
Frontiers in Aging Neuroscience 01 frontiersin.org

Atrophy of hippocampal subfields 
relates to memory decline during 
the pathological progression of 
Alzheimer’s disease
Yaqiong Xiao *, Yubin Hu, Kaiyu Huang  and the Alzheimer’s 
Disease Neuroimaging Initiative

Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China

Background: It has been well documented that atrophy of hippocampus and 
hippocampal subfields is closely linked to cognitive decline in normal aging 
and patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD). 
However, evidence is still sparce regarding the atrophy of hippocampus and 
hippocampal subfields in normal aging adults who later developed MCI or AD.

Objective: To examine whether atrophy of hippocampus and hippocampal 
subfields has occurred in normal aging before a diagnosis of MCI or AD.

Methods: We analyzed structural magnetic resonance imaging (MRI) data of 
cognitively normal (CN, n  =  144), MCI (n  =  90), and AD (n  =  145) participants 
obtained from the Alzheimer’s Disease Neuroimaging Initiative. The CN participants 
were categorized into early dementia converters (CN-C) and non-converters 
(CN-NC) based on their scores of clinical dementia rating after an average of 
36.2  months (range: 6–105  months). We extracted the whole hippocampus and 
hippocampal subfields for each participant using FreeSurfer, and analyzed the 
differences in volumes of hippocampus and hippocampal subfields between 
groups. We  then examined the associations between volume of hippocampal 
subfields and delayed recall scores in each group separately.

Results: Hippocampus and most of the hippocampal subfields demonstrated 
significant atrophy during the progression of AD. The CN-C and CN-NC groups 
differed in the left hippocampus–amygdala transition area (HATA). Furthermore, 
the volume of presubiculum was significantly correlated with delayed recall 
scores in the CN-NC and AD groups, but not in the CN-C and MCI groups.

Conclusion: Hippocampal subfield atrophy (i.e., left HATA) had occurred in 
cognitively normal elderly individuals before clinical symptoms were recognized. 
Significant associations of presubiculum with delayed recall scores in the CN-NC 
and AD groups highlight the essential role of the hippocampal subfields in both 
early dementia detection and AD progression.
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Introduction

Accumulating literature has suggested that atrophy of 
hippocampus is closely linked to cognitive decline in normal aging 
and the progression of Alzheimer’s disease (AD) (Hampel et al., 2008; 
Shi et al., 2009; Frisoni et al., 2010; Mu and Gage, 2011; Xiao et al., 
2023). Indeed, the hippocampus, known to play a crucial role in the 
formation, organization, and consolidation of new memories, is one 
of the earliest structures that are vulnerable to atrophy in normal 
aging, and it also has been acknowledged as the core biomarker for the 
pathological changes of mild cognitive impairment (MCI) and AD 
(Mu and Gage, 2011).

While most of neuroimaging studies examined the hippocampus 
as a single unitary entity, it is recognized that the cytoarchitecture of 
hippocampus is not homogeneous. The hippocampus can be divided 
into several anatomically and functionally diverse subfields, which 
have different connectivity to other brain regions and different 
vulnerability to disease (Freund and Buzsáki, 1996; Small et al., 2011; 
Aggleton, 2012; Maruszak and Thuret, 2014). In recent years, with the 
emergence of high-resolution MRI data acquisition and the 
development of segmentation techniques (Iglesias et  al., 2015), a 
growing number of studies (Maruszak and Thuret, 2014; de Flores 
et al., 2015; Zheng et al., 2018; Zhao et al., 2019; Huang et al., 2020) 
examined the atrophy of hippocampal subfields instead of the 
hippocampus as a whole. The analysis of hippocampal subfields can 
better detect subtle changes in the hippocampal structure, more 
precisely discriminate cognitive correlates of these changes, and 
identify participants at higher risk of cognitive decline (Csernansky 
et al., 2005; Carlesimo et al., 2015; de Flores et al., 2015).

