n missing of A, 4, (%) 111 (48.7%) 198 (50%) 51 (49.5%) 62 (45.3%) 85 (54.5%)

t-tau (ng/L) 69.7+29.8 51.4+60.8 47.4+45.4 56.4+62.9 49.1+67.8 0.639
t-tau (abnormal %) 21 (17.6%) 88 (45.1%) 22 (44.0%) 31 (41.3%) 34 (47.9%) 0.727
n missing of t-tau (%) 109 (47.8%) 201 (50.8%) 53 (51.5%) 62 (45.3%) 85 (55.1%)

p-tau (ng/L) 25.1+14.6 17.8+18.0 17.5+16.6 18.9+16.4 16.9+20.6 0.859
p-tau (abnormal %) 42 (35.3%) 140 (70.4%) 39 (75.0%) 53 (69.7%) 48 (67.6%) 0.320
n missing of p-tau (%) 94 (41.2%) 197 (49.7%) 51 (49.5%) 61 (44.5%) 85 (55.1%)

“Significant differences (p <0.05) between MIN-MCI and MID-MCI; "significant differences (p <0.05) between MIN-MCI and DIF-MCI; C? test was used. All subjects with APOE € 4 and

APOE ¢ 2 were tested.

Subject Number

Y i

M

res, M12 M18 M24 no, M36 yes: stable MCI;

12 yes, M18 M24 no, M36 yes: stable MCI; excluded convert and reconvert

i ;M24 as a reference

M36 as a reference

xcluded the convert and reconvert

MCI

M18 yes, M24 no, M36 yes: stable MCI; excluded convert and reconvert

E MCI convert to AD

FIGURE 5
Comparison of the numbers of different data screening methods.

| : MCTI reconvert to CN
Baseline M06 M12 M18 M24 M36 Time
396 332 308 250 209 139
0 22 47 35 37 X
0 5 3 4 3 x e
FIGURE 4
Longitudinal mild cognitive impairment (MCI) data screening.
| | | | | | ,
Baseline  M06 MI12 M18 M24 M36
Original 396 379 356 325 306 260
After screen 396 372 328 253 194 139

cognitive scores of MID-MCI in various tests, including ADNI-MEM,
ADNI-EF, and ADNI- VS, exhibited a more rapid decline compared to
those of DIF-MCI (Figure 9). Specifically, the MMSE score for
MID-MCI (from 26.7 in baseline to 21.4 in M24) was lower than that

Frontiers in Aging Neuroscience

of DIF-MCI (from 27.0 in baseline to 22.4 in M24). On the other
hand, the longitudinal tracking data for MIN-MCI in FAQ and ADAS
showed a gradual decline, occasionally fluctuating, without any
pronounced downward trend over a two-year period (Figure 10).
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4 Discussion

This study, based on the cortical thickness features of 396 MCI
patients from the ADNI-1 database, defined and analyzed three subtypes
of cortical atrophy in MCL. It includes the definition and analysis of
baseline MCI subtypes, the developmental trajectories of MCI over
2years, and the APOE analysis of MCI subjects who converted to AD. In
addition, a data-filtering scheme for longitudinal studies from ADNI was
proposed. The key findings are as follows: First, when examining atrophy
patterns, nearly one-third of the MCI subjects showed almost no
significant difference in cerebral cortex thickness compared with CN
individuals. These subjects exhibited a slower cognitive decline and a
lower conversion rate to AD. Second, the MID-MCI subtype,
characterized by significant atrophy in the temporal and frontal lobes,
displayed a faster decline rate in various cognitive performances
compared with the DIF-MCI subtype. It was also discovered that APOE
€4 was a significant factor influencing whether MCI converts to

MCI Subtypes

} 156

127

MIN-MCI E 116
93

179

] 137

MID-MCI 107

DIF-MCI 85

0 20 40 60 80 100 120 140 160
Subject Number

Baseline M06 [IMI12 M18 M24

FIGURE 6
Statistics of longitudinal subject numbers for each subtype.

