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Introduction: Mild cognitive impairment (MCI) is an important stage in 
Alzheimer’s disease (AD) research, focusing on early pathogenic factors and 
mechanisms. Examining MCI patient subtypes and identifying their cognitive 
and neuropathological patterns as the disease progresses can enhance our 
understanding of the heterogeneous disease progression in the early stages 
of AD. However, few studies have thoroughly analyzed the subtypes of MCI, 
such as the cortical atrophy, and disease development characteristics of each 
subtype.

Methods: In this study, 396 individuals with MCI, 228 cognitive normal (CN) 
participants, and 192  AD patients were selected from ADNI database, and a 
semi-supervised mixture expert algorithm (MOE) with multiple classification 
boundaries was constructed to define AD subtypes. Moreover, the subtypes 
of MCI were obtained by using the multivariate linear boundary mapping of 
support vector machine (SVM). Then, the gray matter atrophy regions and 
severity of each MCI subtype were analyzed and the features of each subtype 
in demography, pathology, cognition, and disease progression were explored 
combining the longitudinal data collected for 2  years and analyzed important 
factors that cause conversion of MCI were analyzed.

Results: Three MCI subtypes were defined by MOE algorithm, and the three 
subtypes exhibited their own features in cortical atrophy. Nearly one-third of 
patients diagnosed with MCI have almost no significant difference in cerebral 
cortex from the normal aging population, and their conversion rate to AD are 
the lowest. The subtype characterized by severe atrophy in temporal lobe and 
frontal lobe have a faster decline rate in many cognitive manifestations than 
the subtype featured with diffuse atrophy in the whole cortex. APOE ε4 is an 
important factor that cause the conversion of MCI to AD.

Conclusion: It was proved through the data-driven method that MCI collected 
by ADNI baseline presented different subtype features. The characteristics and 
disease development trajectories among subtypes can help to improve the 
prediction of clinical progress in the future and also provide necessary clues to 
solve the classification accuracy of MCI.
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1 Introduction

Mild cognitive impairment (MCI) is a stage between Alzheimer’s 
disease (AD) and cognitive normal (CN; Knopman et al., 2021). It is 
widely accepted that most late-onset AD patients originate from the 
MCI process. Previous MCI studies focused on gray matter atrophy, 
distinguishing MCI from AD or CN, and predicting MCI conversion. 
However, the current classification or prediction of conversion for 
MCI leaves much to be desired (van Oostveen and de Lange, 2021). 
This can be attributed primarily to two factors: First, when compared 
to AD, the disparity in cortical atrophy between MCI and CN 
individuals is relatively minor, leading to decreased accuracy in 
classification. Second, the variability in brain structures and disease 
progression among MCI patients complicates the classification and 
prediction of conversion, as not all MCI cases are homogeneous 
(Dubois and Albert, 2004; Bondi et  al., 2014). Exploring the 
distinctions among MCI subtypes can deepen our insight into the 
cortico-cerebral, pathological, and neuropsychological aspects of 
MCI. This knowledge can offer crucial references for improving the 
accuracy of predicting MCI conversion and classification.

Studies on AD subtypes are theoretically grounded in the autopsy 
findings of Murray et al., which identified three distinct AD subtypes: 
typical AD, hippocampal-sparing AD, and limbic-predominant AD 
(Murray et al., 2011). Recent studies have supported the definition of 
on AD subtypes through cortical atrophy aligning with three identified 
subtypes (Zhang et al., 2021). However, the use of autopsy results to 
understand the majority of MCI patients is limited. This limitation 
arises because of factor such as their extended survival, the intricate 
progression of their condition, and the nuanced differences between 
CN individuals. Moreover, the dependence on cognitive scales for 
subtype discrimination could be influenced by patients’ educational 
and cultural backgrounds, thereby introducing thus posing challenges 
to MCI subtype research (Berezuk et al., 2021).

The approach of defining MCI subtypes based on magnetic 
resonance imaging (MRI) features and data-driven methods has 
attracted the interest of researchers. In recent years, the extraction of 
features and construction of classifiers using deep learning or machine 
learning techniques based on MRI data have become prominent 
research areas. These methods have yielded promising results in AD 
classification and the investigation of abnormal brain connectivity 
patterns (Zuo et al., 2023, 2024). In subtype studies, the uncertainty of 
subtype categories often necessitates the use of unsupervised or semi-
supervised methods. However, minor differences among MCI subjects 
can limit the effectiveness of simple clustering for subtype definition. 
Some studies have categorized MCI into subtypes that align closely 
with AD (e.g., A-CI, MCI-AD) or normal aging (e.g., N-CI, MCI-CN), 
potentially overlooking other subtypes (Kwak et al., 2021; Zhao et al., 
2022). To augment the effectiveness of unsupervised clustering 
methods, some studies have integrated cerebrospinal fluid (CSF) 
markers to form clusters or statistical characteristics. For instance, 
Nettiksimmons et  al. utilized 11 variables, including total brain 

volume, hippocampal volume, cortical thickness, and CSF, to segregate 
138 baseline MCI subjects from ADNI into four subgroups. This 
segregation was based on disease severity and employed minimum 
variance and Euclidean distance measurement clustering methods 
(Nettiksimmons et al., 2014).

