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Machine Learning (ML) is considered a promising tool to aid and accelerate

diagnosis in various medical areas, including neuroimaging. However, its success

is set back by the lack of large-scale public datasets. Indeed, medical institutions

possess a large amount of data; however, open-sourcing is prevented by

the legal requirements to protect the patient’s privacy. Federated Learning

(FL) is a viable alternative that can overcome this issue. This work proposes

training an ML model for Alzheimer’s Disease (AD) detection based on structural

MRI (sMRI) data in a federated setting. We implement two aggregation

algorithms, Federated Averaging (FedAvg) and Secure Aggregation (SecAgg),

and compare their performance with the centralized ML model training. We

simulate heterogeneous environments and explore the impact of demographical

(sex, age, and diagnosis) and imbalanced data distributions. The simulated

heterogeneous environments allow us to observe these statistical di�erences’

e�ect on the ML models trained using FL and highlight the importance of

studying such di�erences when training ML models for AD detection. Moreover,

as part of the evaluation, we demonstrate the increased privacy guarantees of FL

with SecAgg via simulated membership inference attacks.

KEYWORDS
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1 Introduction

Artificial intelligence’s (AI) success in aiding medical diagnosis and treatment depends

mainly on the publicly available diverse datasets. Many publicly available biomedical

datasets are small and stem from relatively few institutions, with similar distribution in

terms of demographics, offering only a limited possibility to study medical conditions with

respect to the global population (Kaissis et al., 2020). One of the main reasons behind

the lack of large and diverse biomedical public datasets is that patients’ data is considered

privacy-sensitive and has rigorous requirements for protection. Several privacy regulations,

such as the Health Insurance Portability and Accountability Act (HIPAA1) and the General

Data Protection Regulation (GDPR2), impose strict rules regarding sharing and storing

data from different institutions. Per the privacy regulations, sharing and storing data from

different institutions in a central location for further data utilization is not a viable solution.

Additionally, medical datasets have a significant business value, making it less likely that

they would be freely shared (Rieke et al., 2020).

1 https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html

2 https://gdpr-info.eu/
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Secure and privacy-preserving AI offers techniques to help

bridge the gap between personal data protection and data

utilization for research, as well as for aiding medical diagnosis and

treatment (Kaissis et al., 2021). Federated Learning (FL) (McMahan

et al., 2017), a method under privacy-preserving AI, allows for

collaborative data utilization without sharing or revealing the data

itself. FL allows the training of Machine Learning (ML) models

locally on the site where the data is stored, and only the model

parameter updates are sent to a central server for aggregation. The

central server merges the model parameter updates from different

participants and sends the new model parameters back to the

participants for the next round of training. The main benefit of

FL is the ability of the data to remain with its owner while still

enabling the training of ML algorithms on remote data (McMahan

et al., 2017; Kaissis et al., 2020). FL is the most widely used

privacy-preserving technique, both in industry (Konečný et al.,

2017) and medical AI applications (Rieke et al., 2020). FL methods

have been used practically by major companies (Bonawitz et al.,

2019; Goetz et al., 2019; Li et al., 2020a), and in several different

applications where the training data is distributed among multiple

data owners, such as in IoT (Zeng et al., 2021; Zhou et al., 2021),

telecommunications (Safari et al., 2020), healthcare (Liu et al., 2018;

Huang et al., 2019; Li et al., 2019; Roy et al., 2019; Rieke et al.,

2020; Kaissis et al., 2021), etc. FL generally has a great perspective

in medical and industrial applications due to the possibility for data

utilization while abiding by existing laws and regulations (such as

GDPR). FL can handle data in cross-organizational architecture,

as well as data split across separate institutions, allowing the

data owners to keep their data locally. However, FL is a novel

technique in development that still carries crucial core challenges

and open questions.

The most common algorithm used to aggregate the updates of

different participants in an FL round is the Federated Averaging

(FedAvg) algorithm (McMahan et al., 2017). However, FL with

FedAvg lacks an inherent privacy guarantee, and other methods

must be utilized to guarantee privacy. Neural Networks (NNs)

are also a form of memory mechanism that store compressed

representations of the training data within their parameters

(weights). This could make it possible to reconstruct parts of the

training data (Wang et al., 2019; Kaissis et al., 2020). To avoid

data leakage from the model parameters, the Secure Aggregation

(SecAgg) protocol can be used. SecAgg utilizes the concept of

Secure Multi-Party Computation (SMPC) (Keller et al., 2018; Zhao

C. et al., 2019) to compute sums of model parameter updates from

individual participants in a secure manner, where no participant

reveals their update clearly (Bonawitz et al., 2017; Safari et al., 2021).