A number of studies have investigated the atrophy of 
hippocampal subfields related to MCI and AD (Mueller et al., 2007; 
Carlesimo et  al., 2015; Wang et  al., 2018; Zheng et  al., 2018; 
Krajcovicova et al., 2019; Zhao et al., 2019; Huang et al., 2020). An 
early study by Mueller et al. (2007) demonstrated reduced volume of 
CA1 and subiculum in AD patients as compared to age-matched 
controls. In a study with MCI, AD, and healthy control participants, 
the authors found the volume of presubiculum and subiculum 
presented the most remarkable reduction in MCI and AD patients, 
and in MCI patients, volume of presubiculum and subiculum 
predicted individual’s performance on the memory tests (Carlesimo 
et al., 2015). Kälin et al. (2017) found reduced volumes of all bilateral 
hippocampal subfields except for CA2-CA3 in MCI patients who 
later converted to AD, and reduced volumes of all bilateral 
hippocampal subfields at the time of conversion to AD. The study by 
Zhao et  al. (2019) reported significant changes in most of the 
hippocampal subfields at different stages of AD, and volume of left 
subiculum was significantly correlated with memory performance. 
Research has also reported alternations in structural covariance of 
the hippocampal subfields in subcortical vascular MCI and amnestic 
MCI patients as compared to cognitively normal (CN) participants, 
and also found differences in structural covariance of the 
hippocampal subfields between these two types of MCI patients 
(Wang et al., 2018). Together, these findings suggest that the analysis 
of hippocampal subfields may serve as a promising approach to 
better understand the pathological progression of AD.

A few studies have examined the changes of hippocampal 
subfields in the CN individuals who were later converted to early 
dementia (Csernansky et al., 2005; Apostolova et al., 2010; de Flores 

et al., 2015; Hsu et al., 2015). Csernansky et al. (2005) followed 49 
CN subjects with clinical dementia rating (CDR) score of 0 for an 
average of 5 years, and the authors reported progressive atrophy of 
left CA1 in subjects who later had a CDR score of 0.5 as compared 
to those remained a CDR score of 0. The study by Apostolova et al. 
(2010) analyzed the longitudinal changes of hippocampal subfields 
in CN subjects and showed greater CA1 and subiculum atrophy in 
CN individuals who later developed MCI or AD. Hsu et al. (2015) 
found significantly greater hippocampal tail, presubiculum, 
subiculum, and total hippocampal atrophy in CN elderly participants 
who had amyloid-β accumulation compared to those who had no 
amyloid-β accumulation. These reports suggest hippocampal 
subfield measurements may be sensitive markers of AD progression 
and potential biomarkers for early MCI or AD detection. However, 
little is known regarding the hippocampal subfield atrophy in those 
who had normal cognition but developed dementia (MCI or 
AD) later.

In this study, we investigated the atrophy of hippocampus and 
hippocampal subfields in normal aging adults who had a CDR score 
of 0 at the time of MRI scan and later converted to a CDR score of 0.5, 
and MCI and AD patients. Specifically, we obtained a cohort of CN, 
MCI, and AD participants from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) and categorized CN participants into 
early dementia converters (CN-C) and non-converters (CN-NC) 
based on their later CDR score. The comparisons of hippocampal 
subfield volumes were conducted between groups. We  expected 
significant differences in hippocampal subfield volumes between CN, 
MCI, and AD groups. We also expected group differences between 
CN-C and CN-NC participants as neuroanatomical abnormalities of 
the hippocampus may predict future onset of dementia in cognitively 
normal elders (Csernansky et al., 2000, 2005; Apostolova et al., 2010). 
Further, we examined the associations of hippocampal subfields with 
delayed recall scores (i.e., memory index scores, MIS) as measured by 
the Montreal Cognitive Assessment (MoCA), a commonly used 
screening tool for cognitive impairment (Nasreddine et al., 2005). The 
associations were conducted using regression analyses for the CN-NC, 
CN-C, MCI, and AD groups, separately. We  expected significant 
relationships between volumes of hippocampal subfields and delayed 
recall scores as such relationships have been consistently reported in 
previous studies (Wang et  al., 2018; Zheng et  al., 2018; Zhao 
et al., 2019).

Materials and methods

Participants

The data included in the present study were obtained from the 
ADNI database.1 The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael 
W. Weiner, MD. The primary goal of ADNI has been to test 
whether serial MRI, positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of MCI 

1 https://adni.loni.usc.edu/
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and early AD. For more details about this database, please refer to 
the website2 and previous publications (Weiner et al., 2010, 2017; 
Aisen et al., 2015).