Dong et al. (2017) and Ten Kate et al. (2018) applied the definition 
of AD subtypes to construct MCI subtypes, confirming the feasibility 
of this method for several MCI subtypes. However, these studies have 
only limitedly explored MCI’s longitudinal development, lacking 
longitudinal subtype attribution and correlation analysis of conversion 
to AD. Edmonds et al. (2015) utilized cognitive scale scores to classify 
the MCI population within the ADNI into distinct subtypes: dynamic 
MCI, dysexecutive MCI, amnestic MCI, and cluster-derived normal 
MCI. Their findings affirm MCI heterogeneity from a cognitive 
standpoint. They suggested that about a third of the population-
derived groups diagnosed as MCI may have false positives, advocating 
for more biological markers in future MCI groupings (Edmonds et al., 
2016). While this false-positive theory is not widely accepted yet, their 
proposed four subtypes serve as a reference for future research. Thus, 
MCI subtyping based on MRI features warrants further study 
regarding subtype definition subtype, biomarker correlation, and 
subtype disease progression.

Given that MCI is typically the prodromal stage of AD, these 
subtypes were delineated through a semi-supervised mixture of 
experts (MOE) approach, leveraging cortical thickness measurements 
from T1-weighted MRI images to develop several support vector 
machine (SVM) classifiers. The subtype attribution of MCI was 
determined by the minimum distance from MCI subjects to each 
SVM’s hyperplane. Compared to AD, the longitudinal development of 
the disease is a unique research focus of the MCI stage, such as 
whether patients convert into AD and the conversion time (Nelson 
et al., 2021). This study found that in ADNI’s longitudinal acquisition, 
some MCI subjects’ tracking data were missing, potentially affecting 
the subtype analysis in the disease’s longitudinal development, a factor 
overlooked in previous studies. Hence, a relatively reasonable 
longitudinal data screening process was established to conduct a 
detailed analysis of neuropsychology and pathology in the subtypes’ 
longitudinal development.

2 Materials and methods

2.1 Participants and MRI processing

The data for this study were sourced from the ADNI database,1 
accessed on August 30, 2023 (Mueller et al., 2005). Established in 
2004, the ADNI project comprises a collection of MRI scans along 

1 www.adni.loni.usc.edu
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with neuropsychological and neuropathological data. During the 
initial phase (ADNI-1), approximately 800 participants aged between 
55 and 90 years were enrolled. This cohort included CN individuals, 
patients diagnosed with AD, and those with MCI. The specific criteria 
for participant inclusion and exclusion have been detailed by Petersen 
et al. (2010).

The eligibility criteria for the MCI group adhered to the NINCDS/
ADRDA standards and included a mini-mental state examination 
(MMSE) score between 24 and 30, self-reported memory complaints, 
objectively measured memory loss (adjusted for education) using the 
Wechsler memory scale logical memory II, a clinical dementia rating 
(CDR) of 0.5, no significant impairments in other cognitive domains, 
and reasonably preserved daily living activities. For the CN group, the 
inclusion criteria were an MMSE score between 24 and 30 and a CDR 
of 0. Participants classified as having probable AD had an MMSE score 
ranging from 20 to 26 and a CDR of 0.5 or 1. Based on these inclusion 
criteria of each group in ADNI, all subjects who effectively underwent 
baseline MRI were included in subsequent studies. This resulted in a 
total of 192 AD patients, 396 MCI patients, and 188 CN participants 
(Table 1).

MRI scans were conducted using 1.5 T scanners with the following 
parameters: a repetition time (TR) of 3,000 ms, an echo time (TE) of 
3.55 ms, slice thickness of 1.2 mm, and a voxel size of 
1.2 × 0.94 × 0.94 mm3 (Jack et  al., 2008). All subjects adhered to a 
uniform MRI acquisition standard.

2.2 ROIs feature extraction

Cortical reconstruction and regions of interest (ROIs) 
segmentation for all subjects, including those with MCI, AD and CN, 
were performed using FreeSurfer version 4.3,2 accessed on August 30, 
2023 (Fischl, 2012). The ADNI website supplied cortical and 
subcortical data on gray matter thickness using the Desikan-Killiany 
atlas (Desikan et al., 2006; Klein and Tourville, 2012), it divides the left 
and right brain into 68 ROIs (Figure 1). We use the FreeSurfer software 

2 http://freesurfer.net/

to extract the cortical thickness of these 68 ROIs. These data were then 
used for further MOE subtype definition and analysis.

2.3 Cognitive scales and neuropathological 
data

The used neuropsychological data were grouped into three 
categories: global cognitive scales, Functional Activities Questionnaire 
(FAQ), and ADNI-composite scores. The first group included 
assessments like MMSE, CDR-Sum of Boxes (CDR-SB), and AD 
assessment scale-cognitive subscale (ADAS-Cog). The latter group 
comprised four specific sub-domains: memory, executive function, 
language, and visuospatial abilities. Gibbons et al. used item response 
theory techniques to develop composite scores for memory (ADNI-
MEM), executive function (ADNI-EF), composite scores for language 
(ADNI-LAN) and visuospatial abilities (ADNI-VS) using methods 
comparable to the ADNI neuropsychological battery (Shaw et al., 
2011; Gibbons et al., 2012; Choi et al., 2020).