In the context of FL, SecAgg enables the computation of the new

model without each participant revealing their updates to any of

the other participants or the central server, offering new levels of

privacy and reducing the risk of information leakage (Bonawitz

et al., 2016, 2017).

FL has been utilized in the medical imaging field through tasks

such as X-ray pneumonia detection (Kaissis et al., 2021), whole-

brain segmentation in MRI (Roy et al., 2019; Rieke et al., 2020),

COVID-19 detection (Liu et al., 2020), and analysis of different

neurological diseases, such as Alzheimer’s disease (AD) (Stripelis

et al., 2022). AD is the most common cause of dementia in the

elderly (Ritter et al., 2015). Hebert et al. (2001) predicted that

by the year 2050, the number of AD patients will increase three-

fold. Increasing research in the pathology and pathomechanisms

involved in AD is needed to develop better treatment and diagnosis

tools. Developing ML-based methods for AD diagnosis is an

essential step in the evolution of methods that can diagnose AD

with high accuracy (Wen et al., 2020).

In this work, we demonstrate the usage of FL with SecAgg for

the training of an ML model for AD detection based on structural

MRI (sMRI) data from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI3) dataset. The contribution of our work is three-

fold. First, we propose the usage of FL with SecAgg when training

a classification algorithm for AD based on sMRI data. Second,

we compare the classification performance of ML models trained

using FL with FedAvg, and with SecAgg when having clients

with statistically different datasets. The statistical differences taken

into account in our study are the dataset size and demographical

characteristics, including sex, age, and diagnosis. Our simulated

heterogeneous environments take advantage of the biases most

commonly affecting ML models trained on neuroimaging data

(Larrazabal et al., 2020). Third, through simulated membership

inference attacks, we show that our FL architecture, with the

extension of SecAgg provides an extensive privacy guarantee on the

client level.

2 Materials and methods

2.1 Federated learning

As the amount of available data worldwide increases, the

centralization of data and algorithms has become increasingly

popular. In such a setup, the data owners send their data to a central

location, where a second party deals with the cleaning, processing,

and fusing of data. An ML model is then trained on the data in

the central location and later used for the prediction on unseen

data. This concept is known as Centralized Learning (CL), where

different data owners can share their local data with a centralized

server to enable the training of ML models on more significant

amounts of data. However, this approach doesn’t come without

issues: the data must be shared to a central location, exposing it to

possible attacks or thefts. When the computation is centralized, the

dataset can be manipulated, information regarding individuals can

be derived, and the training data can be stolen (AbdulRahman et al.,

2020; Kaissis et al., 2020). On the other hand, the model owners also

expose their possibly unique algorithms to attacks (Kurita et al.,

2020). Additionally, laws such as the GDPR aim to protect users’

data privacy and security and require the data owners or users to be

the absolute owners of their data. Due to CL’s architecture, obeying

the laws imposed to secure and protect personal data is impossible.

FL is offered as a solution to take a step further in preserving the

privacy of the data.

FL (McMahan et al., 2017) is a method that attends to

protecting the data, allows for dealing with distributed data that

3 adni.loni.usc.edu
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FIGURE 1

Comparison of FL with and without SecAgg. Unlike simple FL, where FedAvg is used for aggregation, in FL with SecAgg, the aggregation is done using

SMPC, where all the clients collaborate to aggregate their model parameter updates.

is not representative of the population distribution (i.e., non-

IID data), and enables collaborative learning. The first study of

FL (McMahan et al., 2017) introduced the FedAvg algorithm,

which combines local stochastic gradient descent (SGD) on each

client with a server that performs model averaging. FedAvg is

the baseline of FL in many research areas (Li L. et al., 2020). A

typical implementation of the FedAvg algorithm is given in the

Supplementary material.

