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Introduction: Stratification of Alzheimer’s disease (AD) patients into risk 
subgroups using Polygenic Risk Scores (PRS) presents novel opportunities for 
the development of clinical trials and disease-modifying therapies. However, 
the heterogeneous nature of AD continues to pose significant challenges for 
the clinical broadscale use of PRS. PRS remains unfit in demonstrating sufficient 
accuracy in risk prediction, particularly for individuals with mild cognitive 
impairment (MCI), and in allowing feasible interpretation of specific genes or 
SNPs contributing to disease risk. We propose adORS, a novel oligogenic risk 
score for AD, to better predict risk of disease by using an optimized list of relevant 
genetic risk factors.

Methods: Using whole genome sequencing data from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) cohort (n  =  1,545), we  selected 20 genes that 
exhibited the strongest correlations with FDG-PET and AV45-PET, recognized 
neuroimaging biomarkers that detect functional brain changes in AD. This subset 
of genes was incorporated into adORS to assess, in comparison to PRS, the 
prediction accuracy of CN vs. AD classification and MCI conversion prediction, risk 
stratification of the ADNI cohort, and interpretability of the genetic information 
included in the scores.

Results: adORS improved AUC scores over PRS in both CN vs. AD classification 
and MCI conversion prediction. The oligogenic model also refined risk-based 
stratification, even without the assistance of APOE, thus reflecting the true 
prevalence rate of the ADNI cohort compared to PRS. Interpretation analysis 
shows that genes included in adORS, such as ATF6, EFCAB11, ING5, SIK3, and 
CD46, have been observed in similar neurodegenerative disorders and/or are 
supported by AD-related literature.

Discussion: Compared to conventional PRS, adORS may prove to be  a more 
appropriate choice of differentiating patients into high or low genetic risk of AD 
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in clinical studies or settings. Additionally, the ability to interpret specific genetic 
information allows the focus to be shifted from general relative risk based on a 
given population to the information that adORS can provide for a single individual, 
thus permitting the possibility of personalized treatments for AD.

KEYWORDS

polygenic risk score, Alzheimer’s disease, mild cognitive impairment, genetics, 
predictive markers

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia. 
It is an irreversible, progressive neurodegenerative disorder 
characterized by abnormal accumulation of amyloid plaques and 
neurofibrillary tangles in the brain, and disruption of memory, 
thinking, and behavior (Mullard, 2021). Because the root cause of AD 
remains unclear, current treatments only temporarily inhibit cognitive 
symptoms and fail to directly modify the course of the disease 
(Zetterberg and Bendlin, 2021). Limited progress of therapeutic 
development in clinical trials urges the need to consider alternative 
strategies for AD treatments, namely by investigating patients who are 
at risk of developing AD before disease onset.

Mild cognitive impairment (MCI)—a transitional stage between 
cognitively normal (CN) and early AD patients—may enable earlier 
detection of AD pathogenesis before clinical diagnosis (Alzheimer 
Association, 2021). Many investigators regard this phase as critical, for 
substantial neuronal damage has already occurred by the time the 
degenerative process of AD has fully developed. 15% of MCI 
individuals develop dementia after 2 years and 32% progress to AD 
within 5 years’ follow-up, while others remain cognitively normal 
(Ward et al., 2013). The ability to predict progression from MCI to AD 
is critical for timely treatment to prevent or delay cognitive decline.

Polygenic risk scores (PRS) are a common approach for stratifying 
patients into levels of risk for AD by calculating the weighted sum of 
GWAS-significant SNP genotypes (Baker and Escott-Price, 2020; Sims 
et al., 2020; Leonenko et al., 2021; Gouveia et al., 2022). By considering 
the cumulative effects of many genetic variants together, one can better 
predict an individual’s risk for a disease compared to considering single 
variants in isolation. Although AD’s delayed symptom onset makes it 
difficult to manage, a deeper grasp of the underlying biology and early 
risk detection may pave the way for improved treatments for AD. This 
has, in part, motivated the application of PRS for AD (Marden et al., 
2016; Desikan et al., 2017; Harrison et al., 2020; Leonenko et al., 2021; 
Jung et al., 2022). Previous studies have shown that PRS are able to 
quantify differences in genetic risk between individuals, enable risk-
based stratification, and demonstrate strong associations with known 
markers of neurodegeneration (Desikan et al., 2017; Tan et al., 2019; 
Huq et al., 2021; Leonenko et al., 2021). However, despite longstanding 
evidence that AD risk is polygenic (Altmann et al., 2020), more recent 
studies have proposed that AD may in fact be an oligogenic disorder 
(Zhang et al., 2020). This leaves an open-ended discussion for how 
genetic risk for AD must be represented.