Specifically, a total of 379 participants were obtained from the ADNI 
database, including 144 CN (66 M/78 F; mean age = 74.78 ± 7.79 years), 90 
MCI (48 M/42 F; mean age = 72.56 ± 9.16 years), and 145 AD (84 M/61 F; 
mean age = 74.94 ± 7.5 years); participants in the CN, MCI, and AD groups 
were matched on age and gender (ps > 0.05). All the participants had 
demographic information (i.e., age, gender) and scores of CDR and the 
Mini Mental State Examination (MMSE). Years of education (CN: n = 138; 
MCI: n = 89; AD: n = 138) and the MoCA (CN: n = 134; MCI: n = 79; AD: 
n = 84) were collected from most of the participants.

In the analysis, the nearest available CDR assessment before or 
after the selected MRI scan was used as the baseline assessment, and 
subsequent CDR assessments were also collected for each participant. 
Following previous studies (Marquis et al., 2002; Csernansky et al., 
2005), we  categorized the CN participants into early dementia 
converters (i.e., CN-C) and non-converters (i.e., CN-NC), where 
CN-C were defined as those who had a change of CDR score from 0 
to 0.5 and CN-NC were those who remained a CDR score of 0. Among 
144 CN participants, 116 were identified as CN-NC (53 M/63 F; mean 
age = 73.98 ± 7.82 years) and 28 were identified as CN-C (13 M/15 F; 
mean age = 78.1 ± 6.8 years). The CN-C participants had a CDR score 
of 0.5 after an average of 36.2 months (range: 6–105 months). Table 1 
summaries the demographic and clinical details of participants in 
this study.

MRI data collection

T1-weighted structural MRI brain scans of all 379 participants 
were used in this study. For detailed information regarding ADNI’s 
image acquisition protocols, which are different for multiple MRI 
scanner types used in ADNI, see http://adni.loni.usc.edu/methods/
documents/mri-protocols/. Raw Digital Imaging and 
Communications in Medicine (DICOM) MRI scans were downloaded 

2 www.adni-info.org

from the public ADNI site,3 reviewed for quality, and automatically 
corrected for spatial distortion caused by gradient nonlinearity and B1 
field inhomogeneity.

MRI data processing and hippocampal 
subfield segmentation

Prior to MRI data processing, the raw MRI image of each 
participant was first visually inspected for artifacts and then 
reoriented to the standard anterior commissure (AC) and posterior 
commissure (PC) plane. All MRI data were processed using the 
FreeSurfer software suite.4 First, the entire hippocampal formation 
was segmented using the standard FreeSurfer pipeline (i.e., 
‘recon-all’ command). Briefly, the MRI images were corrected for 
within-subject head motion. Then, non-brain tissues were 
removed, and the resulting images were further affine registered 
to the Talairach space. Subsequently, the hippocampal subfields 
were segmented using a Bayesian inference approach and a novel 
atlas algorithm of the hippocampal formations built primarily 
upon ultra-high resolution (~ 0.1 mm isotropic) ex vivo MRI data 
from autopsy brains (Iglesias et al., 2015). Using the atlas allowing 
for greater accuracy in the delineation of the boundaries within 
the subfields (Iglesias et al., 2015), the left and right hippocampi 
were segmented into twelve subfields: CA1, CA3, CA4, granule cell 
layer of dentate gyrus (GC-DG), hippocampus-amygdala-
transition-area (HATA), parasubiculum, presubiculum, 
subiculum, fimbria, molecular layer, hippocampal fissure, and 
hippocampal tail. Figure  1 illustrates the right hippocampal 
subfield segmentation for one CN participant. The volume of the 
whole hippocampus was calculated as the sum of all hippocampal 
subfield volumes.

Finally, the estimated total intracranial volume (eTIV) of each 
subject was calculated based on the standard FreeSurfer segmentation, 
which was used to correct for individual differences in head size in the 
subsequent statistical analyses.

3 www.loni.ucla.edu/ADNI

4 Version 7.2.0, https://surfer.nmr.mgh.harvard.edu/.

TABLE 1 Demographic and clinical information of CN-NC, CN-C, MCI, and AD groups.