The FL training approach is most commonly composed of

several phases involving client-server communication. The process

of training during an FL session is the same each epoch. It

is composed iteratively of: (1) initialization of the clients, (2)

distributing the global model parameters and training on local

data, (3) reporting the local model parameters back to the central

server, (4) aggregating and averaging the local model parameters

into a new global model, and (5) sending the new global model

parameters back to the clients. Essentially FL allows N clients to

collaboratively train a global model on their local data (McMahan

et al., 2017). In the process, a single client Pi for i ∈ N, doesn’t

share their local dataset Di. The global objective at round r > 0 is

to learn a model with parameters ω
r
fed

from the data that is stored

on the N clients. First, the server sends the current global model

ω
r−1
fed

, to all participants. The clients then update the model on their

local data, producing new local models ω
r
i . After the local updates

of the model, the models are sent back to the server, where they are

aggregated into a new ω
r
fed

using the FedAvg algorithm in the case

of simple FL, as shown in Figure 1. In a successful federated training

scenario, ωr
fed
, should be reasonably close to ω

r
cen, which would be

the model trained using a CL approach, i.e., if all the participants

shared their data in a centralized location. After the computation

of the new global model, the server sends it back to the clients, and

the process repeats (McMahan et al., 2017).

2.2 Secure Aggregation

One of the main challenges of FL with FedAvg is that it is

not fully privacy-preserving by itself. If the local models are not

encrypted, the data can leak, and the models can be interfered with.

The input data can also be reconstructed from the NNs’ parameters

(weights). This is unacceptable from the data security perspective;

thus, other methods must be utilized. SecAgg (Bonawitz et al.,

2016) is the problem of computing a multiparty sum of the

clients’ model parameter updates in a federated setting without

revealing the updates to the other clients or the central server.

SecAgg is based on SMPC (Yao, 1982), a cryptographic primitive

that enables multiple clients to jointly compute a value without

revealing their private information to each other. In this study, the

SecAgg implementation builds upon the idea of SPDZ (Damgård

et al., 2012), one of the most popular arithmetic secret-sharing

schemes under SMPC.

The SPDZ protocol is an arithmetic secret-sharing SMPC

protocol in which N clients attempt to perform secure

computation. The computation is performed over a fixed

finite field, i.e., modulo prime Q. In SecAgg, each of the clients

Pi, after updating their local model ωi, encodes it to fixed-point

precision and then splits the model into N random shares α
i
j

within the finite field. The client Pi sends the share α
i
j to the Pj

client. Thus, none of the clients possess the original value ωi; only

shares without any value on their own that, when added, would

produce the original value. The original value is unknown when

N − 1 elements are known (Evans et al., 2018). Once the clients

receive the shares from all the other clients, they sum them up and

send the corresponding result to the central server, as presented

in Figure 1. The algorithm for FL with SecAgg is presented in the

Supplementary material.

2.3 Federated learning-based Alzheimer’s
disease detection

This study introduces an FL-based AD detection method based

on sMRI data. We compare the Relative Performance Decrease

(RPD) between models trained using CL, FL with FedAvg, and

with SecAgg. Ten scenarios within five environments are evaluated,

with various clients with varying statistical and demographic

distributions, as shown in Figures 2, 3. The scenarios not only allow

for a comparison of the performance of the models trained using
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FIGURE 2

Data partitioning across clients with respect to number of subjects. (A) The plot shows the data partitioning across clients with respect to the two

diagnosis labels (AD and CN) over the ten studied scenarios. (B) The plot shows the data partitioning across clients with respect to the patient’s sex

over the ten studied scenarios. (C) The plot shows the data partitioning across clients with respect to the average age over the ten studied scenarios.

FL but also allow for the evaluation of the effect that the differences

in the underlying statistical and demographic distributions among

clients have on the final model. The experiments considered one

FL environment with four clients (Scenario 1.2), five heterogeneous

FL environments with three clients (Scenario 1.1, Scenario 2,

Scenario 3.1, Scenario 3.2, Scenario 4.1), and four heterogeneous FL

environments with two clients (Scenario 3.3, Scenario 4.2, Scenario

5.1, Scenario 5.2). Regarding the data distribution across clients,

five different cases were investigated: (1) uniform and balanced,

where each client had data with the same number of AD and

CN patients (Scenario 1.1, Scenario 1.2), (2) skewed and balanced,

where clients held data with differing numbers of patients (Scenario

2), (3) uniform and imbalanced in terms of patient’s sex, where the

clients held data with differing number of patients from particular

sex (Scenario 3.1, Scenario 3.2, Scenario 3.3), (4) uniform and

imbalanced in terms of patient’s age, where the clients held data

with differing number of patients from a particular age group

(Scenario 4.1, Scenario 4.2), and (5) uniform and non-IID in terms

of patient’s diagnosis label, where the clients held data with differing

number of patients from a particular diagnosis label (Scenario 5.1,

Scenario 5.2).