One primary limitation of PRS is that its calculation relies on 
genome-wide association studies (GWAS) of AD case–control 
datasets, which often use clinical diagnosis as phenotypes. However, 
AD clinical diagnosis partially relies on cognitive assessment 
outcomes, which may be influenced by factors unrelated to the disease 

such as the patient’s anxiety, fatigue, and general test-taking ability. 
Thus, it remains a challenge to identify genetic risk factors for AD 
solely using case–control-based GWASs. Additionally, GWAS studies 
examining MCI to AD progression indicate that AD susceptibility loci 
exhibit minimal effects. Current datasets with MCI individuals may 
lack the statistical power to identify significant SNPs, particularly with 
the inclusion of MCI subjects unlikely to develop AD or those 
progressing to other dementia types. Consequently, the observed 
effect sizes of true AD susceptibility genes in these MCI cohorts are 
further diminished compared to traditional AD case–control datasets, 
undermining the utility of PRS for individuals with MCI (Lacour 
et  al., 2017; Chaudhury et  al., 2019). Furthermore, PRS is not 
advocated for clinical use, as it not only is prone to bias, but also is 
unable to demonstrate sufficient specificity and sensitivity in risk 
prediction (Cuyvers and Sleegers, 2016).

Conversely, neuroimaging data, also commonly used for AD 
diagnosis, e.g., magnetic resonance imaging (MRI), 2-Deoxy-2-[18F] 
fluorodeoxyglucose (FDG)-PET, and [18F] Florbetapir (AV45)-PET, 
are a highly reproducible and more objective data source (Sperling 
et al., 2011; Suppiah et al., 2019). FDG-PET tracks glucose metabolism 
and is particularly useful for identifying areas of the brain distinctly 
impacted by AD, although its accuracy may decline in older patients 
(Foster et  al., 2007; Sperling et  al., 2011). AV45-PET specifically 
visualizes amyloid-beta plaques, a key hallmark of AD, offering a 
significant advancement over previous methods that could only 
confirm these plaques post-mortem (Suppiah et al., 2019). Compared 
to other diagnostic measures like cerebrospinal fluid (CSF) tests and 
cognitive assessments, these PET imaging techniques are offer a real-
time view of critical pathological features in the brain.

Recent studies have demonstrated that neuroimaging biomarkers 
can effectively predict AD progression. Follow-up data of AD patients 
exhibited reduced FDG uptake in the frontal, parietal and lateral 
temporal lobes, indicating strong biomarkers for MCI conversion 
prediction (Ossenkoppele et al., 2012; Caminiti et al., 2018). Huang et al. 
(2017) used longitudinal MRI data to classify MCI subjects as either 
MCI converters (MCI-c) or MCI non-converters (MCI-nc), achieving 
79.4% accuracy. Integrating MRI with FDG-PET data increased 
prediction performance to 86.4% (Lu et al., 2018; Lee et al., 2019). These 
findings demonstrate that neuroimaging endophenotypes have the 
potential to reflect genotypes correlated with brain structure and 
function and may also help characterize the mechanisms of such risk 
alleles or genes associated with AD risk. Identifying SNPs or genes that 
affect or are correlated with changes in neuroimaging traits can further 
our knowledge of the genetic underpinnings of AD risk and progression.

As such, we generated adORS, a novel oligogenic risk score for 
Alzheimer’s disease, to robustly predict high or low risk of disease and 
the likelihood of MCI-to-AD conversion. This risk score leverages 
neuroimaging biomarkers FDG-PET and AV45-PET (Shen and 
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Thompson, 2020) to extract a smaller, more informative set of 
AD-associated genes to ultimately improve risk prediction performance 
for two separate tasks: CN vs. AD classification (CNAD) and MCI 
conversion prediction (MCI-CP). We  compared prediction 
performance between adORS and conventional PRS and interpreted 
the genetic contributions within each score.