10.3389/fnagi.2024.1328301

AD. Upon exploring ADNI tracking data, it was observed that different
methods of selecting data from the ADNI database for longitudinal
tracking resulted in significant variations in data quantity. This study
proposes a more comprehensive selection method. For future studies
involving longitudinal data on MCI, it is recommended to select
longitudinal data according to the experimental design plan. These
findings offer valuable insights into enhancing clinical progression
prediction and addressing the classification accuracy of MCL

4.1 Characteristics analysis of MCl subtypes

Following the definition of subtypes, three distinct AD subtypes
emerged, each characterized by specific cerebral atrophy features, all
prominently affecting the temporal lobe. Among AD patients with
memory disorders, amnestic MCI plays a pivotal role in the early
stages. Notably, the temporal lobe cortex is closely associated with
memory function. In the corresponding MCI subtypes, approximately
26% of subjects exhibited minimal atrophy in the lateral temporal
lobe, while only a minority experienced atrophy in the medial
temporal lobe. These findings suggest that, in terms of cognitive
measurement, all such subjects displayed similar MCI symptoms.
Morphologically, this group of subjects leaned more toward CN than
typical AD. Previous studies have consistently demonstrated that
lateral temporal lobe atrophy is a key discriminator between AD and
MCI, whereas thinning of the medial temporal lobe is associated with
the difference between CN and MCI. MCI, positioned between AD
and CN, exhibits a nuanced spectrum. The study results underscore
that this particular group of MCI subjects tends to align more closely
with the CN category (Dubois and Albert, 2004; Bondi et al., 2014).

When comparing the three MCI subtypes, MIN-MCI stands out
with a relatively low proportion of APOE &4 carriers, while the incidence
of APOE &2 carriers is notably higher (though still lower than in CN
subjects). Additionally, an abnormal proportion of tau protein is
observed in this subtype. The underlying reasons are multifaceted. First,
the APOE &4 genetic factor contributes to the abnormal accumulation

MCI—AD Covert Rate

20.00%

15.00%

M12

= MIN-MCI

FIGURE 7

Rate of mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD) for each subtype.

10.00% —mll BR |
5.00% I
0.00% .

MO06 18 M24
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of pathological markers like tau, thereby triggering cognitive decline.
Second, the APOE €2 genetic factor appears to exert a protective effect
on the cerebral cortex, effectively slowing down cortical atrophy.
However, in our study, the carrier rate of APOE €2 was less than 5%,
indicating that it is not sufficient to conclude that APOE &2 plays a
significant role in protecting the cerebral cortex. One notable limitation
that cannot be ignored is that during the data collection phase of
ADNI-1, CSF data for tau and Ap, ,, were available for only half of the
subjects, which means that our conclusions still require further
experimental data for future confirmation.

Regarding the subtype MID-MCI, atrophy predominantly
appeared in the frontal lobe and temporal lobe. From the observational
data in Figure 10, it can be seen that although the degree of atrophy
was not as pronounced as that observed in DIF-MCI, MID-MCI
exhibited the poorest performance in certain cognitive domains, such
as the MMSE. Additionally, MID-MCI had the highest proportion of
APOE ¢4 carriers and abnormalities in A, 4, levels, along with the
fastest decline during multiple longitudinal cognitive tests. By M18,

TABLE 4 Apolipoprotein E (APOE) carries of subjects converted to
Alzheimer's disease (AD).

10.3389/fnagi.2024.1328301

the proportion of subjects transitioning to AD surpassed that of
DIF-MCI. Among the MCI subtypes defined by Whitwell et al. (2007)
using cognitive measurements, multidomain MCI subgroups were
characterized by injury to the temporal lobe, cingulate cortex, and
prefrontal lobe. Longitudinal studies have highlighted that this type of
gray matter atrophy is common among individuals who later progress
to AD (Whitwell et al., 2008).

The atrophy regions observed in DIF-MCI closely resembled
those found in diffuse AD. Notably, a higher proportion of subjects
from the DIF-MCI group transitioned to AD compared to the other
two subtypes. Researchers, including Edmonds et al. (2016), Winblad
etal. (2004), and Petersen and Morris (2005) have identified a similar
subtype referred to as “Multidomain amnestic MCI” Despite the
absence of pronounced cortical atrophy over several years, this
subtype continues to exhibit a high transformation rate, indicating an
elevated pathogenic risk for AD.