2.3.1 Data and preprocessing
For the experiments, T1-weighted MPRAGE scans from the

ADNI database (Petersen et al., 2010), were used. All scans were

acquired with 3T scanners at various locations. The scans were pre-

processed using the 1mm T1 version of the ICBM152 reference

brain as a template after being resampled to a thickness of 1mm.
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FIGURE 3

Data partitioning across clients with respect to the number of samples.

FIGURE 4

The model consists of four convolutional blocks, each containing a convolutional layer, batch normalization, and max-pooling. After the convolution

blocks, there is a fully-connected layer with 128 units, and the output fully-connected layer with two output units, providing the decision for the

specific patient.

Afterward, Advanced Normalization Tools (ANTs4) were used to

register the scans to the reference brain template non-linearly.

In the end, the FSL Brain Extraction Tool (fsl-bet) (Jenkinson

et al., 2012), was used for skull stripping. ADNI is a longitudinal

dataset i.e., there are multiple scans of a single subject at several

points in time. Thus, the subjects included in the experiments were

only subjects that, at the baseline visit, were classified either as

Cognitively Normal (CN) patients or patients with AD. The total

number of subjects in the experiment was 618 (166 patients with

AD, 452 CN patients). There were 345 women and 273 men. The

dataset was split into the development (train/validation) and the

test set. The split was repeated ten times with ten different random

seeds to obtain more robust results. In each training run, the

training was repeated five times for all scenarios over the ten splits.

The models with the highest performance on the validation dataset

were tested on the independent test set. All of the test sets were

created once and kept the same until the end of the experiment.

The test sets had equal amounts of AD and CN patients (50 AD

and 50 CN), with an equal number of women and men of the same

diagnosis label and same mean age.

4 http://stnava.github.io/ANTs/

2.3.2 Convolutional neural network architecture
We investigated the detection of AD using a 3D Convolutional

Neural Network (CNN), adapted from Bhle et al. (2019), shown

in Figure 4. The model’s architecture contained four convolutional

blocks, each with one convolutional layer with filter sizes 8, 16,

32, and 64 features, respectively. The convolutional block also

had batch normalization and max-pooling with window sizes 2,

3, 2, and 3. The convolutional blocks were followed by two fully

connected layers of 128 and 2 units, respectively, where the 2-unit

output layer represented the two decision classes, CN and AD.

Additionally, before each of the fully connected layers, a dropout

of 0.4 was applied. Cross-entropy loss and Adam optimizer were

used to train the network with a learning rate and weight decay of

10−4.

All federated experiments were performed using DLFi, the

in-house built Distributed Learning Framework5 at Fraunhofer

Heinrich-Hertz-Institute. DLFi is a Privacy-Preserving AI-as-as-

Service (PP-AIaaS) solution, providing a training environment for

remote clients without transferring the data to a central location. It

allows the training of a global model on a set of geo-distributed edge

5 www.hhi.fraunhofer.de/dlfi.
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nodes. The federated experiments were demonstrated as a cloud-

native application across a multi-server Kubernetes cluster, similar

to Shariati et al. (2020).

3 Results

In Section 3.1, the RPD of the models trained within the ten

different learning scenarios using the three learning approaches

(CL, FL with FedAvg, and SecAgg) is presented (see Table 1).

Section 3.2 gives an overview of the results of the corresponding

privacy analysis over the models trained using the three learning

approaches (see Figure 5).