All study subjects had apolipoprotein E (APOE) status 
information, which includes two alleles. Additionally, CSF data was 
collected from about half of the participants. Of the 228 CN 
participants, CSF data was available for 111. For the 192 AD 
participants, CSF beta-amyloid 1–42 (Aβ1-42) and phosphorylated tau 
(p-tau) data were available for 98 participants, while CSF total tau 
(t-tau) data was available for 96 (Shaw et al., 2009, 2011).

2.4 Definition of MCI subtype using MOE

In defining subtypes, we  utilized the MOE semi-supervised 
method proposed by Eavani et al. (2016), which combines multiple 
linear SVMs with unsupervised Fuzzy-C-means (FCM). The choice 
to not directly use SVMs to differentiate between MCI and CN groups 
is due to the subtle differences between these cohorts, which lead to 
relatively low classification accuracy. Similarly, the definition of MCI 
subtypes was approached using the AD-to-MCI mapping method, 
following the methodologies of Dong et  al. (2017) and Ten Kate 
et al. (2018).

FIGURE 1

ROIs in Desikan–Killiany atlas (Desikan et al., 2006).
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Each participant received a binary label, 𝑦𝑖∈ {−1,1}. The control 
group (CN participants) was taken as the “anchor,” and labeled as −1, 
while the AD patients were labeled as 1. In equation (1), K is the 
expert count, m is the membership value, n is the total AD subject 
count, C is the loss penalty, and t is the SVMs and FCM balancing 
trade-off parameter. Parameters C and t were jointly optimized using 
a grid search approach, with a search range from 2−3 to 210, respectively. 
We used 10-fold cross-validation for the MOE. Parameters selection 
mainly depended on cross-validated accuracy (Acc), maximum pair-
wise inner-product (Wr), and Bezdek partition coefficient (BPC; 
Dave, 1996).
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The specific implementation process is as follows (Figure 2):

 1. The cortical thickness values of a total of 68 brain regions in the 
left and right cerebral hemispheres of the Desikan–Killiany 
atlas were obtained. To account for individual variability, 
factors such as age, sex, years of education, and intracranial 
volume (ICV) were considered extraneous variables (Sun et al., 
2019). For each feature, the regression coefficient for cognitively 
normal controls (βCN ) was calculated using a generalized 
linear model (GLM) as equation (2):

 ( )
_

1
CN CN

CN CN CN CN

thickness value
age sex edu ICV

β= ×
+ + + + +ò  (2)

As shown in equation (3), then the effects of age, sex, years of 
education and ICV were regressed out of all subjects (MCI, AD and CN):

 ( )
_

1
ALL ALL CN

ALL ALL CN ALL

residual thickness value
age sex edu ICV

β= − ×
+ + + +  (3)

Thus, the obtained thickness valueALL_  served as the input 
feature for MOE.

 2. The MOE program was executed with the number of experts set 
to n = 2, 3, 4. The class-weight for AD and CN were set at 1:1, 
2:1, ... 5:1. Optimal C and t were determined through evaluation 
indices: cross-validated Acc, Wr, and BPC. This process led to 
the definition of AD subtypes, and for corresponding number 
of experts, the SVM hyperplane equations were derived.

 3. We calculated the distance from MCI’s cortical thickness 
features to the three SVM hyperplanes, identified the group 
with the smallest distance dmin, and assigned MCI to this group.

 4. We used Freeview, a visualization and analysis tool from the 
FreeSurfer software suite, to examine cortical atrophy in each 
MCI and AD subgroup. Using Freeview, we generated statistical 
graphs that illustrated the degree of cortical atrophy, enabling 
us to visually contrast structural changes across variouspatient 
groups. This analysis specifically focused on regions with 
significant reductions in cortical thickness. We then conducted 
statistical comparisons of these measurements among the MCI, 
AD, and CN groups to identify areas of significant atrophy. If 
the cortical thickness of an ROI in CN differs from that in AD 
or MCI, as indicated by a p-value less than 0.05, it will 
be highlighted in yellow or red.

2.5 Baseline analysis of MCI subtypes

MCI subtype analysis involved neuropsychological and 
pathological features, including cognitive tests such as MMSE, 

FIGURE 2

The process of MCI subtypes definition.
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ADAS-Cog13, CDR-SB, and executive function tests like FAQ, and 
ADNI composite scores. Quantitative statistical analysis of subtypes 
involved pairwise comparisons using the one-way analysis of variance 
(ANOVA) and Dunnett-t tests. The proportions of abnormal CSF and 
APOE carriers were determined using Chi-square tests (χ 2), with the 
abnormality proportion calculated after excluding missing data.

2.6 Longitudinal data screen

The 24-month mark post-baseline data (M24) collection was set 
as the cut-off for participant screening, detailed as follows:

 1. During the data screening phase, we  initially screened all 
baseline data, MCI data for 6-month mark post-baseline 
(M06), MCI data for 12-month mark post-baseline (M12), 
MCI data for 18-month mark post-baseline (M18), and M24.

 2. Referencing to the ADNI-1 acquisition protocol and 
description, we  obtained 391 subjects in baseline. Here, 
we used D_bl (diagnostic baseline) indicted the disease state 
during the subjects’ baseline data collection.