In the realm of cognitive assessment, the MMSE score for
DIF-MCI surpassed that of MID-MCI, indicating better cognitive
performance in the former. However, the FAQ decline rate in
MID-MCI was the most rapid among the three subtypes. Notably, the
ADNI has not provided an estimation of the disease course for MCI,
which remains a current research challenge in the field of MCI and

APOE MIN-MCI MID-MCI DIF-MCI
AD. Based on the findings of this study, it is speculated that most
APOE ¢2 % 1(4.3% 1(1.9% 3 (4.6% ‘ . . . . .
2 (carry %) adaci (= il MID-MCI subjects are in a rapid progression stage relative to the
APOE &4 (carry %) 17.(73.9%) 35 (67.3%) 42 (65.6%) ‘ other two subtypes. Furthermore, while the MMSE is widely used as
1% MIN-AD MIN-AD ' MIN-AD
MIN-MCI o MID-AD MID-MCI MID-AD DIF-MCI MID-AD
Baseline Baseline Baseline
1
DIF-AD DIF-AD
5i Sub belonging aft rt to AD
Subtype belonging after covert to AD ubtype belonging after covert to Subtype belonging after covert to AD
FIGURE 8

Statistics of longitudinal numbers for each subtype. The number on each line represents the number of subjects who converted from mild cognitive
impairment (MCI) to Alzheimer's disease (AD); the subtype has transformed or remained itself.
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Longitudinal cognitive changes in ADNI-composite scores.
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an AD measurement method, the study results suggest that it may
be more applicable for classifying AD, MCI, and CN individuals rather
than distinguishing the severity levels among MCI patients.

The analysis conducted in our research indicates that the
established subtypes of MCI reflect the disease’s severity to some
extent, akin to distinct courses of the disease. Specifically, the atrophy
regions observed in MID-MCI resemble stages 4-5 of nerve fiber
tangles according to Braak staging, whereas MIN-MCI aligns more
closely with stages 1-3 (Braak et al., 2011). Our findings reveal that
MIN-MCI subjects exhibit the slowest disease progression, MID-MCI
subjects experience an accelerated stage, and DIF-MCI subjects
exhibit relatively slow cognitive decline despite significant cortical
atrophy. Additionally, an analysis of converted patients demonstrates
a high proportion of APOE €4 carriers among those progressing to
AD, while APOE ¢2 carriers are nearly absent. This underscores the
role of APOE as a crucial pathogenic factor in MCI to AD
transformation. Recently, conducted a review and analysis of disease
progression, emphasizing the impact of MCI severity on various
studies, including MCI conversion and classification. The method
proposed in our study offers a practical and feasible reference for
follow-up MCI research (Briick et al., 2021).

4.2 Longitudinal analysis of MCI subtypes
based on the ADNI database

In the realm of longitudinal studies involving MCI subjects
from the ADNI, significant variations exist in the number of
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subjects tracked over time (Vivek et al., 2006; Jack et al., 2010).
Longitudinal research is pivotal for understanding MCI progression.
However, our statistical findings reveal challenges in precisely
determining disease transformation timing for certain subjects
during data collection. For example, some individuals experience
AD transformation during secondary data acquisition after missing
the initial assessment. Additionally, certain subjects participate only
in baseline data collection due to various reasons. These factors
impact subsequent calculations of transformation rates for specific
MCI subtypes or subgroups. In addition, only 2-year longitudinal
data on some subjects is available, while the transformation rate or
cognitive decline has been calculated on a 3 or 4year basis in
some studies.

Indeed, Lo et al’s statistical analysis highlights a crucial aspect:
the subjects with missing data in the ADNI are not randomly
distributed (Lo and Jagust, 2012). Rather, this missing data appears
to be correlated with specific subject features. These features extend
beyond cognitive functions and may also involve factors like
biomarkers. Different biomarkers could contribute to data gaps at
various time points, and the missing data patterns differ between AD
and MCI subjects. Our study’s formulated rules reveal an interesting
trend: a higher proportion of MIN-MCI subjects are followed up
within 2 years compared to the other two groups. This phenomenon
might be attributed to the favorable cognitive status and slower
disease progression observed in these subjects. Figuring out the
effects of missing data is very important for designing future
longitudinal AD studies and clinical tests and also provides necessary
conditions for ensuring data integrity and reliability.
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4.3 Limitations and perspectives for future
research

From a data perspective, the combination of multimodal MRI can
provide more comprehensive information about early-stage AD,
aiding in understanding the patterns and essence of the development
of MCI subtypes. In data-driven MCI and AD research, numerous
studies have underscored the importance of multimodal and
multifeature approaches (Pan et al., 2021; Zuo et al., 2021). Data used
in this study were sourced entirely from the ADNI database. ADNI-1,
which used uniform inclusion criteria for MCI and included
approximately 400 subjects, was suitable for MCI research. However,
ADNI-1 only collected T1-weighted MRI data for all subjects and
excluded DTT and fMRI data for all participants. While ADNI-2 could
provide multimodal MRI data, MCI was divided into early MCI and
late MCI groups, with each group having fewer than 200 subjects, not
meeting the sample requirements of this study. Therefore, this study
only used T1-weighted MRI data. Future research will necessitate the
integration of more clinically relevant multimodal MRI data for MCI
research to better elucidate the essence of different subtypes.

