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Introduction: Novelty detection (ND, also known as one-class classification) is

a machine learning technique used to identify patterns that are typical of the

majority class and can discriminate deviations as novelties. In the context of

Alzheimer’s disease (AD), ND could be employed to detect abnormal or atypical

behavior that may indicate early signs of cognitive decline or the presence of the

disease. To date, few research studies have used ND to discriminate the risk of

developing AD and mild cognitive impairment (MCI) from healthy controls (HC).

Methods: In this work, two distinct cohorts with highly heterogeneous data,

derived from the Australian Imaging Biomarkers and Lifestyle (AIBL) Flagship

Study of Ageing project and the Fujian Medical University Union Hospital

(FMUUH) China, were employed. An innovative framework with built-in easily

interpretable ND models constructed solely on HC data was introduced along

with proposing a strategy of distance to boundary (DtB) to detect MCI and AD.

Subsequently, a web-based graphical user interface (GUI) that incorporates the

proposed framework was developed for non-technical stakeholders.

Results: Our experimental results indicate that the best overall performance of

detecting AD individuals in AIBL and FMUUH datasets was obtained by using the

Mixture of Gaussian-based ND algorithm applied to single modality, with an AUC

of 0.8757 and 0.9443, a sensitivity of 96.79% and 89.09%, and a specificity of

89.63% and 90.92%, respectively.

Discussion: The GUI o�ers an interactive platform to aid stakeholders in making

diagnoses of MCI and AD, enabling streamlined decision-making processes.

More importantly, the proposed DtB strategy could visually and quantitatively

identify individuals at risk of developing AD.

KEYWORDS

Alzheimer’s disease, mild cognitive impairment, novelty detection, decision boundary,

decision support system
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1 Introduction

As the population ages, the impact of neurodegenerative

diseases such as Alzheimer’s disease (AD), the most common

type of dementia (Feigin et al., 2020), is becoming increasingly

significant. Neurodegeneration incrementally diminishes the

quality of a patient’s life and leads to a heavy economic burden in

healthcare. In 2022 the Alzheimer’s Disease International (ADI)

reported that the number of people worldwide suffering from

dementia exceeded 50 million, with the total estimated cost of

dementia surpassing US$ 1.3 trillion, which is projected to double

by 2030 (Gauthier et al., 2022). China, the world’s most populous

country, accounts for 25% of the world’s dementia cases. According

to Jia et al. (2020), the total number of people with dementia in

China was 14.1 million in 2020, and it is projected to increase to

23.3 million by 2030. The total costs of dementia in China reached

US$ 69 billion in 2020 and are estimated to increase to US$ 114.2

billion in 2030 (Ren et al., 2022).

Therefore, there is an urgent need to develop AI-enabled

Clinical Decision Support Systems (AI-CDSS) to expedite AD

diagnosis and prognosis, thereby enhancing healthcare quality. It

has been shown that CDSS can facilitate prompt clinical decision-

making processes, minimize medical errors, and lower economic

costs. The advancement of AI in healthcare has become a strategic

priority in numerous countries, including the US, China, and

the UK. For instance, in August 2019, the UK Health Secretary

announced a significant investment of £250 million to establish

a new national AI lab. This lab aims to tackle major healthcare

challenges, including dementia treatments (Hancock, 2019).

As a machine learning technique within the realm of AI,

novelty detection (ND) holds the potential for integration into

AI-CDSS. ND can detect abnormal behaviors that deviate from

typical patterns, making it particularly valuable in safety-critical

domains like healthcare. For instance, it has been employed to

predict new disease-causing genes (Vasighizaker et al., 2019) and

identify anomalousmovements in Parkinson’s disease patients (Rad

et al., 2018). However, there have been limited studies that utilize

ND to assess the risk of developing AD. Unlike other machine

learning methods, including deep learning applied in the area

(Ebrahimighahnavieh et al., 2020; Wang et al., 2020; Liu et al.,

2021; Qiao et al., 2022), ND techniques are easily interpretable

and applicable even when only one class of data is available (so-

called one-class classification), i.e., healthy controls (HC) data in

this scenario. A few recent studies of data modeling for mild

cognitive impairment (MCI) and AD prediction (Zuo et al., 2021,

2023; Lei et al., 2023) were still built on binary or multiple

classes that should be given during the model’s training process.

They performed binary classification of early MCI (EMCI) vs.

HC, late MCI (LMCI) vs. HC, AD vs. HC, EMCI vs. LMCI,

and LMCI vs. AD, as well as multiple classifications of LMCI vs.

EMCI vs. HC. ND would fully address the issue of training a

model based on unbalanced data, which may result in a skewed

classification result.

Therefore, this study introduces an innovative approach that

holds significant promise for early-stage identification of AD. The

main contributions of the work are as follows:

1) Strategic reliance on the power of ND techniques

This novel framework employs a training model that is

meticulously constructed solely using the data from HC

to uncover anomalous instances, which, in this case, could

indicate the presence of early-stage AD. By training the

model exclusively on HC data, we taught it to identify

deviations from this norm, thus making it exceptionally

sensitive to potential signs of cognitive decline even before

they manifest clearly.

2) An innovative distance to boundary (DtB) strategy

To enhance the strategic reliance on ND, this study

constructed a closed decision boundary tightly surrounding

the HC data. Consequently, a distance to the boundary (DtB)

strategy is proposed to detect MCI and AD according to

the distance of the individual’s data point to the decision

boundary. Such distance can identify the severity of each

individual developing early-stage AD, which in turn can be

referred by clinicians for follow-up treatment.

3) Class imbalance alleviation in full

Traditional classification techniques require balanced datasets

encompassing both positive and negative classes. However,

in the context of AD, we are predominantly concerned with

the positive class, i.e., identifying those with the condition.

Our framework not only accommodates this skewed focus

but thrives in it. By concentrating solely on the HC data for

training, we built a model intricately attuned to differentiating

healthy patterns from potentially aberrant ones.

4) Cross-regional data employment and an interactive graphical

user interface development

We employed two distinct cohorts with highly heterogeneous

data from Australia and China, aiming to generalize the

proposed DtB strategy. Our findings indicate that a Mixture

of Gaussian-based ND method applied to a single modality

achieved the highest overall performance in detecting MCI

and AD. More importantly, we developed a web-based

interactive graphical user interface (GUI) tailored for non-

technical stakeholders that incorporates our proposed ND-

based framework. This interface introduces a transformative

pathway, equipping stakeholders with the means to initiate

the evolution of a CDSS that holds the potential to impact

AD-related decision-making and intervention strategies.

2 Materials and methods

2.1 Data extraction

The data used for model development and testing are

from the Australian Imaging, Biomarkers and Lifestyle (AIBL)

Flagship Study of Aging project (https://www.aibl.csiro.au/) (Ellis

et al., 2009) and the Fujian Medical University Union Hospital

(FMUUH), China. The usage of both datasets and our submission

has been approved by the AIBL Management Committee and the

local FMUUH.