2. Materials and methods

2.1. ADNI and ADSP-FUS1-ADNI-WGS-2 
cohorts

Alzheimer’s Disease Neuroimaging Initiative (ADNI; ADNI-
WGS-1, 2020) is a multisite longitudinal study that tracks the 
progression of AD in the human brain with clinical, imaging, genetic 
and biospecimen biomarkers through the process of normal aging, 
early mild cognitive impairment, and late mild cognitive impairment 
to dementia or AD. The overall goal of ADNI is to validate biomarkers 
for use in Alzheimer’s disease clinical treatment trials. ADSP-FUS1-
ADNI-WGS-2 indicates an additional set of ADNI participants that 
underwent whole genome sequencing (WGS) as a collaboration 
between ADNI and ADSP Follow-Up Study (FUS; ADSP FUS1 WGS, 
2021). We focus on the use of WGS data (see section 2.2) and baseline 
FDG-PET and AV45-PET biomarkers (see section 2.3), which are 
inherently cross-sectional. Hence, this a cross-sectional study. 
We collected data from 1,545 individuals across all modalities.

In the ADNI study, each participant receives one of four diagnoses 
during each visit: CN, early MCI, late MCI, or AD. Follow up data post 
baseline occurs every 6 months and average about 5 years in duration. 
To transform the longitudinal diagnoses into a cross-sectional format, 
we assigned each individual with a single, cumulative label based on 
their diagnosis history from all available visits. The labels are as follows 
for the two separate tasks:

 1. CNAD task: AD cases (AD) and cognitively normal controls (CN).
 2. MCI-CP task: MCI converters (MCI-c) and MCI 

non-converters (MCI-nc).

We generated these definitions for each label:

 • MCI-c: Diagnosed with early or late MCI at baseline and later 
progresses to AD, maintaining this until the last visit.

 • MCI-nc: Diagnosed with early or late MCI at baseline and 
remains with this diagnosis through the final visit.

 • AD: Either consistently diagnosed with AD or categorized 
as MCI-c.

 • CN: Remains cognitively normal from the first to the last visit.

Using these definitions, we  acquired 550 AD cases, 364 CN 
controls, 273 MCI converters, and 517 MCI non-converters (Table 1).

2.2. WGS genotyping and quality control

A total of 1,566 samples were genotyped from ADNI and ADNI-
WGS-2 with ADSP Follow-Up Study. WGS genotyping was performed 
using HiSeq2000; Read length (bp) 100; genome assembly GRCh38 
(hg38). Quality Control {QC; SNV concordance check, sex mismatch, 

contamination check, and relatedness [(Pihat >0.4)]} were performed 
primarily using the SNP/Indel Variant Calling Pipeline (VCPA) v1.0 
developed and maintained by National Institute on Aging Genetics of 
Alzheimer’s Disease Data Storage Site (NIAGADS; Leung et al., 2019). All 
QC quality checks were implemented by the Genome Center for 
Alzheimer’s Disease (GCAD) Data Production Team. And variants were 
filtered out with low-quality, multi-allelic, and monomorphic SNVs using 
filters of GQ < 20 and DP < 10 and a missing rate > 20% and a p < 1.0 × 10−6 
for the Hardy–Weinberg equilibrium test. After QC, 15,456,635 variants 
and 1,545 samples remained available for performing PRS and adORS in 
the ADNI and ADSP-FUS1-ADNI-WGS-2 datasets.

2.3. FDG-PET and AV45-PET

Every FDG and AV45 PET scan is reviewed for protocol 
compliance by the ADNI PET QC team. PET measures are reported 
as standard uptake value ratios (SUVRs), which is a quantification of 
the radiotracer concentration within specific region of interests (ROI) 
in the body (ADNI PET analysis method, 2023). The average AV45 
SUVR was computed from regions including the frontal, anterior 
cingulate, precuneus, and parietal cortex relative to the cerebellum. 
For FDG-PET, the average SUVR was based on the uptake in the 
angular, temporal, and posterior cingulate regions, areas known to 
exhibit altered metabolic activity in Alzheimer’s disease. Such 
measures help elucidate the metabolic changes associated with the 
disease’s progression.