From an algorithmic standpoint, this study employed a semi-
supervised mixed-expert algorithm MOE. Semi-supervised algorithms
are capable of simulating a spectrum of changes from normal aging to
disease in a 1-to-k form, offering a more rational and interpretable
approach compared with standalone clustering methods. The
integration of SVM and FCM in this study facilitated rapid algorithm
efficiency, and utilized multiple classification boundaries of SVM to
determine the subtype attribution of MCI samples. However, there are
areas that require further improvement. For instance, when dealing with
imbalanced data, we assigned larger weight values to the AD category
samples, which may sometimes lead to overfitting and necessitate
repeated attempts. Future research could explore the use of generative
adversarial networks (GAN) to generate reconstructed images and other
methods to address class imbalances more effectively (Hu et al., 2020).
Although the current state-of-the-art work involving the combination
of GAN networks with clustering has proven effective in defining AD
subtypes, additional research is needed to verify whether this approach
can effectively map AD results to MCI subtypes (Yang et al., 2021).
Moreover, while research using data-driven methods in neuroimaging
contributes to the understanding of the complexity of disease subtypes,
the diversity of discovery research methods, robustness, reproducibility,
and clinical relevance of clustering algorithms still require further
validation and improvement (Chen et al., 2023).

5 Conclusion

In this study, a semi-supervised algorithm was employed to
investigate cortical thickness features in 396 patients with MCI using the
ADNI-1 database. It was found that the cerebral cortex of about 1/3 of
the MCI patients was not significantly different from CN, accompanied
by a low cognitive decline and a low transformation rate to
AD. Conversely, MCI patients with significant atrophy in the temporal
lobe and frontal lobe demonstrated a higher cognitive decline rate
compared to other subtypes. Notably, the APOE €4 gene variants were
identified as critical factors influencing the progression from MCI to AD.

Furthermore, the researchers proposed a data screening method
specifically tailored for the longitudinal analysis of ADNI data, aimed
at enhancing data accuracy and reliability. Their investigation yields
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crucial insights into comprehending the progression of MCI and
predicting its transition to AD. These research findings are not only
enlightening for clinical intervention and treatment but also provide
a new research direction.

Data availability statement

Publicly available datasets were analyzed in this study. Data used
in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

Ethics statement

The studies involving humans were approved by Alzheimer’s
Disease Neuroimaging Initiative. The studies were conducted in
accordance with the local legislation and institutional requirements.
The participants provided their written informed consent to
participate in this study.

Author contributions

BZ: Conceptualization, Data curation, Formal analysis, Funding
acquisition, Investigation, Methodology, Software, Writing — original
draft, Writing - review & editing. MX: Conceptualization, Data curation,
Formal analysis, Investigation, Methodology, Software, Writing -
original draft, Writing - review & editing. QW: Formal analysis,
Investigation, Validation, Writing - review & editing. SY: Data curation,
Investigation, Methodology, Validation, Writing - review & editing. YZ:
Conceptualization, Supervision, Validation, Visualization, Writing —
review & editing. ZL: Conceptualization, Methodology, Project
administration, Supervision, Visualization, Writing - review & editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The work was
supported by fund project of Beijing Academy of Science and
Technology Budding Talent Program (0420239352KF001-07).

Acknowledgments

The authors would like to thank the reviewers for their valuable
comments and suggestions. Data used in preparation of this article
were obtained from the Alzheimer’s disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of
this report. A complete listing of ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ ADNI_
Acknowledgement_List.pdf.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

frontiersin.org


https://doi.org/10.3389/fnagi.2024.1328301
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://adni.loni.usc.edu/
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Zhang et al.