2.1.1 The AIBL data
The AIBL data can be categorized into cerebrospinal fluid

biomarkers (CSF), cognitive and functional assessments (CFA),
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TABLE 1 The AIBL modalities and the corresponding 32 features used in

the study.

Modalities Features

Cognitive and functional assessments (CFA) MMSE, LMIR, LMDR,

CDR.

Blood analyses (BLO) Thyroid-stimulating

hormone (AXT117),

vitamin B12 (BAT126),

red blood cell (HMT3),

white blood cell

(HMT7), platelets

(HMT13), hemoglobin

(HMT40), mean

corpuscular hemoglobin

(HMT100), mean

corpuscular hemoglobin

concentration

(HMT102), urea

nitrogen (RCT6), serum

glucose (RCT11),

cholesterol high

performance (RCT20),

and creatinine rate

blanked, (RCT392).

Brain imaging (IMG) PIB-PET, MRI (GM,

WM, CSF).

Demographics (DEM) Gender, Age.

Medical history (MH) Psychiatric

(MHPSYCH), neurologic

other than AD

(MH2NEURL), head,

eyes, ears, nose, and

throat disease

(MH4CARD), hepatic

(MH6HEPAT),

musculoskeletal

(MH8MUSCL),

endocrine-metabolic

(MH9ENDO),

gastrointestinal

(MH10GAST),

renal-genitourinary

(MH12RENA), smoking

(MH16SMOK), and

malignancy

(MH17MALI) histories.

ApoE genotype Two alleles of

apolipoprotein genotype

(ApoE).

magnetic resonance imaging (MRI), positron emission tomography

(PET), blood test (BLO), demographic (DEM), and medical history

(MH). The CFA involved in our study includes the mini-mental

state examination (MMSE), logical memory immediate/delayed

recall assessments (LMIR/LMDR), and clinical dementia rating

(CDR). The brain imaging data consists of coarse-grained

structural MRI and PET with [11C]-Pittsburgh compound B (PIB).

They are the total volume of gray matter (GM), white matter

(WM), cerebrospinal fluid (CSF), and the total number of active

pixels (PIB.PET). Table 1 lists the 33 features [4 CFA, 12 BLO, 4

neuroimaging, 2 sociodemographic, 10 medical history (MH), and

ApoE genotype features] that were used as potential predictors of

cognitive decline associated with AD.

As a gold standard, CDR has been considered a more objective

assessment than clinical diagnosis of stage and AD severity.

Individuals were categorized into five groups based on the CDR

scale levels: the HC (CDR = 0), very mild cognitively impaired

(MCI, CDR = 0.5), mild (CDR = 1), moderate (CDR = 2), and

severe (CDR = 3) AD patients (Ding et al., 2018). Hence, we used

CDR as a target feature due to its strong correlation with clinical

diagnostic results (see Supplementary Figure 1). Due to limited

data with CDR scores of 2 and 3, we incorporated them and the

data with CDR scores of 1 into one category (i.e., AD).

Consequently, we extracted complete non-imaging data

from a total of 861 individuals at baseline (BL), where only

262, 222, and 142 individuals had follow-up visits after 18

(M18), 36 (M36), and 54 (M54) months, respectively. Hence,

we used 1487 complete non-imaging data, including the

CFA, BLO, DEM, MH, and ApoE features, to implement

the proposed DtB strategy. However, including MRI and

PIB.PET brain imaging data generated only 641 complete

data, which were used to construct the ND models

and conduct comparative analysis in terms of different

modality combinations.

2.1.2 The FMUUH data
To evaluate our proposed strategy on data from different

regions, this study also considered 330 local clinical data

records (148 HC and 182 AD) obtained from FMUUH China.

Six available features containing three cognitive assessments

[MMSE, Alzheimer’s Disease Cooperative Study - Activities of

Daily Living (ADCS-ADL), and Neuropsychiatric Inventory

(NPI)] and three demographics (age, education level, and

gender) were obtained. The data varied partially from AIBL

but were representative since they were provided by our

research collaborators and used in the local hospital. Statistical

analysis of demographic features in relation to AIBL and

FMUUH can be accessed in Supplementary Table 1 and

Supplementary Figure 2, respectively.

2.2 Feature selection

Min-max normalization was first conducted to assimilate

clinical measurements of diverse scales into the range of 0–

1. Then, we applied feature selection techniques to identify

significant features associated with CDR, which can minimize

the computational costs and decrease the analytical complexity.

To avoid bias relevant to employing one specific feature

selection technique, we adopted in parallel three different

filtering approaches based on information gain ratio (IGR)

(Karegowda et al., 2010), Pearson’s correlation (Grana et al.,

2011), and Chi-square (Jin et al., 2006). Afterwards, the Cross-

Entropy Monte Carlo rank aggregation algorithm (Pihur et al.,

2009) was utilized to aggregate feature ranking results obtained

respectively from the above three filters. Finally, the top ten

consistently significant features were selected to construct our

ND model.
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FIGURE 1

The overall framework of the ND modeling process. Nested

cross-validation is employed to optimize models’ hyperparameters

(inner loop) and select the model (outer loop), which attempts to

overcome the problem of overfitting the training set.

2.3 The framework of constructing ND
model

The ND model can be constructed with adequate data from

the normal class and few from the abnormal class. Consequently,

the constructed model has the ability to detect whether unseen

data are normal or abnormal according to their fitness to the

model. Being different from binary/multi-class classification, where

both normal and abnormal data are applied to model training,

the ND model is trained solely on normal data, i.e., HC data in

this project, as they are much easier to obtain with lower cost

than MCI and AD data, hence making our model more robust

to unbalanced and unlabeled data. Figure 1 shows the overall

framework of constructing the ND model for detecting MCI and

AD. A nested cross-validation (NCV) was implemented within

the framework, where the inner loop acts for hyperparameters

optimization, and the outer loop assesses the performance of the

parameters-tuned ND model on the held-out testing set. Such

implementation attempts to overcome the problem of overfitting

the training set.

The preprocessed data (i.e., data after normalization and

feature selection), with respect to each category, were then

split into 5-fold: 4-fold for model development (including 80%

normal and 80% abnormal data) and 1-fold for the held-out

testing (the remaining 20% normal and 20% abnormal). To

avoid any bias introduced by random partitioning and to get

better repeatability, each one of the 5-fold was selected as

the testing set, and the remaining 4-fold were used as the

development set (the outer 5-fold CV loop in Figure 1 for

model selection). Next, the normal data in each development set

were further split into 5-fold for model training and validation.

Note that the training set included 4-fold normal data only

to construct an ND model, while the remaining 1-fold normal

data were combined with the 80% abnormal data, acting as a

validation set to validate the trained model. This process was

iterated five times (the inner 5-fold CV in Figure 1) to tune

the hyperparameters of the applied ND methods. Afterward, the

tuned/optimized hyperparameters and the entire normal data in

the development set were applied to produce an optimal ND

model whose performance would then be assessed on the held-out

testing set unseen during the model development process. Finally,

the performance of the ND model was averaged over the five

outer folds.