 3. Using subjects with D_bl = MCI, and M24 as the reference, data 
was screened in reverse order from M18, M12, to M06. For 
instance, M18 = (‘M24 yes’ + ‘M18 Yes’ ∩ ‘M24 No’ ∩ M36 yes) 
belonging to MCI (M36: 36-month mark post-baseline). This 
screening process was also used for M12 and M06. ‘MX Yes’ 
indicates the subject underwent an MRI scan at MX; ‘MX No’ 
signifies the absence of the subject’s MRI scan at MX.

 4. To maximize subject retention, if a subject lacked tracking data 
at M24 but had data at M06, M12, M18, and M36, and if the M36 
state was MCI, this subject would be included in MCI. However, 
if the M36 state was AD or CN, indicating an indeterminable 
transformation time, the subject would be excluded.

 5. Data were sequentially screened according to the order of M06, 
M12, M18, and M24. Any data already been converted or 
reversed converted in the next period was excluded. For 
instance, if subjects at M06were converted to AD or reverse 
converted to CN, such subjects would be excluded from the 
M12 data and would not be included in the conversion rate 
for M12.

The data was screened sequentially from M06 to M24. Subjects 
already converted or reverse-converted in the next period were 
excluded. For instance, if subjects at M06 had transformed into AD or 
reverse-converted into CN, they would be excluded from M12 and not 
factored into M12’s conversion rate.

2.7 Longitudinal analysis of MCI subtypes

The longitudinal analysis incorporated cognitive scales like 
MMSE, CDR-SB, ADAS-Cog13 and ADNI composite scores. Based 
on the cognitive scores at M06, M12, M18, and M24 post-baseline 
data collection, we plotted time-dependent change curves for each 
scale’s score.

The longitudinal data screened in Section 2.4 were utilized in the 
statistical analysis of MCI conversion. The conversion rates of the three 
subtypes at M06, M12, M18, and M24, following baseline data 

acquisition were calculated, respectively. Numerous studies have 
indicated that APOE ε4 and APOE ε2 are pivotal factors contributing 
to the progression of AD (Tanzi, 2012; Belloy et al., 2023). In this study, 
all subjects undergoing MCI conversion were subjected to APOE 
analysis. Finally, the features of the converted MCI subjects who 
converted at the time point of AD conversion were input into the SVM 
hyperplane equations for AD subtype definition. The subtype with the 
minimum distance existed was identified, and the subtype to which 
each transformed subtype was attributed was calculated accordingly.

The longitudinal data from 2.5 were used to calculate MCI 
conversion rates for three subtypes at M06, M12, M18, and M24 post-
baseline. All subjects undergoing MCI conversion were analyzed for 
APOE. The features of MCI subjects at the AD conversion point were 
input into SVM hyperplane equations for AD subtype definition. The 
subtype with the minimum distance was identified, and the 
corresponding transformed subtype was calculated.

3 Results

3.1 Atrophy patterns of MCI subtypes

Statistical parameter diagrams were used to analyze the cortical 
thickness features of CN for each AD and MCI subtype. MCI and AD 
each developed distinct subtypes within three atrophy region groups. 
With three MOE experts, Acc = 85.3 ± 3.1%, rw = 0.32 ± 0.03, and 
BPC = 0.68 ± 0.09. Each subtype represented varying atrophy severity. 
Subtypes were named as minimal atrophy MCI (MIN-MCI), middle 
atrophy MCI (MID-MCI), and diffuse atrophy MCI (DIF-MCI) based 
on atrophy degree from low to high (Figure 3).

MIN-AD exhibited significant atrophy in the temporal lobe, while 
MIN-MCI showed almost no atrophy. In the MID group, MID-AD 
showed atrophy in all parts of the occipital lobe, while MID-MCI 
showed atrophy mainly in the temporal and frontal lobes but less in the 
parietal lobe. In the DIF group, both AD and MCI showed noticeable 
diffuse atrophy, with AD’s atrophy regions being more widespread. 

FIGURE 3

Identification of mild cognitive impairment (MCI) subtypes in 
comparison with cognitive normal (CN).
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Regarding subtype proportions, the DIF group of AD accounted for 
60.4%, whereas the DIF group of MCI was only 39.4%. The proportions 
in the MIN group (26.0%) and MID group (34.6%) of MCI exceeded 
those in the MIN (21.3%) and MID (18.2%) groups of AD (Table 1).

3.2 Analysis of MCI subtypes

The demographic and cognitive characteristics of three MCI 
subtypes and the CN group were compared (Table 2). The DIF-MCI 
subtype, which exhibited the highest degree of cortical atrophy, was 
significantly different in age compared to the other two subtypes. The 
cognitive performance of the MIN-MCI subtype was markedly 
superior to the other two subtypes. Despite the differences in the 
degree of atrophy, the cognitive evaluation differences between 
MID-MCI and DIF-MCI were not substantial (p > 0.05). As per 
Table  3, the proportion of APOE ε2 carriers was highest in the 
MIN-MCI subtype, while the proportion of APOE ε4 carriers was 
lowest. No significant differences were observed between MCI 
subtypes in terms of CSF markers, including Aβ1-42, t-tau and p-tau. 
Notably, nearly half of the MCI subjects did not participate in the CSF 
data collection. Data screening and conversion analysis.