Publisher's note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

References

Belloy, M. E., Andrews, S.J., le Guen, Y., Cuccaro, M., Farrer, L. A., Napolioni, V., et al.
(2023). APOE genotype and Alzheimer disease risk across age, sex, and population
ancestry. JAMA Neurol. 80, 1284-1294. doi: 10.1001/jamaneurol.2023.3599

Berezuk, C., Scott, S. C., Black, S. E., and Zakzanis, K. K. (2021). Cognitive reserve,
cognition, and real-world functioning in MCI: a systematic review and meta-analysis.
J. Clin. Exp. Neuropsychol. 43, 991-1005. doi: 10.1080/13803395.2022.2047160

Bondi, M. W,, Edmonds, E. C., Jak, A. J., Clark, L. R, Delano-Wood, L.,
McDonald, C. R, et al. (2014). Neuropsychological criteria for mild cognitive
impairment improves diagnostic precision, biomarker associations, and progression
rates. J. Alzheimers Dis. 42, 275-289. doi: 10.3233/JAD-140276

Braak, H., Thal, D. R., Ghebremedhin, E., and Tredici, K. D. (2011). Stages of the
pathologic process in Alzheimer disease: age categories from 1 to 100 years. J.
Neuropathol. Exp. Neurol. 70, 960-969. doi: 10.1097/NEN.0b013e318232a379

Briick, C. C., Wolters, E J., Ikram, M. A., and de Kok, I. M. (2021). Heterogeneity in
reports of dementia disease duration and severity: a review of the literature. J. Alzheimers
Dis. 84, 1515-1522. doi: 10.3233/JAD-210544

Chen, P, Zhang, S., Zhao, K., Kang, X,, Rittman, T., and Liu, Y. (2023). Robustly uncovering
the heterogeneity of neurodegenerative disease by using data-driven subtyping in
neuroimaging: a review. Brain Res. 1823:148675. doi: 10.1016/j.brainres.2023.148675

Choi, S. E., Mukherjee, S., Gibbons, L. E., Sanders, R. E., Jones, R. N., Tommet, D.,
etal. (2020). Development and validation of language and visuospatial composite scores
in ADNI. Alzheimer's & Dementia: Translational Res. Clinical Interventions 6:€12072.
doi: 10.1002/trc2.12072

Dave, R. N. (1996). Validating fuzzy partitions obtained through c-shells clustering.
Pattern Recogn. Lett. 17, 613-623. doi: 10.1016/0167-8655(96)00026-8

Desikan, R. S., Ségonne, E, Fischl, B., Quinn, B. T, Dickerson, B. C., Blacker, D., et al.
(2006). An automated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest. NeuroImage 31, 968-980. doi: 10.1016/j.
neuroimage.2006.01.021

Dong, A., Toledo, ]. B., Honnorat, N., Doshi, J., Varol, E., Sotiras, A., et al. (2017).
Heterogeneity of neuroanatomical patterns in prodromal Alzheimer’s disease: links to
cognition, progression and biomarkers. Brain 140, 735-747. doi: 10.1093/brain/
aww319

Dubois, B., and Albert, M. L. (2004). Amnestic MCI or prodromal Alzheimer's
disease? Lancet Neurol. 3, 246-248. doi: 10.1016/S1474-4422(04)00710-0

Eavani, H., Hsieh, M. K., An, Y., Erus, G., Beason-Held, L., Resnick, S., et al. (2016).
Capturing heterogeneous group differences using mixture-of-experts: application to a
study of aging. Neurolmage 125, 498-514. doi: 10.1016/j.neuroimage.2015.10.045

Edmonds, E. C., Delano-Wood, L., Clark, L. R., Jak, A. J., Nation, D. A,
McDonald, C. R, et al. (2015). Susceptibility of the conventional criteria for mild
cognitive impairment to false-positive diagnostic errors. Alzheimers Dement. 11,
415-424. doi: 10.1016/j.jalz.2014.03.005

Edmonds, E. C., Eppig, J., Bondi, M. W,, Leyden, K. M., Goodwin, B., Delano-Wood, L.,
et al. (2016). Heterogeneous cortical atrophy patterns in MCI not captured by

conventional diagnostic criteria. Neurology 87, 2108-2116. doi: 10.1212/
‘WNL.0000000000003326
Fischl, B. (2012). FreeSurfer. Neurolmage 62, 774-781. doi: 10.1016/j.

neuroimage.2012.01.021

Gibbons, L. E., Carle, A. C., Mackin, R. S., Harvey, D., Mukherjee, S., Insel, P, et al.
(2012). A composite score for executive functioning, validated in Alzheimer’s Disease
Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment.
Brain Imaging Behav. 6, 517-527. doi: 10.1007/s11682-012-9176-1

Hu, S., Yu, W, Chen, Z., and Wang, S. (2020). Medical image reconstruction using
generative adversarial network for Alzheimer disease assessment with class-imbalance
problem, in: 2020 IEEE 6th international conference on computer and communications
(ICCC): IEEE, 1323-1327.