2.4 Novelty detection methods

Four representative ND methods based on k-nearest neighbor

(KNN), Mixture of Gaussian (MoG), KMEANS, and support

vector data description (SVDD) were employed in this study.

The selection of these methods is due to their comprehensive

interpretability, popular applicability in various domains,

outstanding historical contributions to ND methods development,

and the potential expandability for further research (Ding et al.,

2014; Pimental et al., 2014).

2.4.1 K-nearest neighbor
The KNN (Hautamaki et al., 2004) is a representative distance-

based ND method assuming that all normal data points are close

to each other, and anomalies are far from the normal expectations.

The KNN method first calculates the distance between the

data point x and its k-nearest neighbors [denoted as NNk(x)]

and then calculates the distance from these nearest neighbors

NNk(x) to their k-nearest neighbors NNk[NNk(x)]. Finally, it

discriminates whether a data point x is normal or abnormal by

comparing these two distances. The acceptance function, fKNN (x),

for a test data point x can be defined as (Hautamaki et al.,

2004):

fKNN (x) = I(

∥

∥x− NNk(x)
∥

∥

‖NNk (x)− NNkNNk (x)‖
≤ 1)

where I(·) is a logical indicator function. If · is true, then I (·) = 1

indicates x normal; otherwise I (·) = 0 indicates x abnormal.

‖·‖ represents the Euclidean distance. k is the parameter to be

optimized in KNN. In our experiments, we used the range of

integers from 1 to 40 and set step = 1. The max value of the

range is usually decided by the size of the data, but the cross-

validation results on each fold presented the optimal value, which

is always <15.

2.4.2 Mixture of Gaussian
The MoG is a commonly used density-based ND method

that calculates a linear combination of multiple components
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of normal distribution on the given data. The probability

density of data x, PMoG (x) , can be estimated with (Bishop,

2006):

PMoG (x) =
1

N

N
∑

j=1







aj
1

(2π)
d
2
∣

∣

∑

j
∣

∣

1
2

exp

{

−
1

2
(x− µj)

T
∑−1

j
(x− µj)

}







where aj is the mixture coefficients, µj is the mean of the jth

Gaussian component,
∑

j is the covariance matrix, and N is

the number of Gaussian components. Data lying in a high-

density area are accepted as normal, while the rest are detected

as abnormal. The variable N is the parameter to be optimized in

MoG. We set N in a range of 1–15 with an incremental value

of 1.

2.4.3 KMEANS
The KMEANS (Chawla and Gionis, 2013; Gan and Ng, 2017),

a representative clustering-based ND method, is one of the most

popular techniques due to its simplicity of implementation. This

method clusters normal data using a small number (i.e., k) of

prototypes. The centroids of k-clustered prototypes are optimized

by the following minimized square error:

errorKMEANS =
∑

i

mink ‖xi − µk‖
2

where µk is the centroid associated with the kth cluster. Any

data excluded by all clusters would be detected as abnormal. k

is the parameter to be optimized in KMEANS. We set k in a

range of 1–150 with an incremental value of 1. Again, the cross-

validation results on each fold reflected that the optimal value of k

is always <15.

2.4.4 Support vector data description
The SVDD (Lazzaretti and Tax, 2015) represents an ND

method based on a support vector machine. It employs a

hypersphere to define a closed decision boundary around normal

data. Any data lying outside the boundary is considered abnormal.

The general formulation is based on the following relations

(Lazzaretti and Tax, 2015):

S =
{(

xi, xj
)∣

∣xi, xj ∈ same class
}

D =
{(

xi, xj
)
∣

∣xi, xj ∈ different classes
}

where S is a set of similar examples from the same class, while

D includes those that are dissimilar from different classes. The

learning process involves minimizing the distances between each

pair of data points in S and maximizing in D. The radius of the

hypersphere R can be calculated by the distance between the center

and one of the unbounded support vectors xS:

R2 = 1− 2
∑

i

aiK (xi, xs)+
∑

i,j

aiajK
(

xi, xj
)

where xi, xj are the i
th and jth data points in the training set. a is the

Lagrange multiplier with
∑

a = 1 and 0 ≤ a ≤ C, and C is the

penalty weight that controls the trade-off between the fraction of

rejected normal data and the volume of the hypersphere. In this

study, the radial basis kernel K, which is the selected kernel, is

given by:

K
(

xi, xj
)

= exp(
−

∥

∥xi − xj
∥

∥

2

σ 2
)

where σ represents the kernel parameter (width) to be optimized

in SVDD. In our experiments, we set σ in a range of−1.5–1.5 with

an incremental value of 0.01 to ensure the model is trained with

enough fine granularity.

2.5 The algorithm of the proposed DtB
strategy

The main idea of the proposed DtB strategy is that the distance

of an individual’s data point to the ND decision boundary can

objectively reflect the individual’s severity of developing AD. The

theoretical foundation of the strategy is to calculate the distance

of each data point to its nearest point on the boundary in order

to quantify the severity of cognitive decline. Given the X =

{x1, · · · , xN} (X ∈ RN×D) as the combination of the development

dataset XDev and testing set XTest , where N is the total number

of data samples, and D represents the dimension of data (i.e., the

number of data features), the pseudocode of the proposed DtB

algorithm is shown in Algorithm 1.

2.6 Evaluation metrics

Three metrics, i.e., sensitivity, specificity, and the area under

the receiver operating characteristic (ROC) curve (AUC), were used

to evaluate the performance of our ND models. In the context of

ND in the medical domain, abnormal and normal data correspond

to positive (MCI/AD) and negative (HC) individuals, respectively.

The metrics of sensitivity and specificity are defined with:

sensitivity =
Number of true positives

Total number of individuals with the disease

specificity =
Number of true negatives

Total number of individuals without the disease

Since sensitivity can reliably reflect the correct detection rate of

the abnormal data, we considered it as the metric to evaluate the

effectiveness of our ND model in correctly detecting all those who

have AD. Hence, higher sensitivity is associated with more accurate

Frontiers in AgingNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1285905
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnagi.2024.1285905

Input: Dataset X, threshold θ

Output: the decision boundary B (·) , optimized

parameter K, and the DtB value

1: Randomly split X into outer 5-fold,

FOut

2: for each outer fold of FOut do

3: XDev ← 80% HC + 80% non-HC of

X;

4: XTest ← the remaining 20% of X;

5: Randomly split the XDev into

inner 5-fold, FIn

6: for each inner fold of FIn do

7: XTr ← 80% HC in XDev;

8: XVal ← the remaining 20%

HC + all non-HC of XDev;

9: B (·) ← decision boundary

constructed on XTr by

using the four selected

ND algorithms;

10: K ← the optimized

parameter validated on

B (·) and XVal;

11: end for

12: FB (·) ← final boundary

constructed on all HC of XDev,

given K;

13:
∣

∣XTest2FB (·)
∣

∣

min
= the distance of

each XTest
i to the closest point y

on FB (·) ;

14: if the dot product of the

normal vector at y and the

vector from y to the XTest
i is

less than zero, i.e., XTest lies

inside the boundary

15: DtB = −
∣

∣XTest2FB (·)
∣

∣

min
; //

Indicating the patient is

unlikely to develop

MCI/AD; the lower the DtB

value, the lower the

potential of

developing MCI/AD;

16: else

17: DtB =
∣

∣XTest2FB (·)
∣

∣

min
; //

The probability and

severity of getting the

disease will rise with

the increase of the

DtB value;

18: end if

19: end for

20: Calculate the mean values of

sensitivity, specificity, and AUC

over 5 folds.