2.4. PRS calculation

To calculate PRS, we  used summary statistics from a large-scale 
GWAS study done for AD on the International Genomics of Alzheimer’s 
Project (IGAP) consortium to generate genetic scores for ADNI 
participants. The IGAP GWAS was re-performed excluding 441 ADNI 
participants (55,931 participants remained across the Alzheimer’s Disease 
Genetic Consortium (ADGC), the Cohorts for Heart and Aging Research 
in Genomic Epidemiology (CHARGE) Consortium, the European 
Alzheimer’s Disease Initiative (EADI), and the Genetic and Environmental 
Risk in Alzheimer’s Disease (GERAD) Consortium). We generated PRS 
with the PLINK genetic data analysis toolset using clumping and 
thresholding (C + T), a common method which removes redundantly 
correlated variants and preferentially retains those most associated with 
the phenotype of interest. This method was chosen based on the suggested 
method of PRS calculation and threshold cutoffs performed in Leonenko 
et al. (2021). In our calculations, SNPs in the APOE region were first 
removed (chr19:44.0–46.0 Mb, GRCh38), then clumped by excluding 
nearby variants within a 1,000-kb window with r2 > 0.1, and finally filtered 
using the threshold pT ≤ 1e−5. We also computed additional PRSs using 
pT ≤ 5e−8, 0.1, 0.5 (Supplementary Table 1). Given that SNPs in the 
APOE region were removed from the PRS calculation, we  modeled 
APOE separately as the weighted sum of alleles ε2 and ε4 using effect sizes 
found in the IGAP summary statistics [β(ε2) = −0.47, β(ε4) = 1.12].

2.5. adORS calculation

Our proposed method is comprised of three steps for adORS 
calculation: gene-level aggregation, gene selection, and model 
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training. First, SNPs of each patient were aggregated into their 
corresponding gene burdens. It is denoted in Equations (1, 2) and 
where vij represents j-th gene burden of patient i. sik in Equation (1) 
is the transformation of k -th variant:

 
s

x if negative association with AD
x otherwiseik
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Gene burdens were simply computed by summing each SNP or 
complement of SNP in a given gene depending on the direction of each 
variant’s effect on Alzheimer’s disease. For example, a variant is 
summed after complement operation if the variant is negatively 
associated with the AD while regular variant is added otherwise. This 
prevents variants in opposite direction from canceling out each 
variants’ effects. Genes were defined using refGene database and the 
ANNOVAR tool. Second, gene selection is performed to condense the 
number of genes included in calculating adORS. We measured Pearson 
correlation coefficients with each neuroimaging biomarker, FDG-PET 
and AV45-PET, and then, extracted the top 20 genes exhibiting the 
highest correlation (Supplementary Figure 1; Supplementary Table 2). 
Since FDG-PET and AV45-PET have been known as promising 
biomarkers to detect functional brain changes in AD, we used them as 
intermediate phenotypes to discover AD-relevant genes (Foster et al., 
2007; Sperling et al., 2011; Suppiah et al., 2019). After accounting for 
overlapping genes from each set of 20 genes, the total of 37 genes were 
used to calculate adORS. Finally, the risk score for each patient 𝑖 was 
estimated based on the final condensed gene set 𝐺:

 
adORS vi

j

G
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(3)

β j in Equation (3) is the weight associated with each gene burden 
vij, calculated by a logistic regression (LR) model trained on the task 
of interest. Given that we focus on two problems, CNAD and MCI-CP, 
a separate LR model was trained for each task. As mentioned in 
section 2.1, only CN and AD subjects were used to train the CNAD 
LR model, and correspondingly, only MCI-nc and MCI-c subjects 
were used to train the MCI-CP model. Each LR model was 
implemented from the sklearn package in Python and adjusted for age 
and gender. They were developed and assessed using an 80:20 train 
test split and 10-fold cross-validation, with each fold containing the 
same ratio of positive and negative samples from the ADNI cohort. 
Prediction accuracy of the PRS and adORS models was measured 
using the Area Under Receiver Operating Characteristic (AUROC) 
and Area Under the Precision-Recall Curve (AURPC).