3.1 Performance comparison

In Table 1, we show the average balanced test accuracy achieved

by the models trained using CL, FL with FedAvg, and FL with

SecAgg in the ten different learning scenarios. In most cases, the

models trained using FL with FedAvg, and with SecAgg achieved

balanced test accuracy comparable to those trained centrally. It

is important to mention that the environments with two clients

were simulated to provide an insight into how the training of the

ML model is affected when one of the clients has data from one

population, and the other client has data from another population

(e.g., one client with only women patients and the other with only

men). However, as the SMPC protocol guarantees privacy as long as

N− 1 elements are known (Evans et al., 2018), the smallest number

of clients for which SecAgg makes sense is three. So in Scenario 3.3,

Scenario 4.2, Scenario 5.1, and Scenario 5.2, we only compare the

models trained with FL with FedAvg and CL.

To compare the model performances quantitatively, we use

the RPD metric to measure the performance decrease between the

federated models and the models trained using CL.

The results show that under the uniform data distribution in

Scenario 1.1, the models trained using FL with FedAvg experienced

0.48% RPD, and those trained using FL with SecAgg experienced

1.40% RPD. Scenario 1.1 serves as the simplest, most balanced,

pathological example, which shows that in a completely balanced

setting, with balanced data distribution in terms of dataset size

and diagnosis, the FL approach suffers little performance decrease.

Under the extended Scenario 1.2, it can be observed that by adding

one more client in the setting (by splitting the same dataset over

four instead of three clients), the models trained using FL with

FedAvg experienced 2.64% RPD, and the models trained using FL

with SecAgg experienced 2.76% RPD. The increase in RPD, in

Scenario 1.2 is due to the smaller number of samples per client,

as the whole dataset was split over four, instead of three clients as

in Scenario 1.1. In Scenario 1.2, we showcase that FL with SecAgg

scales well even when we have more than the minimum number

of clients for which SecAgg makes sense (three). However, as can

be seen, due to dataset size limitation, if the number of clients

is too large, the local clients’ datasets become very small, making

the local objectives very different compared to the global objective,

essentially failing the FL process.

Under the skewed balanced data distribution in Scenario 2,

both the models trained using FL with FedAvg, and with SecAgg

experienced 1.21% RPD. Compared to Scenario 1, Scenario 2

serves as a more realistic example, where different clients have

different amounts of data and an imbalanced distribution in

terms of diagnosis. However, in this scenario, the models trained

using FedAvg and SecAgg also reach accuracy comparable with

the centralized approach. This shows that slight variations in the

statistical distribution of data among clients, where one of the

clients has most of the data, and the other two have a proportion

of the rest of the data, only slightly affect the performance of the

models trained in the federated setting.

Aside from the difference in the statistical distribution of data

among clients, three other demographic variations were explored:

sex-based, age-based, and diagnosis-based. The sub-scenarios of

Scenario 3, present the effect that imbalanced data distribution in

terms of patients’ sex has on the models trained in a federated

setting. From the experiments, it is observable that the imbalance

in terms of patients’ sex, does affect the performance of the models

trained using FL with FedAvg, and with SecAgg. The effect is the

strongest in the sub-scenarios where two clients have the same

features (i.e., only women), and one client has a different feature

(i.e., only men). Thus, in Scenario 3.1 the RPD is 2.30% for the

models trained with both FL with FedAvg, and with SecAgg, and

in Scenario 3.2 the RPD is 2.48% for the models trained with

FL with FedAvg and 3.34% for the models trained with FL with

SecAgg. The model performance decrease is lower in the two-

client environment of Scenario 3.3 (RPD of only 1%), where both

clients hold a single feature. On the other hand, the sub-scenarios

of Scenario 4 present the effect of imbalanced data distribution in

terms of patients’ age on the models trained in a federated setting.

From the experiments, it can be observed that the imbalance in

terms of patients’ age distribution doesn’t affect the performance

of the models trained using FedAvg and SecAgg to a great degree.

In Scenario 4.1 there is no RPD for the models trained using FL

with FedAvg and only 0.50% RPD for the models trained using

FL with SecAgg, and in Scenario 4.2 there is no RPD for the

models trained using FL with FedAvg. However, as the two age

groups had an average age difference of approximately 10 years,

it would be interesting to explore whether the same conclusion

could be made if the average age difference between the groups was

more significant.