Algorithm 1. The DtB algorithm.

AD diagnosis. While specificity represents the correct detection

rate of the normal data, higher specificity indicates that the novelty

detector is less likely to misdiagnose HC. Thus, we chose it as

an evaluation metric to correctly identify those who are healthy.

Subsequently, AUC is an integrated quantitative presentation of

the ROC curve plotted on the sensitivity against the 1-specificity

at various thresholds; hence, we adopted it to thoroughly evaluate

the overall performance of our ND model.

2.7 The interactive GUI development

Using the Shiny package in R (Chang et al., 2022), we developed

a user-friendly web-based GUI, an interactive clinical decision

support system (CDSS) prototype, based on the proposed DtB

strategy. Non-IT users can easily choose different modalities or

combinations to build a novelty detector, view the performance

of the detector, and further evaluate an individual’s severity of

developing AD through the visualization of the calculated DtB

score and the corresponding CFA scores.

3 Results and analysis

3.1 Features Importance Ranking Upon the
Significance to CDR

To determine if cost-effective and non-invasive AD markers

have high discriminative power when they are used for detecting

potential AD patients, all features shown in Table 1 were grouped

into four modalities: (1) CFA (including LMDR, LMIR, and

MMSE); (2) brain imaging features (IMG);(3) medical history and

demographics (MH and DEM); and (4) blood tests and ApoE

genotype (BLO and ApoE).

Figure 2A shows that CFA has the strongest correlation with

CDR, followed by IMG (excluding WM) and ApoE, then age

and WM. In contrast, MH and DEM and BLO modalities

are weakly correlated with CDR. The scores of these features’

importance are close to zero when applying Chi-square and IGR

filters. Different aggregation plans were then carried out to test

the ND model performance with/without expensively obtained,

invasively tested, and complicated analysis required modalities

(e.g., IMG, BLO and ApoE). Figure 2B shows the aggregation

results on the feature ranking of all modalities, while Figures 2C,

D present those on all modalities, excluding the IMG and BLO

and ApoE, respectively. Finally, the top 10 significant features

were selected after aggregation. The performance of the ND model

trained by all the possible aggregation schemes can be found in

Supplementary Table 2.

3.2 ND model performance

3.2.1 Model performance on AIBL data
Table 2 compares the AUC, specificity, and sensitivity

performance produced by KNN-, MoG-, KMEANS-, and

SVDD-based ND algorithms applied to different AIBL modality
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FIGURE 2

Ranking feature’s importance using three di�erent filters (A) and aggregating the ranking results associated with di�erent modality combinations

(B–D). In (A), the three filters are based on the Chi-square value (orange dot), information gain ratio (IGR, green triangle), and Pearson’s correlation

(Pearson’s cor, blue square). In (B–D), the gray and black lines represent three ranking results and their averages, while the red line reflects the final

aggregation result. Note: some Chi-square values are overlapped by IGR as they were all close to zero.

combinations. It turns out that feature selection significantly

improved the performance of MoG, KMEANS, and SVDD.

Specifically, the utilization of the CFA modality improved all the

models’ performance. As a reference, the model performance

obtained on all different modality combinations with and without

feature selection can be found in Supplementary Tables 2, 3.

Interestingly, models built on CFA only performed better than

most of the other modality combinations in the AUC value. Based

on the 5-fold CV assessment results, the MoG produced the highest

AUC of 0.8757 (95% CI: 0.7982–0.9532) (Table 2, bold), and the

KMEANS came next with an AUC of 0.8527 (95% CI: 0.7405–

0.9650), followed by KNN and SVDDwith AUC of 0.8521 (95% CI:
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TABLE 2 The performance comparison of the ND models constructed by KNN, MoG, KMEANS, and SVDD using di�erent modality combinations of the

AIBL data.

Modality
combinations

ND algorithms False rejection
rate: 0-1

False rejection rate = 0.1

AUC (95% CI) Specificity Sensitivity

HC MCI AD

All modalities without

feature selection, i.e.,

CFA, IMG, MH and

DEM, and BLO and

ApoE

KNN 0.8479 (0.7897–0.9061) 90.79% 30.25% 38.59%

MoG 0.7890 (0.6610–0.9169) 82.12% 43.24% 88.47%

KMEANS 0.7551 (0.6924–0.8178) 67.52% 61.78% 83.57%

SVDD 0.6856 (0.5604–0.8107) 77.65% 59.26% 73.68%

CFA, IMG, MH and

DEM, and BLO and

ApoE

KNN 0.8690 (0.8240–0.9140) 89.73% 62.64% 92.82%

MoG 0.8552 (0.8185–0.8919) 85.89% 64.55% 92.82%

KMEANS 0.8676 (0.8179–0.9173) 87.43% 58.02% 97.39%

SVDD 0.8462 (0.7636–0.9288) 88.28% 51.73% 89.54%

CFA, MH and DEM, and

BLO and ApoE

KNN 0.8000 (0.7127–0.8873) 89.59% 54.84% 91.89%

MoG 0.8266 (0.7624–0.8908) 86.04% 59.14% 91.89%

KMEANS 0.8257 (0.7329–0.9184) 90.59% 52.08% 86.69%

SVDD 0.8304 (0.6963–0.9644) 86.50% 56.28% 93.80%

CFA and MH and DEM KNN 0.7858 (0.6710–0.9005) 89.04% 53.68% 86.84%

MoG 0.8048 (0.6880–0.9214) 89.02% 47.53% 75.43%

KMEANS 0.7452 (0.6686–0.8217) 84.08% 52.55% 66.72%

SVDD 0.7783 (0.6646–0.8919) 86.21% 63.93% 83.99%

CFA and IMG KNN 0.8464 (0.7380–0.9548) 91.40% 68.61% 92.27%

MoG 0.8558 (0.7717–0.9400) 90.69% 69.86% 95.85%

KMEANS 0.8564 (0.7492–0.9636) 90.71% 67.60% 96.87%

SVDD 0.8442 (0.7190–0.9694) 88.99% 68.57% 92.72%

CFA KNN 0.8521 (0.7250–0.9792) 89.40% 59.87% 96.79%

MoG 0.8757 (0.7982–0.9532) 89.63% 67.33% 96.79%

KMEANS 0.8527 (0.7405–0.9650) 89.11% 56.92% 95.23%

SVDD 0.8267 (0.7013–0.9521) 84.94% 60.83% 98.43%

False rejection rate (i.e., a tolerant error) identifies the fraction of the HC diagnosed as non-healthy. CI, confidence interval. Bold: The ND algorithm generating the highest AUC score along

with the corresponding specificity and sensitivity performance.