2.6. Gene contribution

Gene contribution of adORS was calculated using Shapley 
Additive exPlanations (SHAP; Lundberg and Lee, 2017). SHAP is a 
model-agnostic interpretation method frequently used in deep neural 
network and tree-based ensemble models. The strategy of SHAP is to T
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measure features’ relative effect contributing to model’s output while 
considering not only isolated effect of a single feature but also 
interactions between features. We applied SHAP package to trained 
adORS model to generate feature importance, namely SHAP value. To 
calculate gene contribution of PRS, we transformed variant-level into 
gene-level contribution. Since there is no gene-level summary 
statistics in PRS, we first calculated variant-level contribution using 
summary statistics multiplied by variant (βk ikx ), and then the 
measures of variants’ contribution in a given gene were summed. 
Instead of investigating coefficient (βk), we  defined βk ikx  as a 
contribution measure of k -th variants because it not only reflects 
actual contribution to the level of risk score, but also enables to 
compute gene-level feature importance.

2.7. Phenotype association

Five scores (ADAS13, CDRSB, RAVLT, MMSE, and FAP) 
assessing the abilities of orientation to place and time, language, 

reasoning, and the subjects’ daily living activities were downloaded 
from Quantitative Templates for the Progression of Alzheimer’s 
disease (QT-PAD) challenge (Portland Institute for Computational 
Science, 2022). We  preserved the baseline visit for each subject 
(Table  1). We  matched the subjects in our adORS analysis and 
QT-PAD baseline visit. Subjects without any of the five cognitive 
scores were excluded. The training and testing subjects are matched 
with our adORS analysis. We calculated Pearson correlations between 
adORS/PRS and five cognitive function assessment scores.

3. Results

3.1. adORS vs. PRS model performance 
comparison

To evaluate adORS’s ability to predict AD status and progression, 
we compared classification performance of adORS to PRS using the 
following evaluation metrics: Area Under Receiver Operating 
Characteristic (AUROC) and Area Under the Precision-Recall Curve 
(AURPC). Performance was compared on two tasks: CN vs. AD 
classification and MCI conversion prediction. Table  2 details the 
description of each model. The PRS and adORS models were computed 
excluding SNPs in the APOE region (see section 2). Two additional 
models were generated by adding APOE as a separate independent 
variable to the feature set. APOE effects were modeled by summing the 
genotyped APOE isoforms ε2 and ε4 weighted with GWAS effect sizes 
from the IGAP summary statistics (Kunkle et al., 2019).

As presented in Table  3, adORSCNAD (AUROC = 0.634, 
AUPRC = 0.717) achieves higher accuracy than PRSCNAD 
(AUROC = 0.602, AUPRC = 0.694). This suggests that variants used to 
calculate adORSCNAD hold higher predictive power than those used in 
PRS. When adding the APOE effect to both models, the performances 
of PRS.with.APOECNAD and adORS.with.APOECNAD increase to 
AUROC = 0.735 and AUROC = 0.750, respectively. The sharp increase 
in performance from PRSCNAD (AUROC = 0.602) to PRS.with.
APOECNAD (AUROC = 0.735) suggests that the APOE loci may 
be contributing most to prediction, causing other variants to have low 
effects. While a similar increase in performance was observed 
from adORSCNAD (AUROC = 0.634) to adORS.with.APOECNAD 
(AUROC = 0.750), the higher performance values from the adORS 
models overall, and in comparison to APOE.only (AUROC = 0.707), 
demonstrate that additional genes are contributing to AD prediction 
more than they may be in the PRS models (Table 3). We analyze this 
phenomenon further in the Gene contribution section.

TABLE 2 Descriptions of PRS and adORS models presented in the manuscript.