CN-NC (n  =  116) CN-C (n  =  28) MCI (n  =  90) AD (n  =  145)

Mean  ±  SD Range Mean  ±  SD Range Mean  ±  SD Range Mean  ±  SD Range

Sex (M/F) 53/63 13/15 48/42 84/61

Age (years) 73.98 ± 7.82 58.4–91.4 78.1 ± 6.8 66.7–93.2 72.56 ± 9.16 55.2–97.4 74.94 ± 7.5 56–91

Education 

(years) 17.02 ± 2.31 12–20 16 ± 2.09 12–20 16.08 ± 2.67 8–20 15.52 ± 2.66 8–20

CDR 0 ± 0 0–0 0 ± 0 0–0 0.52 ± 0.09 0.5–1 0.81 ± 0.35 0.5–2

MMSE 29.03 ± 1.08 26–30 29 ± 1.19 25–30 27.27 ± 2.43 16–30 22.72 ± 3.04 5–29

MoCA Total 24.36 ± 1.77 18–28 24.18 ± 1.89 20–27 22.63 ± 3.47 10–29 18.14 ± 4.75 9–27

MoCA MIS 7.55 ± 2.57 0–13 7.46 ± 3.25 0–12 7.68 ± 3.58 0–14 6.88 ± 3.72 0–15

CN-NC, CN non-converters; CN-C, CN converters; MCI, mild cognitive impairment; AD, Alzheimer’s disease; CDR, Clinical Dementia Rating; MMSE, Mini Mental State Examination; 
MoCA, Montreal Cognitive Assessment; MIS, Memory Index Score.
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Statistical analyses

Group differences in behavioral and clinical tests
Statistical analyses for demographics and neuropsychological data 

were performed with R software (version 4.1.2). Specifically, group 
differences among CN, MCI, and AD groups were conducted using 
one-way analysis of variance (ANOVA) for continuous variables (i.e., 
age, education, MMSE, and MoCA) and Kruskal-Wallis ANOVA for 
categorical variables (i.e., CDR). The Chi-squared test was used to 
compare the differences in gender among groups. Further, we tested 
the differences between CN-NC and CN-C groups in clinical and 
cognitive measurements (i.e., CDR, MMSE, and MoCA) using 
two-sample t-tests.

Comparisons of hippocampal subfield volumes 
between groups

We examined group differences in volumes of whole hippocampus 
and hippocampal subfields for the left and right hemispheres separately 
using regression analyses, controlling for age, gender, education, and 
eTIV. The results were corrected for multiple comparisons using the false 
discovery rate (FDR) method (p < 0.05). For hippocampal subfields 
showing significant group differences, post-hoc t-tests were conducted to 
further explore the differences between CN-NC, CN-C, MCI, and AD 
groups with corrections for multiple testing using the FDR method.

Associations between hippocampal subfield 
volume and delayed recall performance

Next, we examined the correlations between volume of hippocampal 
subfields and delayed recall scores (i.e., MIS) as measured by the MoCA 
in the CN-NC, CN-C, MCI, and AD groups using the regression analysis. 
In the regression model, MoCA MIS was the dependent variable, with 

volume of each hippocampal subfield as the independent variable, 
controlling for age, gender, education, and eTIV. Results were corrected 
for multiple comparisons using the FDR correction.

Results

Demographic and clinical data

No significant differences were observed at age or gender among 
CN, MCI, and AD groups. Clinical and cognitive measures (i.e., CDR, 
MMSE, and MoCA) showed significant differences among CN, MCI, 
and AD groups (ps < 0.001). CN-NC and CN-C groups did not differ 
in CDR, MMSE, or MoCA scores (ps > 0.05).

Group differences in hippocampal subfield 
volumes

We found significant group differences in volumes of the whole 
hippocampus and all hippocampal subfields except for the right 
hippocampal fissure, controlling for age, gender, education, and eTIV; 
see Tables 2 and 3 for the statistical results of whole hippocampal and 
hippocampal subfield volumes. Figure  2 shows significant group 
differences in hippocampal subfield volumes between CN-NC, CN-C, 
MCI, and AD groups with the FDR correction. Volumes of all 
hippocampal subfields but bilateral presubiculum, parasubiculum, 
fimbria, and hippocampal fissure were significantly different between 
CN-NC and MCI groups. Except for the right hippocampal fissure, all 
other hippocampal subfields showed significant differences between 
CN-NC and AD, and between MCI and AD. The CN-C and AD groups 

FIGURE 1

Right hippocampal subfield segmentation for one CN participant in sagittal (A), coronal (B), and axial (C) planes. GC-DG, granule cell layer of dentate 
gyrus; HATA, hippocampus-amygdala-transition-area.
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differed in all hippocampal subfields but left parasubiculum and right 
hippocampal fissure. The significant difference between CN-NC and 
CN-C groups was observed in the volume of left HATA. However, no 
significant difference was observed between CN-C and MCI groups. 
Figure 3 shows significant group differences in the whole hippocampal 
volume between CN-NC, CN-C, MCI, and AD groups with the 
FDR correction.