0.7250–0.9792) and 0.8267 (95% CI: 0.7013–0.9521), respectively.

Regarding single-modal features, the MoG model constructed on

CFA obviously outperformed those on IMG (AUC of 0.6984, 95%

CI of 0.6551–0.7418), MH and DEM (AUC of 0.5938, 95% CI of

0.4076–0.7800), and BLO and ApoE (AUC of 0.5920, 95% CI of

0.5394–0.6446) (see Supplementary Table 3).

Additionally, when using a combination of CFA and IMG

modalities, all NDmodels produced the best detection performance

with sensitivity for MCI patients. In particular, MoG presented

the highest sensitivity of 69.86%, followed by KNN, SVDD, and

KMEANS with a sensitivity of 68.61%, 68.57%, and 67.60%,

respectively. Hence, CFA features are the most discriminative,

while IMG markers provide supplementary evidence for detecting

MCI. Further, adding BLO and ApoE and MH and DEM to

the combination of CFA and IMG could not make the model

distinguish MCI better and even caused a reduction in the

sensitivity of detecting MCI. For example, adding those features

made KNN poorer in its sensitivity of MCI, dropping from

68.61% to 62.64%. However, these accessional features could

relatively improve the stability of the AUC performance (Table 2).

It is worth noting that models built on MH and DEM and

BLO and ApoE modalities achieved the worst performance

with respect to the AUC, sensitivity, and specificity metrics

(Supplementary Table 2).

3.2.2 Model performance on FMUUH data
Consistent with those on AIBL data, experimental results on

FMUUH data showed that (Table 3), when applying only CFA for

training, MoG again produced the highest average AUC of 0.9443

(95% CI: 0.9037–0.9849) (Table 3, bold), and the KMEANS came

next with an AUC of 0.9330 (95% CI: 0.8842–0.9818), followed by

KNN and SVDD with AUC of 0.9299 (95% CI: 0.8820–0.9777) and

0.8386 (95% CI: 0.7435–0.9334), respectively.
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TABLE 3 The performance comparison of the ND models constructed by KNN, MoG, KMEANS, and SVDD based on the FMUUH data.

Modality
combinations

ND algorithms False rejection rate:
0-1

False rejection rate = 0.1

AUC (95% CI) Specificity Sensitivity

HC MCI AD

CFA (ADCS-ADL, NPI,

MMSE) and DEM (Age,

Gender, Education)

KNN 0.9022 (0.8587, 0.9457) 89.13% 88.27%

MoG 0.8989 (0.8383, 0.9695) 91.01% 89.74%

KMEANS 0.8869 (0.8332, 0.9406) 88.45% 85.58%

SVDD 0.7497 (0.7120, 0.7874) 86.89% 79.14%

CFA (ADCS-ADL, NPI,

MMSE)

KNN 0.9299 (0.8820, 0.9777) 93.28% 82.15%

MoG 0.9443 (0.9037,0.9849) 90.92% 89.09%

KMEANS 0.9330 (0.8842, 0.9818) 92.56% 86.31%

SVDD 0.8386 (0.7435, 0.9334) 84.75% 82.42%

DEM (age, gender, education) KNN 0.6921 (0.6654, 0.7188) 66.67% 60.05%

MoG 0.7223 (0.6335, 0.8111) 72.16% 63.15%

KMEANS 0.7347 (0.6551, 0.8143) 72.05% 61.58%

SVDD 0.5128 (0.3778, 0.6478) 71.01% 63.56%

Bold: The ND algorithm generating the highest AUC score along with the corresponding specificity and sensitivity performance.

3.3 Decision boundary constructed on HC
data only

Figure 3 illustrates the decision boundary produced by each

novelty detector. Randomly, the 1-fold data were selected from

both AIBL and FMUUH datasets. The two most important features

in the feature selection results (MMSE and ADCS-ADL for

FMUUH; MMSE and LMDR for AIBL) were used to visualize

the boundary. All selected data were scaled between 0 and 1. To

quantify the ND performance on the testing data, Table 4 lists the

mean of the 5-fold sensitivity and specificity results for both AIBL

and FMUUH, which represent the proportion of non-HC (i.e., MCI

and AD) data lying outside the boundary and the proportion of HC

data inside the boundary.

3.3.1 Performance of the boundaries produced
on AIBL data

All trained boundaries shown in Figure 3A enclosed at least

86% HC data, but the MoG produced a tighter and smoother

boundary than others that fit the data distribution best. In terms

of the testing results (Table 4), all methods accurately distinguished

AD from HC with high sensitivity (higher than 97%); in particular,

the MoG boundary rejected 98.01% AD and accepted 88.72%

HC. Note that the sensitivity for MCI performed worse than that

for AD. Although boundaries generated by the MoG, KNN, and

SVDD accepted more than 88% HC, they rejected only 67.95%,

64.88%, and 51.96% MCI, respectively. Hence, the MoG holds a

lower misdiagnosis rate for MCI and will be more suitable for

early warning and diagnosis of the disease than other methods.

Linking to Figure 3B, someMCI data points (orange dots) lie inside

the boundaries, indicating some overlap between HC and MCI.

This may be because the MCI could not be judged by only two

features. Nevertheless, the distance from a data point to the decision

boundary can objectively reflect the risk and severity of developing

MCI or AD for an individual to a certain extent. For example, most

inside MCI points sit close to the decision boundary. From this

point of view, the boundary generated by ND methods would be

inspiring for solving the problem of clinically unclear diagnostic

criteria for MCI. The closer to the boundary that the inside point

is located, the more likely the individual presented by the point is

developing MCI. On the other hand, the farther to the boundary

that the outside point is located, the more likely the individual is

getting AD. Therefore, we can benefit from the ND technique and

utilize it in early diagnosis and prognosis for MCI and AD.

3.3.2 Performance of the boundaries produced
on FMUUH data

On account of the decentralized data distribution, multiple

boundaries were generated by the KNN, and one loose boundary

was produced by the MoG, KMEANS, and SVDD, respectively

(Figure 3C), aiming to include at least 88% HC data. Some

overlap between HC and AD (Figure 3D) testing sets reflected high

specificity for HC but low sensitivity for AD (Table 4). For example,

the MoG obtained the lowest specificity of 87.99% for HC but the

highest sensitivity of 76.96% for AD. Therefore, we proposed a

Distance to Boundary (DtB) strategy to address this inevitable low-

sensitivity issue caused by the overlap between HC and non-HC

(MCI/AD) and detect potential MCI/AD further.