Model name Model description

APOE.only Weighted sum of alleles ε2 and ε4 using effect sizes found in the IGAP summary statistics [β(ε2) = −0.47, β(ε4) = 1.12]

PRS PRS including SNPs with p≤1e-5 and excluding SNPs in the APOE region (chr19:44.0–46.0 Mb, GRCh38)

PRS.with.APOE PRS including SNPs with p≤1e-5 and APOE(ε2 + ε4), where APOE effects were weighted with effect sizes [β (ε2) = −0.47 and β (ε4) = 1.12] from the 

IGAP summary statistics excluding the ADNI cohort

adORS Risk score including the top 20 gene burdens with highest correlations to AV45-PET and FDG-PET and excluding the APOE region (chr19:44.0–

46.0 Mb, GRCh38)

adORS.with.APOE Risk score including the top 20 gene burdens with highest correlations to AV45-PET and FDG-PET and APOE(ε2 + ε4), where APOE effects were 

weighted with effect sizes [β (ε2) = −0.47 and β (ε4) = 1.12] from the IGAP summary statistics excluding the ADNI cohort

TABLE 3 adORS vs. PRS performance comparisons for CN vs. AD 
classification and MCI conversion prediction.

Model AUROC (SD) AUPRC (SD)

(a) CN vs. AD classification

  APOE.onlyCNAD 0.707 (0.04) 0.746 (0.03)

  PRSCNAD 0.602 (0.03) 0.694 (0.03)

  PRS.with.APOECNAD 0.735 (0.04) 0.814 (0.03)

  adORSCNAD 0.634 (0.05) 0.717 (0.04)

  adORS.with.APOECNAD 0.750 (0.03) 0.815 (0.03)

(b) MCI conversion prediction

  APOE.onlyMCI-CP 0.594 (0.05) 0.417 (0.04)

  PRSMCI-CP 0.532 (0.04) 0.405 (0.03)

  PRS.with.APOEMCI-CP 0.643 (0.04) 0.477 (0.04)

  adORSMCI-CP 0.610 (0.04) 0.464 (0.05)

  adORS.with.APOEMCI-CP 0.637 (0.04) 0.487 (0.05)

All models were calculated on the ADNI cohort (550 AD cases, 364 CN controls, 273 MCI 
converters, and 517 MCI non-converters). See the section 2 for details on adORS and PRS 
calculation. For each task, five models were considered: APOE.only which is the weighted 
sum of APOE alleles ε2 and ε4 using summary statistics; PRS where the APOE region was 
excluded (chr19:44.0–46.0 Mb, GRCh38); PRS.with.APOE where APOE effects were 
weighted with effect sizes as in the summary statistics; adORS which includes the top 20 
gene burdens with highest correlations to AV45-PET and FDG-PET; and adORS.with.APOE 
which also includes weighted APOE effects. Prediction performance was evaluated using 
AUROC and AUPRC with the standard deviation of 10-fold cross validation.
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Similar patterns were observed in the MCI-CP task. Although the 
performance of PRSMCI-CP was much lower (AUROC = 0.532, 
AUPRC = 0.405) than in the case of PRSCNAD, it comparably increased 
when the APOE region was included (AUROC = 0.643, 
AUPRC = 0.477). In contrast, only a small increase in performance 
was observed from adORSMCI-CP (AUROC = 0.610, AUPRC = 0.464) to 
adORS.with.APOEMCI-CP (AUROC = 0.637, AUPRC = 0.487). This 
smaller increase in performance in the adORS models further 
emphasizes the idea that adORS relies less so on the APOE loci for the 
prediction task.

3.2. Risk-based stratification

We next investigated each risk score’s ability to stratify the 
cohort into (Mullard, 2021) cases vs. controls and (Zetterberg and 
Bendlin, 2021) bins of increasing AD risk levels. We performed a 
decile analysis to evaluate how well each score truly represents the 
AD prevalence rate. Figure 1 presents the test set divided into 10 
equally sized bins based on risk score values and the number of 
actual cases within each bin. In both the CNAD (Figure 1A) and 
MCI-CP (Figure 1B) tasks, adORS demonstrates a staircase effect 
from the first to last decile, indicating that the score is well-
calibrated to risk level compared to PRS. As the adORS model 
assigns higher risk scores to patients, the number of cases in 
higher risk groups increases accordingly. However, the decile of 
risk scores binned by PRS appears less as a staircase effect and 
more uniform across all bins. This indicates that PRS hardly 
reflects the true prevalence rate within ADNI cohort. Similar 
trends are seen for the adORS and PRS models which do not 
include APOE (Supplementary Figure 2). Overall, adORS’s ability 
to improve stratification of patients into appropriate risk groups 
demonstrates that adORS is more well-calibrated to AD risk 
than PRS.