3.2.1 Longitudinal data screening
The initial dataset for MCI in the ADNI-1 stage comprised 

T1-weighted MRI data, with the original subject count recorded. 
Subsequently, all longitudinal data underwent screening based on the 
criteria outlined in Section 2.5. This screening process involved 

assessing subjects at each acquisition time point and identifying those 
who experienced subtype conversion. The subject numbers resulting 
from this screening process are displayed in Figure 4. Furthermore, the 
original data and the screened data were statistically compared, as 
illustrated in Figure 5. Notably, as the acquisition time extended, the 
discrepancy between the subject counts calculated by the two statistical 
methods gradually widened. By adhering to the rules outlined in this 
study and employing quantitative tracking data for each subtype, 
MID-MCI achieved the relative minimum atrophy degree. At the 
24-month follow-up (M24) after baseline, approximately 60% of the 
subjects initially included in the baseline data acquisition were retained, 
with a similar proportion observed in the other two subtypes (Figure 6).

3.2.2 Analysis of longitudinal data conversion
In a comprehensive analysis of M24 data, the incidence of MCI 

conversion to AD was examined across three subtypes: MIN-MCI: 23 
subjects (M06: 3, M12: 10, M18: 5, M24: 5); MID-MCI: 52 subjects 
(M06: 8, M12: 17, M18: 15, M24: 12); DIF-MCI: 64 subjects (M06: 11, 
M12: 20, M18: 15, M24: 18). Among these subtypes, the conversion 
rate for MIN-MCI was the lowest, while that of MID-MCI surpassed 
that of DIF-MCI by the time M18 was reached. After M18, the 
conversion rates of the MID-MCI and DIF-MCI were similar 
(Figure 7). Notably, when considering APOE carriers among MCI 
subjects who transitioned to AD, it was observed that the proportion 
of APOE ε2 carriers within each subtype remained below 5%, whereas 
the prevalence of APOE ε4 carriers exceeded 60% (Table 4). Figure 8 
illustrates the subtypes associated with MCI subjects who converted 
to AD, revealing that a majority of subjects were classified into the AD 
subtype corresponding to their baseline MCI status, thus maintaining 
a consistent attribution to the same disease group.

3.3 Cognitive and demographic 
characteristics of longitudinal

Based on the average cognitive scores of all subjects in each 
subtype, from Figures  9, 10, we  can observe that over time, the 

TABLE 1 Demographic and cognitive characteristics of the subjects.

Group
Subject 
number

Age 
(years)

Sex 
(female 

%)
MMSE

CDR-
SB

MCI 364 75.4 ± 7.4 127 (34.9%) 27.0 ± 1.8 1.6 ± 0.9

AD 192 74.8 ± 7.3 109 (47.8%) 23.3 ± 2.0 4.3 ± 1.6

CN 228 75.9 ± 5.0 91 (47.4%) 29.1 ± 1.0 0.03 ± 0.12

TABLE 2 Demographic and cognitive characteristics of the subtypes.

Characteristic CN MCI MIN-MCI MID-MCI DIF-MCI p-value

n (%) 228 396 103 (26.0%) 137 (34.6%) 156 (39.4%)

Age (years) 75.9 ± 5.0 74.7 ± 7.4 73.1 ± 7.5 73.1 ± 8.0 76.7 ± 6.3 <0.001b,c

Female, n (%) 109 (47.8%) 141 (35.6%) 34 (33.0%) 51 (37.2%) 56 (35.9%) 0.485d

Education (years) 16.1 ± 2.9 15.6 ± 3.0 16.0 ± 2.8 15.2 ± 3.0 15.6 ± 3.2 0.269

MMSE 29.1 ± 1.0 27.0 ± 1.8 27.3 ± 1.7 26.7 ± 2.0 27.0 ± 1.8 0.137

CDR-SB 0.03 ± 0.12 1.6 ± 0.9 1.5 ± 0.8 1.5 ± 0.8 1.7 ± 1.0 0.475

FAQ 0.14 ± 0.6 3.8 ± 4.5 3.3 ± 4.2 3.6 ± 4.3 4.3 ± 4.7 0.141

ADAS-Cog 13 9.5 ± 4.2 18.6 ± 6.3 17.6 ± 5.8 19.5 ± 6.5 18.3 ± 6.3 0.047a

ADNI-MEM 0.97 ± 0.53 −0.08 ± 0.58 −0.04 ± 0.58 −0.20 ± 0.55 −0.07 ± 0.60 0.005a,c

ADNI-EF 0.64 ± 0.75 −0.04 ± 0.86 −0.22 ± 0.74 −0.10 ± 0.85 −0.15 ± 0.91 0.001a,b

ADNI-LAN 0.78 ± 0.75 −0.06 ± 0.76 −0.06 ± 0.71 −0.07 ± 0.76 −0.12 ± 0.79 0.209

ADNI-VS 0.23 ± 0.60 −0.13 ± 0.79 −0.04 ± 0.72 −0.13 ± 0.79 −0.23 ± 0.81 0.019b

aSignificant differences (p < 0.05) between MIN-MCI and MID-MCI; bsignificant differences (p < 0.05) between MIN-MCI and DIF-MCI; csignificant differences (p < 0.05) between MID-MCI 
and DIF-MCI; dÇ2 test was used.
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cognitive scores of MID-MCI in various tests, including ADNI-MEM, 
ADNI-EF, and ADNI-VS, exhibited a more rapid decline compared to 
those of DIF-MCI (Figure  9). Specifically, the MMSE score for 
MID-MCI (from 26.7 in baseline to 21.4 in M24) was lower than that 

of DIF-MCI (from 27.0 in baseline to 22.4 in M24). On the other 
hand, the longitudinal tracking data for MIN-MCI in FAQ and ADAS 
showed a gradual decline, occasionally fluctuating, without any 
pronounced downward trend over a two-year period (Figure 10).