Scenarios 5.1 and 5.2 explored the effect of non-IID data on the

models trained in a federated setting, as FedAvg has been shown

to diverge in practice (McMahan et al., 2017) when data is non-

IID. Due to the nature of FL with SecAgg, the fifth scenario only

investigated the RPD between the models trained using FL with

FedAvg and those trained centrally. In Scenario 5.1, the federated

model experienced the highest RPD across all scenarios (RPD of

20.70%). However, the performance of the models trained using FL

with FedAvg drastically increased after including a proportion of

data from the other diagnosis label in each client’s local dataset, as

observed in Scenario 5.2 (RPD of only 3.50%). The sub-scenarios

of Scenario 5 present the effect that imbalanced data distribution in

terms of patients’ diagnosis has on the models trained in a federated

setting. As the results were very discouraging when having the data

split across three clients (i.e., two clients with only CN patients

and one client with AD patients), only the environment with two

clients is presented. When both clients have completely non-IID
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TABLE 1 Summary of the obtained average balanced test accuracy (%) with standard deviation for di�erent heterogeneous learning scenarios.

Scen. Description Num. of clients CL FLw/FedAvg FLw/SecAgg

1.1 Uniform and balanced 3 83.3± 1.6 82.9± 1.9 82.1± 2.4

1.2 Uniform and balanced 4 83.3± 1.6 81.1± 2.9 81.0± 2.4

2 Skewed and balanced 3 82.6± 2.7 81.6± 2.2 81.6± 2.3

3.1 Uniform and sex imbalanced 3 80.8± 2.6 79.0± 2.9 79.0± 2.7

3.2 Uniform and sex imbalanced 3 80.8± 2.6 78.8± 2.2 78.1± 2.6

3.3 Uniform and sex imbalanced 2 82.2± 3.4 81.4± 3.5 N/A

4.1 Uniform and age imbalanced 3 78.5± 4.1 78.5± 3.7 78.1± 4.1

4.2 Uniform and age imbalanced 2 74.0± 3.2 74.0± 3.3 N/A

5.1 Uniform and diagnosis non-IID 3 81.0± 2.6 64.2± 1.1 N/A

5.2 Uniform and diagnosis non-IID 2 81.0± 2.6 78.2± 4.4 N/A

FIGURE 5

Summary of results for the membership inference attack, based on Shokri et al. (2017). The member and non-member metrics correspond to

sensitivity and specificity, and the balanced accuracy is the average of the two.

TABLE 2 Summary of the RPD (%) between the federated models and the

models trained centrally for di�erent heterogeneous learning scenarios.

Scen RPD for FLw/FedAvg RPD for FLw/SecAgg

1.1 0.48 1.40

1.2 2.64 2.76

2 1.21 1.21

3.1 2.30 2.30

3.2 2.48 3.34

3.3 1.00 N/A

4.1 0.00 0.50

4.2 0.00 N/A

5.1 20.70 N/A

5.2 3.50 N/A

in terms of diagnosis, the model trained using FL has the highest

performance decrease across all experiments. Scenario 5.2 shows

that when data from the second diagnosis label replaces 25% of

the data on the client, the relative performance increases by more

than 17%.

The RPD values from all of the Scenarios are summarized in

Table 2.

3.2 Privacy analysis

To explore the advantages of FL with SecAgg in terms of privacy

and reduction of information loss, we simulated a membership

inference attack (Shokri et al., 2017) over the models trained in

the uniform and balanced scenario. We present the results of the

approach in Figure 5.

An adversary able to learn whether a particular sample was used

to train an ML model indicates information leakage through the

model, which possibly leads to a privacy breach (Shokri et al., 2017).

Our experiment setup assumes the adversary can access the model

architecture and parameters from a particular training epoch. In

the federated system, the adversary was assumed to have access

to the information available at the central server, or the adversary

was the central server itself. The attack is executed by utilizing a

shadow model approach as explained by Shokri et al. (2017), where

the shadow model is a replica of the original model, trained on a

separate dataset Dtrain
shadow

, disjoint from the training dataset of the

original model Dtrain
original

. The idea behind the setup can be observed

in Figure 6. Such a setup presents a more realistic environment, as

one cannot assume that the attacker has access to some samples

from the training dataset of the original model.