3.3. Gene contribution

The top contributors of adORS.with.APOECNAD and adORSCNAD 
are APOE and EFCAB11, respectively, given that both genes 
demonstrate the highest magnitude of the SHAP value (Figures 2A,B; 
Supplementary Figures  3A,B). There is no overlap between the 
subsequent top five contributors across both models, excluding 
EFCAB11. This lack of overlap implies that the top genes found in 
adORSCNAD may have associations with APOE, given that they are 
assumedly replacing APOE’s role. APOE also remains the top 
contributor for adORS.with.APOEMCI-CP (Figure  2C; 
Supplementary Figure  3C). In adORSMCI-CP, ATF6 is the top 
contributor, with SCN3A being the second-most contributor 
(Figure 2D; Supplementary Figure 3D). ATF6 and SCN3A are also part 
of the top five contributors in adORS.with.APOEMCI-CP. There is very 
little overlap in gene contributions between the adORS and PRS 
models in both tasks (Figure  2; Supplementary Figures  3E–H), 
indicating that a different set of genes were considered to calculate 
PRS versus adORS.

As we  reported in the adORS vs. PRS model performance 
comparison section, performance metrics suggested that PRS relies 
on APOE more so than in adORS, causing remainder variants to 
have low effects. As such, interpretation of genes—beyond APOE—
that add to AD risk becomes more difficult for the PRS models. 
We  further explored this notion using our gene contribution 
analysis, as shown in Supplementary Figure 3. The contribution of 
APOE in adORS.with.APOECNAD vs. PRS.with.APOECNAD is 19.6 and 
20.9%, respectively (Supplementary Figures  3A,E). While these 
values are comparable, the distribution of contributions across the 
remainder of the genes is more dispersed in adORS.with.
APOECNAD. Most of the genes excluding APOE contribute about 
2.3–7.2% to the prediction task (Supplementary Figure  3A), 
whereas in PRS.with.APOECNAD, contributions range from 1.7 to 
4.7%, with more than half of the genes contributing less than 1.7% 

FIGURE 1

Stratification of AD cases and MCI converters into AD risk levels based on adORS.with.APOE and PRS.with.APOE. Decile analysis evaluating the ability of 
adORS.with.APOE and PRS.with.APOE to reflect the AD prevalence rate in (A) CN vs. AD classification and (B) MCI conversion prediction. The test set is 
evenly divided into deciles, or 10 bins, based on the adORS (red) or PRS (blue) values. Each bin contains the number of AD cases and MCI converters in 
(A,B), respectively.
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(Supplementary Figure  3E). For MCI-CP, the difference is even 
more evident—APOE contributes 13.0% in adORS.with.APOEMCI-CP 
and 62.5% in PRS.with.APOEMCI-CP (Supplementary Figures 3C,G). 
The others contribute 2.2–6.9%, while in PRS, the top gene besides 
APOE contributes 2.3% at most, with nearly the rest contributing 
less than 1%.

We also investigated the direction of effect between the gene 
burdens and risk scores. In CN vs. AD classification, genes including 
APOE, ATF6, EFCAB11, VAT1L, SIK3, CD46, and ING5 demonstrate 
a consistent, positive effect on the risk score (Figures 2A,B). Their 
SHAP values increase as their original values, or gene burdens, also 
increase. That is, higher gene burden values elicit higher risk for AD, 
and vice versa. In MCI conversion prediction, ING5, ATF6, 
LINC00459, CLCCC1, CEP250, and SPOCK3 are observed to 
be positive contributors, while SCN3A, SIK3, DLGAP1-AS3, PTPN5, 
CD46, APOA1-AS, and SEMA3C are negative contributors 
(Figures 2C,D).