TABLE 3 Neuropathological characteristics of the subtypes.

Characteristic CN MCI MIN-MCI MID-MCI DIF-MCI p-value

APOE µ4 [n (carry %)] 60 (26.3%) 211 (53.3%) 48 (46.6%) 77 (56.2%) 86 (55.1%) 0.654

1 55 (24.1%) 164 (41.4%) 39 (37.9%) 57 (41.6%) 68 (43.6%) 0.578

2 5 (2.1%) 47 (11.9%) 9 (8.7%) 20 (14.6%) 18 (11.5%) 0.032a,c

APOE µ2 [n (carry %)] 21 (9.2%) 29 (7.3%) 11 (10.7%) 9 (6.6%) 9 (5.8%) 0.012a,b,c

Aβ1-42 (ng/L) 205.8 ± 54.7 81.9 ± 55.1 85.4 ± 60.5 87.4 ± 53.2 71.2 ± 53.4 0.787

Aβ1-42 (abnormal %) 44 (37.6%) 147 ± 75.3% 37 (71.2%) 58 (77.3%) 54 (76%) 0.170

n missing of Aβ1-42 (%) 111 (48.7%) 198 (50%) 51 (49.5%) 62 (45.3%) 85 (54.5%)

t-tau (ng/L) 69.7 ± 29.8 51.4 ± 60.8 47.4 ± 45.4 56.4 ± 62.9 49.1 ± 67.8 0.639

t-tau (abnormal %) 21 (17.6%) 88 (45.1%) 22 (44.0%) 31 (41.3%) 34 (47.9%) 0.727

n missing of t-tau (%) 109 (47.8%) 201 (50.8%) 53 (51.5%) 62 (45.3%) 85 (55.1%)

p-tau (ng/L) 25.1 ± 14.6 17.8 ± 18.0 17.5 ± 16.6 18.9 ± 16.4 16.9 ± 20.6 0.859

p-tau (abnormal %) 42 (35.3%) 140 (70.4%) 39 (75.0%) 53 (69.7%) 48 (67.6%) 0.320

n missing of p-tau (%) 94 (41.2%) 197 (49.7%) 51 (49.5%) 61 (44.5%) 85 (55.1%)

aSignificant differences (p < 0.05) between MIN-MCI and MID-MCI; bsignificant differences (p < 0.05) between MIN-MCI and DIF-MCI; cÇ2 test was used. All subjects with APOE ε 4 and 
APOE ε 2 were tested.

FIGURE 4

Longitudinal mild cognitive impairment (MCI) data screening.

FIGURE 5

Comparison of the numbers of different data screening methods.
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FIGURE 7

Rate of mild cognitive impairment (MCI) conversion to Alzheimer’s disease (AD) for each subtype.

4 Discussion

This study, based on the cortical thickness features of 396 MCI 
patients from the ADNI-1 database, defined and analyzed three subtypes 
of cortical atrophy in MCI. It includes the definition and analysis of 
baseline MCI subtypes, the developmental trajectories of MCI over 
2 years, and the APOE analysis of MCI subjects who converted to AD. In 
addition, a data-filtering scheme for longitudinal studies from ADNI was 
proposed. The key findings are as follows: First, when examining atrophy 
patterns, nearly one-third of the MCI subjects showed almost no 
significant difference in cerebral cortex thickness compared with CN 
individuals. These subjects exhibited a slower cognitive decline and a 
lower conversion rate to AD. Second, the MID-MCI subtype, 
characterized by significant atrophy in the temporal and frontal lobes, 
displayed a faster decline rate in various cognitive performances 
compared with the DIF-MCI subtype. It was also discovered that APOE 
ε4 was a significant factor influencing whether MCI converts to 

AD. Upon exploring ADNI tracking data, it was observed that different 
methods of selecting data from the ADNI database for longitudinal 
tracking resulted in significant variations in data quantity. This study 
proposes a more comprehensive selection method. For future studies 
involving longitudinal data on MCI, it is recommended to select 
longitudinal data according to the experimental design plan. These 
findings offer valuable insights into enhancing clinical progression 
prediction and addressing the classification accuracy of MCI.

4.1 Characteristics analysis of MCI subtypes

Following the definition of subtypes, three distinct AD subtypes 
emerged, each characterized by specific cerebral atrophy features, all 
prominently affecting the temporal lobe. Among AD patients with 
memory disorders, amnestic MCI plays a pivotal role in the early 
stages. Notably, the temporal lobe cortex is closely associated with 
memory function. In the corresponding MCI subtypes, approximately 
26% of subjects exhibited minimal atrophy in the lateral temporal 
lobe, while only a minority experienced atrophy in the medial 
temporal lobe. These findings suggest that, in terms of cognitive 
measurement, all such subjects displayed similar MCI symptoms. 
Morphologically, this group of subjects leaned more toward CN than 
typical AD. Previous studies have consistently demonstrated that 
lateral temporal lobe atrophy is a key discriminator between AD and 
MCI, whereas thinning of the medial temporal lobe is associated with 
the difference between CN and MCI. MCI, positioned between AD 
and CN, exhibits a nuanced spectrum. The study results underscore 
that this particular group of MCI subjects tends to align more closely 
with the CN category (Dubois and Albert, 2004; Bondi et al., 2014).