From the results it is observable that the attack was successful

for the models trained using CL and the models trained in a

federated setting with FedAvg. For the model trained with SecAgg,

the attack model was unsuccessful in determining which data
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FIGURE 6

The membership inference attack, based on Shokri et al. (2017),

encompasses the training of a shadow model (purple), that behaves

the same as the original model (green). Once the shadow model has

been trained, the adversary feeds the trained shadow model samples

from an auxiliary dataset, and the outputs serve as an input to the

attack model (beige). Once the attack model has been trained, it is

evaluated on the original model, such that the adversary feeds the

original model samples from a second auxiliary dataset and uses the

outputs as input to the attack model. In this case, the attack model

distinguishes between member and non-member points.

samples were part of the training set of a particular client. This

result is consistent with the privacy guarantee of SecAgg when

trying to infer information from the clients’ local model updates,

from the perspective of the central server (Evans et al., 2018). In

general, this is the expected behavior, and a range of studies have

looked into the information leakage of models trained using FL,

reaching the same conclusion (Nasr et al., 2019; Zari et al., 2021).

4 Discussion

In this work, we introduced a secure FL architecture for training

ML models for AD detection based on sMRI data. We empirically

demonstrated the effectiveness, as well as the convergence and

privacy guarantees of themodels trained using FL with FedAvg, and

with SecAgg in different heterogenous environments with varying

demographical and imbalanced data distributions. Through the

simulation of ten scenarios within five environments, we showed

that the model performance obtained when using FL with FedAvg

and with SecAgg is on par with the models trained centrally;

however certain demographic and imbalanced data distributions

affected the performance of the models to a greater degree. First,

we showcased that slight variations in the statistical distribution of

data among clients, such as in Scenario 2, where one of the clients

has most of the data, and the other two have a proportion of the rest

of the data, only affected the performance of the models trained

in the federated setting to a small degree. Regarding the models

trained in environments where the data is uniform but imbalanced

in terms of sex and age, we observed that the patient’s sex imbalance

affected the federatedmodels to a greater degree than the imbalance

in terms of the patient’s age. Last, through the sub-scenarios of

Scenario 5, we observed that the models trained in an environment

where the clients held data with differing number of patients from

a particular diagnosis label, suffered the greatest RPD across all

the experiments. This showed that when the data is non-IID in

terms of diagnosis labels across the clients, the effect on the FedAvg

algorithm is the largest.

The model performance obtained when using FL with SecAgg

across the experiments is on par or the same as the model

performance of the models trained without SecAgg. However,

based on individual data splits, themodels trained with the addition

of SecAgg show higher variability. This is the expected behavior

because some information loss occurs when the model parameter

updates are encoded to fixed-point precision and correspondingly

decoded to float-point precision. Despite this disadvantage, FL with

SecAgg offers additional advantages in terms of privacy and reduces

the risk of information loss. To explore these privacy guarantees, we

also simulated a membership inference attack (Shokri et al., 2017)

over the models trained in the uniform and balanced scenario. The

models trained with FLwith SecAgg, were shown to protect the data

on the level of the client from the perspective of the central server,

where the adversary is not able to learn any particular information

regarding the training data. If the adversary would not target a

specific client in the federated setting, both with and without Secure

Aggregation, the accuracy of the attack would be theoretically the

same as the accuracy for targeting the model trained centrally.

However, in the experiments, only a single client is targeted to

explore how much information leakage is associated with a single

client’s local model update.

Overall, the experiments showed that FL with SecAgg is a

practical approach that can be used when training high-quality

models on the task of AD detection. While FL offers many

advantages, the addition of SecAgg allows for developing a client-

based privacy-preserving approach.

4.1 Related work

Several studies have demonstrated the proof-of-concept

application of FL to real-world neuroimaging data. Mainly, FL has

been used for whole-brain segmentation in MRI (Roy et al., 2019;

Rieke et al., 2020), brain tumor segmentation (Sheller et al., 2018; Li

et al., 2019; Rieke et al., 2020), brain-age prediction (Stripelis et al.,
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2021a,b), etc. Silva et al. (2019), presented a method for utilizing

multi-site neuroimaging data to analyze different neurological

diseases. They studied brain structural relationships across diseases

and clinical cohorts using synthetic data and then applied the

framework to multi-database studies, such as ADNI.