3.4 The DtB strategy

To better describe the strategy, we chose the MoG algorithm,

which generated stable closed boundary precisely surrounding
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FIGURE 3

The decision boundaries produced by the four novelty detection methods. (A, C) Boundaries trained on HC only in terms of the AIBL and FMUUH

data, respectively. (B, D) The trained boundaries were used to test the testing data, including both HC and non-HC, with respect to the AIBL and

FMUUH data, respectively. The boundaries produced by the SVDD, KNN, KMEANS, and MoG methods are represented by blue dashed, magenta

dotted, cyan dotted, and black solid lines, respectively. Green dots, orange dots, and red crosses indicate HC, MCI, and AD. The training threshold

(i.e., false rejection rate) is set to 0.1.

the HC data and the best overall performance, to calculate the

DtB values on testing data. The DtB calculation was carried

out on the 5-fold CV assessment results. Figure 4 depicts the

boxplots for the distance of each categorical (i.e., HC, MCI,

and AD) data points to the decision boundary constructed

by MoG (Figure 4A for AIBL and Figure 4B for FMUUH).

We define the sign for the distance of inner data to the

boundary as negative, while that for outer data is positive.

Table 5 lists the descriptive statistics of the boxplots shown in

Figure 4.

Figure 4A reveals that the first and the third quartiles, median

and mean, and maximum DtB values of AD are higher than those

of MCI, which in turn are higher than those of HC. Additionally,

the boxes of MCI and AD are more than twice as long as the HC

box. The overall spreads are quite different, and some overlaps

occur among the three categories. Since there are more outliers,

which would affect calculations of skewness, the boxplot for HC

shows some slight bottom-skew compared with the main bodies

of data for MCI and AD, which have symmetric appearances.

Consequently, the potential outliers of HC probably indicate the

risk of getting MCI, while the outliers of MCI may present the

possibility of developing AD, and the outliers of AD are associated

with more severe disease development. Overall, the HC, MCI,

and AD categories do vary with the DtB values. Figure 4A could

interestingly visualize our proposedDtB strategy. For example, data

points lying outside the boundary might represent patients who are

at greater risk of developing AD, as the distance from the boundary

increases. On the other hand, the inner data points that are nearer

to the boundary might indicate a higher risk of cognitive decline.

The mean locations of HC,MCI, and AD data against the boundary

can be found in Supplementary Figure 3.

Basically, the DtB boxplot of FMUUH data shows a similar

trend to that of AIBL data. The AD box is longer than the HC’s,

which presents higher first and third quartiles, median, mean,

and maximum DtB values than those of HC (Figure 4B). The

difference is that the AD box of FMUUH data is slightly across
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TABLE 4 The quantitative evaluation of the visualized decision boundaries constructed by four NDmethods (KNN, MoG, KMEANS, and SVDD) using both

AIBL and FMUUH data sets.

Methods AIBL Data FMUUH Data

Specificity Sensitivity Specificity Sensitivity

HC MCI AD HC AD

KNN 88.83% 64.88% 98.01% 89.94% 70.59%

MoG 88.72% 67.95% 98.01% 87.99% 76.96%

KMEANS 86.13% 60.32% 99.69% 88.27% 74.93%

SVDD 88.21% 51.96% 97.40% 94.15% 54.41%

Sensitivity for MCI and AD and specificity for HC were calculated based on a 5-fold CV assessment.

FIGURE 4

Boxplots of the distance between AIBL and FMUUH data points and ND boundary generated by MoG. Points beyond 1.5 times IQR (interquartile

range) are considered outliers of the boxplot, represented by a solid diamond. The solid square is the mean value, and the dotted line (i.e., the DtB

value of 0) is the ND boundary location. (A) for the AIBL data and (B) for the FMUUH data.

the ND boundary (the horizontal dotted line), which is similar to

the MCI box of AIBL data. Although an AD data point may be

misdiagnosed as HC due to its lying inside the boundary, we can

still detect its risk of developing AD according to its DtB value. Note

that, however, different features used in Figures 3A–D, as well as

different population cohorts from Australia and China, may result

in the difference between Figures 4A, B. Figure 4B reveals that some

MCI patients might be included in the AD category, which also

reflects an urgent need to integrate various data resources acquired

from different departments of the local hospital. This concern has

been communicated and confirmed with our research collaborators

in the hospital.

Table 5 reflects that the minimum DtB values of HC and MCI

in AIBL are very close (i.e., −0.0806 and −0.0800). The reason

could be a certain degree of overlap between HC and MCI, as

well as the lower boundary dimension and the ambiguity of cutoff

scores for determining MCI (Pandya et al., 2016). In a higher-

dimensional feature space, the DtB strategy can integrate more

different assessment indicators and criteria to describe the severity

of MCI patients more precisely. Similarly, the closedminimumDtB

values of HC and AD in FMUUH data (i.e.,−0.1324 and−0.1384)

also reflect the aforementioned hint.

3.5 The user-friendly interactive GUI for
CDSS

To employ and translate our proposed DtB strategy for non-IT

users, especially for clinicians, we extended our work by developing

a user-friendly web-based interactive GUI, which is made available

at: https://ad-cdss.shinyapps.io/cdss/. By clicking the web link,

users are first brought into the Novelty Detection module

(Figure 5), where a multiple-choice option of available modalities is

provided in the top-left panel, and the chosen modality/modalities

is then shown in the top-right panel (Figure 5A). Subsequently,

the performance of the novelty detector constructed on the chosen

modality (or a combination of chosen modalities) will be presented

in terms of AUC, specificity for HC, sensitivity for MCI, and AD

metrics once users click the SHOW RESULTS button (Figure 5A

bottom panel). For computational efficiency, the GUI APP uses the

MoG-based ND algorithm, which has been demonstrated to have

the best AUC performance (Tables 2, 3). For users’ information,

data features and the corresponding descriptions in relation to

the selected modality/modalities are listed at the bottom panel

(Figure 5B). Additional information can be found in the info icons

( ).
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TABLE 5 Descriptive statistics of DtB scores.

Data Classes Mean Mode Minimum Median Maximum

AIBL HC −0.0342 −0.0665 −0.0806 −0.0377 0.1587

MCI 0.0725 0.2587 −0.0800 0.0511 0.3890

AD 0.3258 0.3052 −0.0420 0.3045 0.7356

FMUUH HC −0.0348 −0.0813 −0.1324 −0.0545 0.3722

AD 0.1136 0.0813 −0.1384 0.0813 0.6860

FIGURE 5

Novelty detection module of the interactive GUI for CDSS. (A) Available modalities are provided in the left panel, and those chosen by users in the

right. Clicking the “SHOW RESULTS” button lists the performance of the novelty detector constructed using the MoG-based ND algorithm on the

selected modality/modalities. (B) Information table of the features and the corresponding descriptions within the selected modality/modalities.