Jack, C. R. Jr., Bernstein, M. A., Borowski, B. J., Gunter, J. L., Fox, N. C,
Thompson, P. M., et al. (2010). Update on the magnetic resonance imaging core of the
Alzheimer's disease neuroimaging initiative. Alzheimers Dement. 6, 212-220. doi:
10.1016/j.jalz.2010.03.004

Jack, C. R.]Jr,, Bernstein, M. A., Fox, N. C., Thompson, P, Alexander, G., Harvey, D.,
etal. (2008). The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods. J.
Magnetic Resonance Imag.: Official J. Int. Society for Magnetic Resonance Med. 27,
685-691. doi: 10.1002/jmri.21049

Klein, A., and Tourville, J. (2012). 101 labeled brain images and a consistent human
cortical labeling protocol. Front. Neurosci. 6:33392. doi: 10.3389/fnins.2012.00171

Frontiers in Aging Neuroscience

12

10.3389/fnagi.2024.1328301

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M.,
Hyman, B. T, et al. (2021). Alzheimer disease. Nat. Rev. Dis. Prim. 7, 1-21. doi: 10.1038/
541572-021-00269-y

Kwak, K., Giovanello, K. S., Bozoki, A., Styner, M., and Dayan, E. (2021). Subtyping
of mild cognitive impairment using a deep learning model based on brain atrophy
patterns. Cell Reports Med. 2:100467. doi: 10.1016/j.xcrm.2021.100467

Lo, R. Y, and Jagust, W.]. (2012). Predicting missing biomarker data in a longitudinal
study of Alzheimer disease. Neurology 78, 1376-1382. doi: 10.1212/
WNL.0b013e318253d5b3

Mueller, S. G., Weiner, M. W,, Thal, L. J., Petersen, R. C., Jack, C., Jagust, W,, et al.
(2005). The Alzheimer's disease neuroimaging initiative. Neuroimaging Clinics 15,
869-877. doi: 10.1016/j.1ic.2005.09.008

Murray, M. E., Graff-Radford, N. R, Ross, O. A., Petersen, R. C., Duara, R., and
Dickson, D. W. (2011). Neuropathologically defined subtypes of Alzheimer's disease
with distinct clinical characteristics: a retrospective study. Lancet Neurol. 10, 785-796.
doi: 10.1016/S1474-4422(11)70156-9

Nelson, M. E., Jester, D. ], Petkus, A. J., and Andel, R. (2021). Cognitive reserve,
Alzheimer’s neuropathology, and risk of dementia: a systematic review and meta-
analysis. Neuropsychol. Rev. 31, 233-250. doi: 10.1007/s11065-021-09478-4

Nettiksimmons, J., DeCarli, C., Landau, S., and Beckett, L.Alzheimer's Disease
Neuroimaging Initiative (2014). Biological heterogeneity in ADNI amnestic mild
cognitive impairment. Alzheimers Dement. 10, 511-521.el. doi: 10.1016/j.
jalz.2013.09.003

Pan, J., Lei, B., Shen, Y, Liu, Y., Feng, Z., and Wang, S. (2021)."Characterization
multimodal connectivity of brain network by hypergraph GAN for Alzheimer’s disease
analysis", in: Pattern recognition and computer vision: 4th Chinese conference, PRCV
2021, Beijing, China, October 29-November 1, 2021, Proceedings, Part III 4: Springer,
467-478.

Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. ].,
et al. (2010). Alzheimer's disease neuroimaging initiative (ADNI): clinical
characterization. Neurology 74, 201-209. doi: 10.1212/WNL.0b013e3181cb3e25

Petersen, R. C., and Morris, J. C. (2005). Mild cognitive impairment as a clinical entity
and treatment target. Arch. Neurol. 62:1160. doi: 10.1001/archneur.62.7.1160

Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Clark, C. M., Aisen, P. S,
Petersen, R. C,, et al. (2009). Cerebrospinal fluid biomarker signature in Alzheimer's
disease neuroimaging initiative subjects. Ann. Neurol. 65, 403-413. doi: 10.1002/
ana.21610

Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Figurski, M., Coart, E., Blennow, K.,
et al. (2011). Qualification of the analytical and clinical performance of CSF biomarker
analyses in ADNL. Acta Neuropathol. 121, 597-609. doi: 10.1007/s00401-011-0808-0

Sun, N., Mormino, E. C., Chen, J., Sabuncu, M. R., and Yeo, B. T.the Alzheimer’s
Disease Neuroimaging Initiative (2019). Multi-modal latent factor exploration of
atrophy, cognitive and tau heterogeneity in Alzheimer’s disease. NeuroImage 201:116043.
doi: 10.1016/j.neuroimage.2019.116043

Tanzi, R. E. (2012). The genetics of Alzheimer disease. Cold Spring Harb. Perspect.
Med. 2:a006296. doi: 10.1101/cshperspect.a006296

Ten Kate, M., Dicks, E., Visser, P. ]., Van Der Flier, W. M., Teunissen, C. E., Barkhof, E,
et al. (2018). Atrophy subtypes in prodromal Alzheimer’s disease are associated with
cognitive decline. Brain 141, 3443-3456. doi: 10.1093/brain/awy264

Van Oostveen, W. M., and de Lange, E. C. (2021). Imaging techniques in Alzheimer’s
disease: a review of applications in early diagnosis and longitudinal monitoring. Int. J.
Mol. Sci. 22:2110. doi: 10.3390/ijms22042110

Vivek, S., Howard, C., Lerch, J. P, Evans, A. C., Dorr, A. E., and Jehan, K. N. (2006).
Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's
disease. Brain J. Neurol. 11:2885.

Whitwell, J. L., Petersen, R. C., Negash, S., Weigand, S. D., Kantarci, K., Ivnik, R. J.,
et al. (2007). Patterns of atrophy differ among specific subtypes of mild cognitive
impairment. Arch. Neurol. 64, 1130-1138. doi: 10.1001/archneur.64.8.1130

Whitwell, J. L., Shiung, M. M., Przybelski, S. A., Weigand, S. D., Knopman, D. S.,
Boeve, B. E, et al. (2008). MRI patterns of atrophy associated with progression to AD in
amnestic mild cognitive impairment. Neurology 70, 512-520. doi: 10.1212/01.
wnl.0000280575.77437.a2

Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., et al.
(2004). Mild cognitive impairment-beyond controversies, towards a consensus: report
of the international working group on mild cognitive impairment. J. Intern. Med. 256,
240-246. doi: 10.1111/§.1365-2796.2004.01380.x

frontiersin.org


https://doi.org/10.3389/fnagi.2024.1328301
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.1001/jamaneurol.2023.3599
https://doi.org/10.1080/13803395.2022.2047160
https://doi.org/10.3233/JAD-140276
https://doi.org/10.1097/NEN.0b013e318232a379
https://doi.org/10.3233/JAD-210544
https://doi.org/10.1016/j.brainres.2023.148675
https://doi.org/10.1002/trc2.12072
https://doi.org/10.1016/0167-8655(96)00026-8
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1093/brain/aww319
https://doi.org/10.1093/brain/aww319
https://doi.org/10.1016/S1474-4422(04)00710-0
https://doi.org/10.1016/j.neuroimage.2015.10.045
https://doi.org/10.1016/j.jalz.2014.03.005
https://doi.org/10.1212/WNL.0000000000003326
https://doi.org/10.1212/WNL.0000000000003326
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1007/s11682-012-9176-1
https://doi.org/10.1016/j.jalz.2010.03.004
https://doi.org/10.1002/jmri.21049
https://doi.org/10.3389/fnins.2012.00171
https://doi.org/10.1038/s41572-021-00269-y
https://doi.org/10.1038/s41572-021-00269-y
https://doi.org/10.1016/j.xcrm.2021.100467
https://doi.org/10.1212/WNL.0b013e318253d5b3
https://doi.org/10.1212/WNL.0b013e318253d5b3
https://doi.org/10.1016/j.nic.2005.09.008
https://doi.org/10.1016/S1474-4422(11)70156-9
https://doi.org/10.1007/s11065-021-09478-4
https://doi.org/10.1016/j.jalz.2013.09.003
https://doi.org/10.1016/j.jalz.2013.09.003
https://doi.org/10.1212/WNL.0b013e3181cb3e25
https://doi.org/10.1001/archneur.62.7.1160
https://doi.org/10.1002/ana.21610
https://doi.org/10.1002/ana.21610
https://doi.org/10.1007/s00401-011-0808-0
https://doi.org/10.1016/j.neuroimage.2019.116043
https://doi.org/10.1101/cshperspect.a006296
https://doi.org/10.1093/brain/awy264
https://doi.org/10.3390/ijms22042110
https://doi.org/10.1001/archneur.64.8.1130
https://doi.org/10.1212/01.wnl.0000280575.77437.a2
https://doi.org/10.1212/01.wnl.0000280575.77437.a2
https://doi.org/10.1111/j.1365-2796.2004.01380.x