Recently, Stripelis et al. (2022) have also presented an FL

architecture that utilizes Homomorphic Encryption (HE) to

train ML models for AD detection. The authors studied several

prominent AD datasets, splitting the dataset heterogeneously over

clients only in terms of dataset sizes. However, HE protocols relying

on key-based cryptography have been shown to usually experience

high computational complexity for implementing neural network

training and inference (Kaissis et al., 2021).

4.2 Limitations

One of the most crucial challenges of any FL system is the

privacy provided to the clients. Our system assumes an honest

but curious setting and doesn’t provide any additional protection

against active adversaries that could participate directly in training

and poison the model that is being trained. Although SecAgg

provides comprehensive privacy protection on the client level, it

doesn’t guarantee to the clients that the shared model is the one

promised by the central server (Kaissis et al., 2021). Additionally,

SecAgg doesn’t fully protect against information leakage on the

level of the global model, only on the level of local models from

a particular client. Differential Privacy (DP) could be used for

additional protection of the data, by adding noise to the results

at a particular stage of model training. DP has been used, both

on models trained centrally (Abadi et al., 2016), and with FL

(Choudhury et al., 2019). DP offers three locations of application

in different stages of the model training: adding noise to the input,

adding noise to model parameters, and perturbing the objective

function (Choudhury et al., 2019; Zhao J. et al., 2019). DP has been

shown to provide defense against membership inference attacks,

by perturbing the model parameter weights (Chen et al., 2020).

Extending the current work with DP would protect on the level

of the global model. While DP adds a level of privacy, it could

destroy useful information in different stages of the training, which

is a common research question. DP with FL has been used in

many studies, all showing promising results, and some have even

implemented the combination of SMPC and DP for additional data

protection (Kaissis et al., 2021). Thus, extending the current work

with DP is an exciting task for future work.

As could be observed from the sub-scenarios of Scenario 5,

the non-IID data in terms of diagnosis across clients affects FL

strongly. Thus future work should also address the challenge

of non-IID data across clients. Several studies have provided

concepts for novel federated aggregation algorithms that try to cope

with the effect of non-IID data. For example, Li et al. (2020b),

proposed FedProx to deal with the heterogeneity in federated

settings. FedProx is a generalization and re-parametrization of the

FedAvg algorithm that allows for a variable amount of work to

be performed locally across clients, depending on the available

system resources. The authors provided convergence guarantees

using bounded dissimilarity assumption and demonstrated that

in highly heterogeneous settings, they can improve the testing

accuracy by 22% on average. Yu et al. (2020), presented another

class of methods for robust, personalized FL. Their aggregation

framework can handle non-IID data, outliers, and clients that

transmit their local updates late. It doesn’t require all of the clients

to agree on a single standard model. The authors provided a

convergence analysis and concluded that their method converges

for convex, non-convex problems, robust aggregation, and the

case when clients transmit their local model updates late. These

approaches are all promising solutions for non-IID data’s challenges

to the currently used aggregation mechanism.

Additionally, even though compared to the literature, the

results that are presented are in line with the baseline results

[76%–91% for discriminating AD and CN patients (Wen et al.,

2020)]; however, they could have been improved by exploring more

methods for data augmentation and hyper-parameter tuning. Since

more than 1,000 runs of the experiment were made to obtain robust

results, exploring all of these in detail was not possible from a

computational point of view.

5 Conclusion

In conclusion, in this work, we empirically demonstrated the

effectiveness of using FL with FedAvg, and with SecAgg to train ML

models for AD detection based on sMRI data. The results obtained

via the simulated heterogeneous environments with varying

demographical and imbalanced data distributions highlighted the

importance of studying such statistical differences when training

an ML model for AD detection using FL. Additionally, through

simulated membership inference attacks, we showcased the privacy

guarantees of SecAgg, proving the additional advantages of SecAgg

in terms of privacy and reduced risk of information loss.

Our immediate future work includes expanding the FL

architecture with DP to provide a privacy guarantee on the level of

the global model.We also plan to exploremore efficient aggregation

methods to mitigate the effect of non-IID data on the models

trained in the federated setting, as seen in Scenario 5.1. Moreover,

when more public data is available, we could explore how a male

patient-dominated environment in Scenario 3 and a larger mean

age difference in Scenario 4 would affect the results.
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