Significant relationships between 
hippocampal subfield volumes and 
memory performance

There were significantly positive correlations between volumes of 
left and right presubiculum (left presubiculum: p < 0.001; right 
presubiculum: p = 0.002) and delayed recall scores (MoCA MIS) in the 
CN-NC group, and between volume of right presubiculum and 
delayed recall scores (MoCA MIS) in the AD group (p = 0.003), 
controlling for age, gender, education, and eTIV (Figure 4). The results 

were corrected for multiple comparisons using the FDR approach. No 
significant correlations were observed in other hippocampal subfields 
in the CN-NC or AD group, or in any hippocampal subfields in the 
CN-C or MCI group with multiple comparison corrections.

Discussion

This study examined the volumetric differences in hippocampus 
and hippocampal subfields among CN-NC, CN-C, MCI, and AD 
groups. We observed significant differences between CN-NC and AD, 
and between MCI and AD in all hippocampal subfields but the right 
hippocampal fissure. The differences between the CN-C and AD 
groups were found in all hippocampal subfields but left parasubiculum 
and right hippocampal fissure. The CN-NC and MCI groups differed 
in most of the hippocampal subfields except for bilateral presubiculum, 
parasubiculum, fimbria, and hippocampal fissure. Notably, there were 
significant differences between CN-NC and CN-C groups in the 
volume of left HATA. Further, we  investigated the relationships 

TABLE 2 Average estimated total intracranial volume, whole hippocampal, and hippocampal subfield volumes in CN-NC, CN-C, MCI, and AD groups.

CN-NC (n  =  116) CN-C (n  =  28) MCI (n  =  90) AD (n  =  145)

Mean  ±  SD Mean  ±  SD Mean  ±  SD Mean  ±  SD

eTIV 1524.78 ± 174.86 1508.12 ± 148.74 1524.27 ± 186.51 1532.43 ± 176.84

Left whole hippocampus 3228.52 ± 375.37 3089.92 ± 460.14 3031.91 ± 473.25 2490.64 ± 446

Left CA1 598.81 ± 77 573.24 ± 99.1 567.94 ± 97.55 462.93 ± 87.21

Left CA3 200.92 ± 32.35 193.96 ± 35.3 184.6 ± 33.76 159.51 ± 35.95

Left CA4 232.54 ± 30.28 222.24 ± 35.37 216.36 ± 34.03 184.23 ± 34.79

Left subiculum 412.19 ± 52.74 390.93 ± 67.31 383.3 ± 64.87 307.77 ± 61.9

Left presubiculum 295.86 ± 43.92 284.05 ± 52.14 286.45 ± 52.4 224.29 ± 45.93

Left GC-DG 284 ± 42.48 270.96 ± 56.17 265.46 ± 50.35 218.31 ± 50.57

Left molecular layer 516.95 ± 63.51 491.16 ± 81.93 482.87 ± 78.78 388.86 ± 73.11

Left parasubiculum 65.86 ± 14.86 65.07 ± 17.37 69.22 ± 19.06 58.31 ± 16.9

Left hippocampal tail 520.06 ± 73.61 511.36 ± 74.25 481.69 ± 88.41 415.34 ± 77.97

Left HATA 57.2 ± 10.81 51.78 ± 10.62 51.85 ± 12.31 43.36 ± 12.45

Left fimbria 62.21 ± 20.29 53.21 ± 21.8 60.71 ± 22.77 38.85 ± 21.41

Left hippocampal fissure 159.43 ± 31.53 163.9 ± 25.62 158.71 ± 31.14 146.01 ± 28.53

Right whole hippocampus 3326.65 ± 369.21 3166.12 ± 428.79 3133.09 ± 472.91 2647.75 ± 450.73