Zhang et al.

Yang, Z., Nasrallah, I. M., Shou, H., Wen, J., Doshi, J., Habes, M., et al. (2021). A deep
learning framework identifies dimensional representations of Alzheimer’s disease from
brain structure. Nat. Commun. 12:7065. doi: 10.1038/s41467-021-26703-z

Zhang, B., Lin, L., and W, S. (2021). A review of brain atrophy subtypes definition
and analysis for Alzheimer’s disease heterogeneity studies. J. Alzheimers Dis. 80,
1339-1352. doi: 10.3233/JAD-201274

Zhao, K., Zheng, Q., Dyrba, M., Rittman, T., Li, A., Che, T, et al. (2022). Regional
radiomics similarity networks reveal distinct subtypes and abnormality patterns in mild
cognitive impairment. Advan. Sci. 9:¢2104538. doi: 10.1002/advs.202104538

Zuo, Q. Lei, B, Shen, Y., Liu, Y., Feng, Z., and Wang, S. (2021). "Multimodal
representations learning and adversarial hypergraph fusion for early Alzheimer’s disease

Frontiers in Aging Neuroscience

13

10.3389/fnagi.2024.1328301

prediction”, in: Pattern recognition and computer vision: 4th Chinese conference, PRCV
2021, Beijing, China, October 29-November 1, 2021, Proceedings, Part III 4: Springer,
479-490.

Zuo, Q., Wu, H., Chen, C. P, Lei, B, and Wang, S. (2024). Prior-guided
adversarial learning with hypergraph for predicting abnormal connections in
Alzheimer’s disease. IEEE Transactions on Cybernetics., 1-14. doi: 10.1109/TCYB.2023.
3344641

Zuo, Q.,, Zhong, N., Pan, Y., Wu, H,, Lei, B., and Wang, S. (2023). Brain structure-
function fusing representation learning using adversarial decomposed-VAE for
analyzing MCI. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 4017-4028. doi: 10.1109/
TNSRE.2023.3323432

frontiersin.org


https://doi.org/10.3389/fnagi.2024.1328301
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://doi.org/10.1038/s41467-021-26703-z
https://doi.org/10.3233/JAD-201274
https://doi.org/10.1002/advs.202104538
https://doi.org/10.1109/TCYB.2023.3344641
https://doi.org/10.1109/TCYB.2023.3344641
https://doi.org/10.1109/TNSRE.2023.3323432
https://doi.org/10.1109/TNSRE.2023.3323432

	Definition and analysis of gray matter atrophy subtypes in mild cognitive impairment based on data-driven methods
	1 Introduction
	2 Materials and methods
	2.1 Participants and MRI processing
	2.2 ROIs feature extraction
	2.3 Cognitive scales and neuropathological data
	2.4 Definition of MCI subtype using MOE
	2.5 Baseline analysis of MCI subtypes
	2.6 Longitudinal data screen
	2.7 Longitudinal analysis of MCI subtypes

	3 Results
	3.1 Atrophy patterns of MCI subtypes
	3.2 Analysis of MCI subtypes
	3.2.1 Longitudinal data screening
	3.2.2 Analysis of longitudinal data conversion
	3.3 Cognitive and demographic characteristics of longitudinal

	4 Discussion
	4.1 Characteristics analysis of MCI subtypes
	4.2 Longitudinal analysis of MCI subtypes based on the ADNI database
	4.3 Limitations and perspectives for future research

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	 References