Additional information can be found through the info icons.

Next, the Severity Assessment module shows an interface of

the CDSS for predicting the individual’s severity of getting AD

(Figure 6). The left side of the module includes the individual’s

details in a concise format for a quick and unambiguous

interpretation (e.g., name, patient no., age, gender, medical history,

and some available blood test results) (Figure 6A). The top-right

panel visualizes the AD severity measurement (i.e., DtB score) scale

and the DtB score of the patient (Figure 6B). Predictions based

on the given CFA scores are illustrated in the bottom-right panel

(Figure 6C) on a continuous spectrum presented by color progress

bars. Intuitively, the AD severity measurement scale is divided into

three classes based on the patients’ data distribution reflected by

DtB values, i.e., HC [CDR = 0; 0 ≤ DtB < Q1−HC (lower/first

quartile of HC)] MCI [CDR = 0.5; Q1−AD (lower/first quartile of
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FIGURE 6

Severity Assessment module of the interactive GUI for CDSS. (A) Patient information panel. (B) AD severity measurement scale and the AD severity

score, i.e., DtB value (red dash line) of the patient. (C) Measurement scales for the available CFAs. Additional information can be found through the

info icon.

AD)≤DtB < Q3−HC (upper/third quartile of HC)], and AD (CDR

= 1, 2, or 3; Q3−HC ≤ DtB ≤ 1.5IQR of AD). Note that the

color bar of the DtB score has been normalized to the range of 0–

10. The CFA score definition and the corresponding cutoff values

for disease classification can be found in Tombaugh and McIntyre

(1992) and Green et al. (2009). Figure 6C illustrates the manner in

which clinicians can be supported in assessing how different CFAs

contribute to the predictedDtB score. Overall, this web-based, user-

friendly interactive GUI with the built-in ND model demonstrates

that our proposed DtB strategy can reflect individuals’ severity

of developing AD. Corresponding to a large database of existing

patient records, the AD severity is evaluated by calculating the DtB

score of the data from an undiagnosed patient.

4 Discussion

The key uniqueness of this study is the employment of an

interpretable ND technique to detect potential MCI/AD. Two

distinct cohorts with highly heterogeneous data derived from

completely different regions were used for constructing an optimal

and closed decision boundary tightly surrounding the HC data,

which are solely based on the model training process. The surface

area of the decision boundary was minimized to reduce the chance

of MCI/AD data acceptance, which enables the boundary to classify

whether the unseen data reflects healthy or non-healthy status,

depending on the data’s relative location to the boundary. Inner

data that are close to the boundary indicate a high risk of developing

MCI, even if they may be currently detected as HC. For outer data,

the closer to the boundary, the milder the cognition declines (e.g.,

very mild or mild cognitive impairment) they represent; the farther

from the boundary, the more severe the cognition declines (e.g.,

moderate or severe AD) they reflect. This was quantified by our

proposed DtB strategy. Our findings also suggest an urgent need for

data integration, which should be prioritized by policymakers. Data

features involved in this study are multi-modal. The ND models

built on different modalities and their combinations were evaluated

by three comprehensive metrics.

The ND methods produced comparably high detection

performance when only a small subset of the data was used, and
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TABLE 6 Data description of the three AIBL-related CDSS development in comparison to ours.

Ref. Datasets No. of data samples Data types

Dyrba et al. (2021) ADNI∗-2, 3, GO, AIBL, and

DELCODE∗
ADNI-2/GO: 663

ADNI-3: 575

AIBL: 606

DELCODE: 474

Multi-modal non-imaging data,

including demographics,

neuroimaging-extracted biomarkers

[total intracranial volume (TIV)];

Multi-modal imaging data, including

MRI, PET images

Bhattarai et al. (2023) ADNI and AIBL combined together 1969 Multi-modal non-imaging data,

including demographics, CFA

(ADAS13, CDRSB, MoCA, MMSE)

neuropsychological battery (RAVLT),

and neuroimaging-extracted biomarkers

(FDG)

Yi et al. (2023) ADNI, AIBL and GWAS∗ combined

together

1603 Multi-modal non-imaging data,

including demographics, CFA (MMSE,

ADAS, CDRSB, FAQ, GDS, preclinical

Alzheimer’s cognitive composite scores),

ApoE4 gene type, and

neuroimaging-extracted biomarkers

(ventricles volume, hippocampus

volume, WBV, entorhinal volume,

fusiform volume, middle temporal gyrus

volume, TIV); Single modal imaging

data, i.e., MRI images

Ours AIBL and FMUUH AIBL: 1487

FMUUH: 330

Multi-modal imaging and non-imaging

data, see Table 1 for more details

∗ADNI is the Alzheimer’s Disease Neuroimaging Initiative; DELCODE is the German Center for Neurodegenerative Diseases multicenter observational study on Longitudinal Cognitive

Impairment and Dementia; and GWAS is the genome-wide association study.

TABLE 7 Performance comparison of the data modeling methods in the compared CDSS development and ours.

Ref. Data modeling approach Development goal AUC performance

Dyrba et al. (2021) Convolutional Neural Networks

(supervised learning)

Binary classification of MCI vs. HC and

AD vs. HC

0.763, 0.684, and 0.775 for MCI vs. HC

in AIBL, ADNI-3, and DELCODE

0.95, 0.913, and 0.953 for AD vs. HC in

AIBL, ADNI-3, and DELCODE

Bhattarai et al. (2023) Reinforcement learning (supervised

learning)

Medication recommendation for AD

patients

Not applicable

Yi et al. (2023) Deep learning-based survival clustering

(supervised learning)

Prediction of HC-to-MCI and

MCI-to-AD

0.708, 0.802, 0.876, and 0.886 for

HC-to-MCI in 1, 3, 5, and 10 years;

0.81, 0.914, 0.957, and 0.979 for

MCI-to-AD in 1, 3, 5, and 10 years

Ours MoG-based ND algorithms

(unsupervised learning)

One-class classification of HC vs. MCI

vs. AD

0.8757 for HC vs. MCI vs. AD in AIBL;

0.9443 for HC vs. MCI vs. AD in

FMUUH

this subset was mainly composed of easily accessed CFA. This, once

again, highlights that CFA could be a key factor for AD diagnosis

in clinical practices (Ding et al., 2018; Bucholc et al., 2019). Our

extensive experimental results revealed that models solely using

the CFA could produce the best global detection performance (the

AUCmetric), while those combining IMG would perform better in

terms of sensitivity for detecting MCI.

More importantly, our developed GUI integrated two modules

(a built-in novelty detector based on existing patient records and

AD severity assessment for new patients) and built an overview of a

fully functional CDSS. This makes our proposed DtB strategy easier

to translate to a clinical domain, which can serve as a supporting

tool for clinicians to visually analyze how a different modality or

a combination of modalities contributes to predicting AD severity

with the basis of given accuracy in detecting MCI/AD against HC.