Right CA1 635.34 ± 85.04 604.67 ± 91.38 599.22 ± 101.79 503.15 ± 94.47

Right CA3 224.77 ± 34.3 213.86 ± 34.92 205.22 ± 37.63 180.99 ± 41.59

Right CA4 244.5 ± 30.3 231.55 ± 29.95 227.57 ± 35.13 202.17 ± 38

Right subiculum 405.49 ± 51.1 385.55 ± 67.15 383.51 ± 64.84 313.74 ± 56.54

Right presubiculum 276.33 ± 38.23 263.18 ± 52.9 269.56 ± 47.6 214.62 ± 37.2

Right GC-DG 305.14 ± 44.71 287.66 ± 46.36 280.68 ± 52.09 241.58 ± 54.27

Right molecular layer 531.74 ± 64.29 504.61 ± 74.8 498.04 ± 79.14 414.63 ± 76.72

Right parasubiculum 62.54 ± 13.26 59.87 ± 12.91 64.31 ± 15.31 53.48 ± 14.24

Right hippocampal tail 549.19 ± 73.95 528.18 ± 68.47 518.85 ± 84.24 455.88 ± 82.69

Right HATA 61.06 ± 10.3 57.61 ± 10.95 52.91 ± 12.82 45.49 ± 11.57

Right fimbria 55.55 ± 18.87 52.68 ± 21.61 54.49 ± 22.13 36.36 ± 19.73

Right hippocampal fissure† 167.62 ± 30.97 172.8 ± 28.9 167.45 ± 30.43 159.63 ± 31.45

Mean and standard deviation of subfield and total hippocampal volumes in mm3. †No significant group differences after the FDR correction.
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between volumes of hippocampal subfields and delayed recall scores 
in each group. The results showed significant associations of left and 
right presubiculum with delayed recall scores in the CN-NC group, 
and associations of right presubiculum with delayed recall scores in 
the AD group, but not in the CN-C or MCI group. Our data not only 
demonstrate the trajectories of hippocampal subfield atrophy during 
the pathological progression of AD, but also suggest that the atrophy 
of hippocampal subfields may have occurred in cognitively normal 
elderly individuals who later developed MCI or AD.

We presented significant atrophy of hippocampus and 
hippocampal subfields related to AD progression, controlling for age, 
gender, education, and eTIV. Though the trajectories of hippocampal 
subfield atrophy between CN, MCI, and AD groups have been 
reported in previous research (Zhao et al., 2019), here we also included 
a group of asymptomatic control group (i.e., CN-C) who were 
cognitively normal but had a change of CDR score from 0 to 0.5 for 
an average of 36.2 months (range: 6–105 months). Specifically, 
we compared the differences in volumes of hippocampal subfields 
between CN-NC, CN-C, MCI, and AD groups. The AD group had 
significantly reduced volumes as compared to CN-NC, CN-C, and 

MCI groups in all hippocampal subfields but the right hippocampal 
fissure. There were significantly reduced volumes in the MCI group as 
compared to the CN-NC group in bilateral CA1, CA3, CA4, 
subiculum, GC-DG, molecular layer, hippocampal tail, and 
HATA. The atrophy of these hippocampal subfields in MCI patients is 
consistent with that reported in previous studies (Carlesimo et al., 
2015; de Flores et al., 2015; Perrotin et al., 2015; Zhao et al., 2019), 
suggesting different trajectories of hippocampal subfields during the 
progression of AD.

Contrast to our hypothesis, however, hippocampal subfield 
volumes did not differ between the CN-C and MCI groups. It is 
possible that MCI participants included in the present study had very 
mild cognitive decline. In fact, among 90 MCI patients, 87 had a CDR 
score of 0.5, which indicates questionable dementia. It is also possible 
that cognitive impairment had already occurred in CN-C participants 
although it was not detectable yet by the clinical measure used here 
(i.e., CDR). Nevertheless, we did find a variety of hippocampal subfield 
atrophy in the MCI group as compared to the CN-C participants who 
remained a CDR score of 0. Thus, the finding that CN-C and MCI 
participants had no difference in hippocampal subfield volumes may 

TABLE 3 Statistical results (p values with the FDR correction) of whole hippocampal and hippocampal subfield volumes between CN-NC, CN-C, MCI, 
and AD groups.