When comparing the three MCI subtypes, MIN-MCI stands out 
with a relatively low proportion of APOE ε4 carriers, while the incidence 
of APOE ε2 carriers is notably higher (though still lower than in CN 
subjects). Additionally, an abnormal proportion of tau protein is 
observed in this subtype. The underlying reasons are multifaceted. First, 
the APOE ε4 genetic factor contributes to the abnormal accumulation 

FIGURE 6

Statistics of longitudinal subject numbers for each subtype.
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of pathological markers like tau, thereby triggering cognitive decline. 
Second, the APOE ε2 genetic factor appears to exert a protective effect 
on the cerebral cortex, effectively slowing down cortical atrophy. 
However, in our study, the carrier rate of APOE ε2 was less than 5%, 
indicating that it is not sufficient to conclude that APOE ε2 plays a 
significant role in protecting the cerebral cortex. One notable limitation 
that cannot be  ignored is that during the data collection phase of 
ADNI-1, CSF data for tau and Aβ1-42 were available for only half of the 
subjects, which means that our conclusions still require further 
experimental data for future confirmation.

Regarding the subtype MID-MCI, atrophy predominantly 
appeared in the frontal lobe and temporal lobe. From the observational 
data in Figure 10, it can be seen that although the degree of atrophy 
was not as pronounced as that observed in DIF-MCI, MID-MCI 
exhibited the poorest performance in certain cognitive domains, such 
as the MMSE. Additionally, MID-MCI had the highest proportion of 
APOE ε4 carriers and abnormalities in Aβ1-42 levels, along with the 
fastest decline during multiple longitudinal cognitive tests. By M18, 

the proportion of subjects transitioning to AD surpassed that of 
DIF-MCI. Among the MCI subtypes defined by Whitwell et al. (2007) 
using cognitive measurements, multidomain MCI subgroups were 
characterized by injury to the temporal lobe, cingulate cortex, and 
prefrontal lobe. Longitudinal studies have highlighted that this type of 
gray matter atrophy is common among individuals who later progress 
to AD (Whitwell et al., 2008).

The atrophy regions observed in DIF-MCI closely resembled 
those found in diffuse AD. Notably, a higher proportion of subjects 
from the DIF-MCI group transitioned to AD compared to the other 
two subtypes. Researchers, including Edmonds et al. (2016), Winblad 
et al. (2004), and Petersen and Morris (2005) have identified a similar 
subtype referred to as “Multidomain amnestic MCI.” Despite the 
absence of pronounced cortical atrophy over several years, this 
subtype continues to exhibit a high transformation rate, indicating an 
elevated pathogenic risk for AD.

In the realm of cognitive assessment, the MMSE score for 
DIF-MCI surpassed that of MID-MCI, indicating better cognitive 
performance in the former. However, the FAQ decline rate in 
MID-MCI was the most rapid among the three subtypes. Notably, the 
ADNI has not provided an estimation of the disease course for MCI, 
which remains a current research challenge in the field of MCI and 
AD. Based on the findings of this study, it is speculated that most 
MID-MCI subjects are in a rapid progression stage relative to the 
other two subtypes. Furthermore, while the MMSE is widely used as 

TABLE 4 Apolipoprotein E (APOE) carries of subjects converted to 
Alzheimer’s disease (AD).

APOE MIN-MCI MID-MCI DIF-MCI

APOE ε2 (carry %) 1 (4.3%) 1 (1.9%) 3 (4.6%)

APOE ε4 (carry %) 17 (73.9%) 35 (67.3%) 42 (65.6%)

FIGURE 8

Statistics of longitudinal numbers for each subtype. The number on each line represents the number of subjects who converted from mild cognitive 
impairment (MCI) to Alzheimer’s disease (AD); the subtype has transformed or remained itself.

FIGURE 9

Longitudinal cognitive changes in ADNI-composite scores.
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FIGURE 10

Longitudinal cognitive changes in global assessments and FAQ.

an AD measurement method, the study results suggest that it may 
be more applicable for classifying AD, MCI, and CN individuals rather 
than distinguishing the severity levels among MCI patients.

The analysis conducted in our research indicates that the 
established subtypes of MCI reflect the disease’s severity to some 
extent, akin to distinct courses of the disease. Specifically, the atrophy 
regions observed in MID-MCI resemble stages 4–5 of nerve fiber 
tangles according to Braak staging, whereas MIN-MCI aligns more 
closely with stages 1–3 (Braak et al., 2011). Our findings reveal that 
MIN-MCI subjects exhibit the slowest disease progression, MID-MCI 
subjects experience an accelerated stage, and DIF-MCI subjects 
exhibit relatively slow cognitive decline despite significant cortical 
atrophy. Additionally, an analysis of converted patients demonstrates 
a high proportion of APOE ε4 carriers among those progressing to 
AD, while APOE ε2 carriers are nearly absent. This underscores the 
role of APOE as a crucial pathogenic factor in MCI to AD 
transformation. Recently, conducted a review and analysis of disease 
progression, emphasizing the impact of MCI severity on various 
studies, including MCI conversion and classification. The method 
proposed in our study offers a practical and feasible reference for 
follow-up MCI research (Brück et al., 2021).