For a fair comparison, we examined the most developed

CDSS typically based on the AIBL data. This examination focused

on the research findings published from 1 January 2018 to 31

December 2023 across prominent scholarly databases including

the Web of Science, ScienceDirect, IEEE Explore Digital Library,

PubMed, and Google Scholar for supplements. To fully cover the

relevant studies, the search was performed by utilizing certain

keywords followed by AD in the title, abstract, or keywords of

the research articles, such as “clinical decision support system,”

“diagnosis,” “prognosis,” “artificial intelligence,” and “computerized

application.” It is worth noting that only three CDSS studies

(Dyrba et al., 2021; Bhattarai et al., 2023; Yi et al., 2023) are

associated with AIBL. All of them were developed by using deep

learning approaches. Moreover, only one of them (Dyrba et al.,

2021) presented an available GUI design. Table 6 details the data

Frontiers in AgingNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnagi.2024.1285905
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fnagi.2024.1285905

TABLE 8 The comparison of demographic features between AIBL and

FMUUH.

Data Gender (F/M) Age (Mean ± STD)

HC AD HC AD

AIBL 54.6%/45.4% 63%/37% 73.3± 6.9 75.6± 7.9

FMUUH 59.5%/40.5% 61%/39% 63.3± 6.6 69.4± 8.5

F, Female; M, Male; STD, standard deviation.

description of the three CDSS and ours. Briefly, apart from the

study by Bhattarai et al. (2023) which used only non-imaging

data, the other two studies and ours included both imaging and

non-imaging data. In terms of the development goal (see Table 7),

again, apart from the study by Bhattarai et al. (2023) that aimed

at medication recommendation for AD patients, the work by

Dyrba et al. (2021) includes a binary classification of MCI vs.

HC and AD vs. HC, and the work of Yi et al. (2023) focuses

on predicting HC-to-MCI and MCI-to-AD. In contrast, our work

targets the task of one-class classification for HC vs. MCI vs.

AD. Considering the model built in the CDSS, what sets our

methodology apart is its strategic reliance on the power of ND,

which is a typical unsupervised learning technique and, more

importantly, easy to understand and interpret. The three existing

CDSS are built using supervised deep-learning techniques that

lack model interpretability. The AUC performance comparison

shown in the last column of Table 7 evidences that our work is

promising for discriminating MCI and AD from HC, which was

also confirmed by our clinical consultant.

Considering the two datasets employed in this study, even

though they are from different regions of Australia and China,

the similarities between them are: (1) the proportion of female

is higher than that of male in both HC and AD; (2) the

relative proportion of female/male is similar for both categories;

and (3) the mean age of AD is higher than that of HC.

The only difference lies in the younger subjects in FMUUH

compared to those in AIBL. For a fair comparison, Table 8

lists the proportion of females/males and the mean age along

with the standard deviation (STD) for HC and AD categories

that were available in both datasets. It is worth noting that

our findings from the proposed ND framework on both data

are consistent, indicating that the MoG-based ND method

applied to the same single modality (i.e., CFA, even including

feature variations) achieved the highest overall performance in

detecting MCI and AD. As such, our interactive GUI, tailored

for non-technical stakeholders incorporating the proposed ND

framework, is generalizable and adaptive according to the two

employed cohorts.

On the other hand, this study has several limitations worth

noting that could guide future extensions and improvements.

First, we simply ignored missing data. An approach for missing

data imputation is currently being developed, which will be

incorporated into the system later. Second, we only selected the

top ten features from the AIBL data that were significant to

CDR and used three different univariate filters to rank the feature

importance. Such filtering approaches may lead to the loss of

relevant features that are meaningless by themselves but crucial

to model improvement when considered together. To tackle this

deficiency, we previously applied wrapper methods to evaluate the

importance of specific feature sets (Bucholc et al., 2019). Work is

currently being done to improve our ND model by developing a

wrapper that can obtain a subset of better-integrated data from

different modalities. Third, to get a large data size, we integrated the

multi-modal AIBL data collected at different time points together.

Repeat visitors who participated in the AIBL study were considered

as different visitors. However, some modalities, such as medical

history, ApoE genotype, and gender, were not time-evolved. This

may be the reason for the poor performance when the models

were trained by the two modalities of MH and DEM and BLO

and ApoE. We are currently in the process of conducting further

investigations for the ND technique on larger-sized data [e.g.,

ADNI (The Alzheimer’s Disease Neuroimaging Initiative) (Mueller

et al., 2005) or NACC (The National Alzheimer’s Coordinating

Center) (Beekly et al., 2007) data] and integrating more FMUUH

data from the local hospital. Additionally, the current study

and our previous development of a CDSS prototype using other

machine learning approaches (Bucholc et al., 2019) have provided

a solid foundation for the next extension phase to develop a

CDSS employing the ND technique. Furthermore, in our previous

work (Ding et al., 2015), we had proposed a new ND approach,

namely level set boundary description (LSBD). Being superior to

the traditional ND methods (e.g., based on probability, distance,

clustering, statistics, and support vector machines), the LSBD

introduced some interesting properties for boundary construction,

such as non-linear problem addressable without using a kernel

trick, non-parametric, dynamically time-evolved to better fit

the data distribution, boundary shape easily manageable, and

straightforward implemented in the given data space. Therefore,

based on the current study, we will deeply investigate LSBD for

early MCI and AD discrimination from HC populations. Finally,

more development could be carried out in the current GUI for a

fully functional CDSS, including local data collection (data input

module), options for choosing different ND algorithms, more scales

of AD severity according to the five CDR categories with more

available data, and so on.

5 Conclusion

This study first utilized four representative and easily

interpretable ND algorithms to build novelty detectors based on

heterogeneous Alzheimer’s datasets from different regions. The

intrinsic pattern behind AD was investigated in the distinct cohort

study by comparing the performance of models trained on different

modalities and different combinations of modality types. We found

that the best overall performance could be obtained when only

CFA features were used. Hence, applying some non-invasive and

easily accessible features can significantly detect cognitive decline

at an early stage. Although this finding has been reported in our

previous contributions (Ding et al., 2018; Bucholc et al., 2019), the

uniqueness of this study is that we first utilized ND in the area

and then proposed a DtB strategy to quantitatively discriminate

MCI/AD from HC. More importantly, the training of the ND

model with the built-in DtB strategy is solely based on HC data,

which are more easily and less costly to obtain than MCI/AD data,
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unlike traditional methods that require labeled and balanced data

from both HC and non-HC for model training.

Crucially, the insight of the study was presented by the

proposed DtB strategy by illustrating and quantifying the decision

boundary along with data distribution. The strategy could

intuitively and objectively reflect individuals’ severity of developing

AD. More practically, the GUI we developed offers a translational

and interactively visual tool even for those lacking an IT

background and experience in AD recognition. These results would

help inform future guidelines for the development of an integrated

functional CDSS aimed at early-stage diagnosis for MCI/AD.
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