CN-NC vs. 
CN-C

CN-NC vs. 
MCI

CN-NC vs. 
AD

CN-C vs. MCI CN-C vs. AD MCI vs. AD

Left whole hippocampus 0.156 0.002 < 0.001 0.537 < 0.001 < 0.001

Left CA1 0.201 0.019 < 0.001 0.78 < 0.001 < 0.001

Left CA3 0.336 0.001 < 0.001 0.25 < 0.001 < 0.001

Left CA4 0.172 < 0.001 < 0.001 0.415 < 0.001 < 0.001

Left subiculum 0.115 0.001 < 0.001 0.56 < 0.001 < 0.001

Left presubiculum 0.285 0.238 < 0.001 0.815 < 0.001 < 0.001

Left GC-DG 0.244 0.01 < 0.001 0.602 < 0.001 < 0.001

Left molecular layer 0.11 0.001 < 0.001 0.597 < 0.001 < 0.001

Left parasubiculum 0.824 0.237 0.001 0.309 0.107 < 0.001

Left hippocampal tail 0.601 < 0.001 < 0.001 0.1 < 0.001 < 0.001

Left HATA 0.036 0.002 < 0.001 0.978 0.001 < 0.001

Left fimbria 0.07 0.619 < 0.001 0.128 0.003 < 0.001

Left hippocampal fissure 0.574 0.864 0.002 0.574 0.008 0.005

Right whole hippocampus 0.094 0.002 < 0.001 0.724 < 0.001 < 0.001

Right CA1 0.143 0.009 < 0.001 0.787 < 0.001 < 0.001

Right CA3 0.209 < 0.001 < 0.001 0.295 < 0.001 < 0.001

Right CA4 0.091 < 0.001 < 0.001 0.594 < 0.001 < 0.001

Right subiculum 0.123 0.011 < 0.001 0.871 < 0.001 < 0.001

Right presubiculum 0.199 0.295 < 0.001 0.478 < 0.001 < 0.001

Right GC-DG 0.121 < 0.001 < 0.001 0.523 < 0.001 < 0.001

Right molecular layer 0.097 0.002 < 0.001 0.681 < 0.001 < 0.001

Right parasubiculum 0.372 0.372 < 0.001 0.22 0.058 < 0.001

Right hippocampal tail 0.253 0.01 < 0.001 0.588 < 0.001 < 0.001

Right HATA 0.155 < 0.001 < 0.001 0.071 < 0.001 < 0.001

Right fimbria 0.71 0.71 < 0.001 0.71 < 0.001 < 0.001

Right hippocampal fissure 0.512 0.968 0.119 0.512 0.119 0.12
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reflect atrophy of hippocampus and hippocampal subfields had already 
occurred in CN-C participants who had a change of CDR score from 
0 to 0.5. Our finding highlights that the examination of hippocampal 
subfields may serve as a useful approach for early dementia detection, 
which could be  more sensitive than clinical and behavioral 
measurements. On the other hand, it also suggests that the pathological 
processes related to AD may be present for a substantial period of time 
before clinical symptoms are recognized (Csernansky et al., 2005).

Here, we defined dementia converters and non-converters based 
on their CDR scores for an average of 36.2 months (range: 

6–105 months), as CDR scores from 0 to 0.5 were used as the indicator 
of the onset of dementia or cognitive decline (Marquis et al., 2002; 
Csernansky et  al., 2005). We  observed significant atrophy in the 
volume of left HATA in CN-C as compared to CN-NC participants. 
The HATA, which lies in the medial region of the hippocampus and 
is superior to the other subfields, is supposed to be associated with 
information processing within the hippocampal-amygdala network 
and shows atrophy associated with cognitive and memory decline in 
normal aging (Zheng et al., 2018) and patients with Parkinson’s disease 
(Foo et al., 2017). While it has been reported that the atrophy of CA1 
is related to the increased risk of MCI or AD (Csernansky et al., 2005; 
Apostolova et al., 2010; La Joie et al., 2013; Carlesimo et al., 2015) or 
increased risk of conversion from MCI to AD (Costafreda et al., 2011), 
our data did not show significant differences between CN-C and 
CN-NC in the volume of CA1. Future studies are needed to confirm 
the finding we  observed here. In addition, early studies reported 
reduced whole hippocampal volume as predictors of cognitive decline 
in cognitively normal elderly participants (Marquis et  al., 2002; 
Csernansky et al., 2005). We only observed significant volumetric 
differences between CN-C and CN-NC groups in the left HATA, a 
hippocampal subfield, instead of the whole hippocampal volume. This 
reflects different trajectories of hippocampal subfield atrophy, and 
suggests that hippocampal subfields may be better predictors than the 
whole hippocampus for the progression of AD.