4.2 Longitudinal analysis of MCI subtypes 
based on the ADNI database

In the realm of longitudinal studies involving MCI subjects 
from the ADNI, significant variations exist in the number of 

subjects tracked over time (Vivek et al., 2006; Jack et al., 2010). 
Longitudinal research is pivotal for understanding MCI progression. 
However, our statistical findings reveal challenges in precisely 
determining disease transformation timing for certain subjects 
during data collection. For example, some individuals experience 
AD transformation during secondary data acquisition after missing 
the initial assessment. Additionally, certain subjects participate only 
in baseline data collection due to various reasons. These factors 
impact subsequent calculations of transformation rates for specific 
MCI subtypes or subgroups. In addition, only 2-year longitudinal 
data on some subjects is available, while the transformation rate or 
cognitive decline has been calculated on a 3 or 4 year basis in 
some studies.

Indeed, Lo et al.’s statistical analysis highlights a crucial aspect: 
the subjects with missing data in the ADNI are not randomly 
distributed (Lo and Jagust, 2012). Rather, this missing data appears 
to be correlated with specific subject features. These features extend 
beyond cognitive functions and may also involve factors like 
biomarkers. Different biomarkers could contribute to data gaps at 
various time points, and the missing data patterns differ between AD 
and MCI subjects. Our study’s formulated rules reveal an interesting 
trend: a higher proportion of MIN-MCI subjects are followed up 
within 2 years compared to the other two groups. This phenomenon 
might be  attributed to the favorable cognitive status and slower 
disease progression observed in these subjects. Figuring out the 
effects of missing data is very important for designing future 
longitudinal AD studies and clinical tests and also provides necessary 
conditions for ensuring data integrity and reliability.
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4.3 Limitations and perspectives for future 
research

From a data perspective, the combination of multimodal MRI can 
provide more comprehensive information about early-stage AD, 
aiding in understanding the patterns and essence of the development 
of MCI subtypes. In data-driven MCI and AD research, numerous 
studies have underscored the importance of multimodal and 
multifeature approaches (Pan et al., 2021; Zuo et al., 2021). Data used 
in this study were sourced entirely from the ADNI database. ADNI-1, 
which used uniform inclusion criteria for MCI and included 
approximately 400 subjects, was suitable for MCI research. However, 
ADNI-1 only collected T1-weighted MRI data for all subjects and 
excluded DTI and fMRI data for all participants. While ADNI-2 could 
provide multimodal MRI data, MCI was divided into early MCI and 
late MCI groups, with each group having fewer than 200 subjects, not 
meeting the sample requirements of this study. Therefore, this study 
only used T1-weighted MRI data. Future research will necessitate the 
integration of more clinically relevant multimodal MRI data for MCI 
research to better elucidate the essence of different subtypes.

From an algorithmic standpoint, this study employed a semi-
supervised mixed-expert algorithm MOE. Semi-supervised algorithms 
are capable of simulating a spectrum of changes from normal aging to 
disease in a 1-to-k form, offering a more rational and interpretable 
approach compared with standalone clustering methods. The 
integration of SVM and FCM in this study facilitated rapid algorithm 
efficiency, and utilized multiple classification boundaries of SVM to 
determine the subtype attribution of MCI samples. However, there are 
areas that require further improvement. For instance, when dealing with 
imbalanced data, we assigned larger weight values to the AD category 
samples, which may sometimes lead to overfitting and necessitate 
repeated attempts. Future research could explore the use of generative 
adversarial networks (GAN) to generate reconstructed images and other 
methods to address class imbalances more effectively (Hu et al., 2020). 
Although the current state-of-the-art work involving the combination 
of GAN networks with clustering has proven effective in defining AD 
subtypes, additional research is needed to verify whether this approach 
can effectively map AD results to MCI subtypes (Yang et al., 2021). 
Moreover, while research using data-driven methods in neuroimaging 
contributes to the understanding of the complexity of disease subtypes, 
the diversity of discovery research methods, robustness, reproducibility, 
and clinical relevance of clustering algorithms still require further 
validation and improvement (Chen et al., 2023).

5 Conclusion

In this study, a semi-supervised algorithm was employed to 
investigate cortical thickness features in 396 patients with MCI using the 
ADNI-1 database. It was found that the cerebral cortex of about 1/3 of 
the MCI patients was not significantly different from CN, accompanied 
by a low cognitive decline and a low transformation rate to 
AD. Conversely, MCI patients with significant atrophy in the temporal 
lobe and frontal lobe demonstrated a higher cognitive decline rate 
compared to other subtypes. Notably, the APOE ε4 gene variants were 
identified as critical factors influencing the progression from MCI to AD.

Furthermore, the researchers proposed a data screening method 
specifically tailored for the longitudinal analysis of ADNI data, aimed 
at enhancing data accuracy and reliability. Their investigation yields 

crucial insights into comprehending the progression of MCI and 
predicting its transition to AD. These research findings are not only 
enlightening for clinical intervention and treatment but also provide 
a new research direction.
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