Previous studies have demonstrated relationships of delayed recall 
scores with a variety of hippocampal subfields including molecular layer, 
GC-DG, CA3, CA4, hippocampal tail, presubiculum, CA1, subiculum, 
fimbria, and HATA across the adult lifespan (Zheng et al., 2018) and 
across CN, MCI, and AD participants (Zhao et al., 2019; Huang et al., 

FIGURE 2

Volumes of hippocampal subfields and comparisons between CN-NC, CN-C, MCI, and AD groups. The cross indicates mean value of each group. 
Significant results were corrected for multiple comparisons using the FDR method. * p  <  0.05; ** p  <  0.01; *** p  <  0.001; ns, not significant.

FIGURE 3

Volume of whole hippocampus and comparisons between CN-NC, 
CN-C, MCI, and AD groups. The cross indicates mean value of each 
group. Significant results were corrected for multiple comparisons 
using the FDR method. ** p  <  0.01; *** p  <  0.001; ns, not significant.
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2020). Here, by examining the relationships in the CN-NC, CN-C, MCI, 
and AD group separately, we only observed significant associations of 
delayed recall scores with bilateral presubiculum in the CN-NC group, 
and with right presubiculum in the AD group, but no any associations in 
the CN-C or MCI group. It has been consistently reported that the 
atrophy of subicular complex, including presubiculum, is related to 
memory decline in the progression of AD (Carlesimo et  al., 2015; 
Lindberg et  al., 2017; Hartopp et  al., 2019; Parker et  al., 2019). 
Presubiculum volume loss in dementia and stroke-free older adults has 
been shown to be associated with cognitive decline (Evans et al., 2018). 
The relationships found in the CN-NC and AD groups but not in the 
CN-C or MCI group suggest decrease in the presubiculum volume may 
be markers of future memory decline in normal aging and AD. It may also 
explain the relationships between presubiculum atrophy and memory 
decline observed in both normal aging and AD across studies.

There are a few limitations in the present study. First, this study 
included asymptomatic control participants who later had a change of 
CDR score from 0 to 0.5, but lacks different types of MCI patients, such 
as early MCI, late MCI, and amnestic MCI. In future studies, different 
types of MCI patients should also be included to gain a better picture 
of the trajectories of hippocampal subfield atrophy related to disease 
progression of dementia. Second, this study was based on cross-
sectional data, and the findings may be  biased by the individual 
variabilities across groups. Thus, longitudinal samples are needed to 
identify early imaging markers for the transformation and prediction 
of Alzheimer’s disease. Third, with only cross-sectional data, the 
present study failed to consider the progression of AD or MCI and its 
correlation with the atrophy of the hippocampal formation or 
hippocampal subfields from a longitudinal perspective. Furthermore, 
we  only examined the changes of hippocampus and hippocampal 
subfields by structural MRI data. It is supposed to provide a more 
comprehensive understanding of brain atrophy related to memory 
decline in the pathological progression of AD by including multimodal 
imaging data such as functional MRI, diffusion tensor imaging, 
electroencephalogram, and functional near-infrared spectroscopy. 
Finally, the hippocampal segmentation may be limited by the resolution 
of MRI data included in this study as some MRI data (50 out of 379) 
were collected from 1.5 T MRI scanners. Since ultra-high resolution 
(such as 5.0 or 7.0 T) MRI scanners are already available for research 
(Carr et al., 2017), future studies should consider running hippocampal 
segmentation in data collected using a 5.0 or 7.0 T MRI scanner.

Conclusion

This study explored the changes of hippocampal subfield volumes 
during the progression of AD, and demonstrated that hippocampal 
subfield atrophy had occurred before clinical symptoms were 
recognized. We found significant correlations between presubiculum 
volume and delayed recall scores in the CN-NC and AD groups, but 
not in the CN-C or MCI group. Our data suggest that the volume of 
left HATA, a subfield supporting information processing within the 
hippocampal-amygdala network, may be a potential marker of the 
preclinical stage of AD. The relationships between presubiculum and 
memory performance in both CN-NC and AD groups suggest that 
atrophy of this subfield may be related to memory decline in both 
normal aging and AD. Together, these findings confirm and extend 
previous studies of hippocampal subfields in MCI and AD patients, 
and provide further insights into the hippocampal atrophy in early 
dementia detection.
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