Interestingly, SIK3 and CD46 display an inconsistent direction of 
effect on the risk score across each task. SIK3 in adORS.with.
APOEMCI-CP, for example, exhibits a negative effect on the risk score, 
yet the effect is reversed in adORSCNAD (Figures  2B,C). The same 
trends are observed for CD46. This reversal of effect from MCI-CP to 
CNAD suggests that both genes may play an important role in the 
progression of AD.

3.4. Phenotype association

We performed an association analysis on PRS and adORS with 
major AD clinical assessments of cognitive functions (ADAS13, 
CDRSB, RAVLT, MMSE, and FAQ; Portland Institute for 
Computational Science, 2022) widely used as evidence for AD 
diagnosis (Albert et al., 2011). We assessed the Pearson correlations 
between the estimated risk scores and these cognitive assessment 
scores (Figure 3). Both PRSCNAD and adORSCNAD appropriately showed 
a positive correlation with ADAS13/CDRSB/FAQ (Figure 3B). We also 
observed a negative correlation between the estimated risk scores and 
MMSE/RAVLT, which is as expected. Compared to PRSCNAD, 
adORSCNAD had almost 2-fold higher absolute correlations. When 
APOE was included, adORS.with.APOECNAD still remained more 
strongly correlated than did PRS.with.APOECNAD, yet the trends of 
PRS.with.APOECNAD’s correlation values improve vastly in comparison 
to PRSCNAD (Figure 3A). This evidence further supports the assumption 
that PRS heavily weights the APOE loci over other variants to 
sufficiently predict risk.

In general, MCI conversion prediction is more difficult than CN 
vs. AD classification. Correlations varied between adORS.with.
APOEMCI-CP and PRS.with.APOEMCI-CP, with adORS.with.APOEMCI-CP 
performing better for MMSE while PRS.with.APOEMCI-CP performed 
better for ADAS13/RAVLT (Figure 3C). This is consistent with the 

FIGURE 2

Gene contribution in adORS.with.APOE and adORS models. Beeswarm plots to visualize the gene-level contributions in adORS.with.APOE and adORS 
when performing CN vs AD classification (A and B) and MCl conversion prediction (C and D). Patients are represented as a scatter plot in each row of 
each plot. The x-axis is determined by the SHAP value (gene contribution), and the color represents the gene burden value. The sign of the SHAP value 
represents the direction of contribution. For example, a negative SHAP value of a gene contributes to a decrease in risk score while a positive SHAP 
value contributes to an increase in risk score. See Supplementary Figure 3 for the gene contributions of PRS and PRS.with.APOE. CNAD, CN vs AD 
classification; MCI-CP, MCI conversion prediction.
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model performances shown in Table 3, where PRS.with.APOEMCI-CP 
resulted in a higher AUROC than adORS.with.APOEMCI-CP. Without 
APOE, adORSMCI-CP improved in comparison to PRSMCI-CP, with 
comparable yet better correlations in all cognitive categories except for 
CDRSB (Figure 3D).

4. Discussion

Given the lack of successful clinical trials for Alzheimer’s disease 
to date, the field has shifted some of its focus to genetic risk 
stratification using PRS in hopes to improve mechanistic insights of 

the disease (Sierksma et  al., 2020). However, whether AD is a 
polygenic or oligogenic disorder remains unclear, and many suspect 
PRS’s ability to accurately identify high and low risk individuals, as 
well as effectively predict AD progression. In the current study, 
we  generated adORS, an AD-specific oligogenic risk score that 
challenges the limitations of PRS in terms of prediction, stratification, 
and interpretability. Whereas PRS is derived from the weighted sum 
of GWAS-significant SNPs, adORS utilizes genes strongly associated 
with the neuroimaging biomarkers FDG-PET and AV45-PET to 
predict both AD and MCI conversion risk. The introduced score 
outperforms traditional PRS by providing enhanced prediction of AD 
risk. Additionally, adORS better stratifies individuals into increasing 

FIGURE 3

PRS, PRS.with.APOE, adORS, and adORS.with.APOE associations with major AD clinical assessments of cognitive functions. Bar plots of Pearson 
correlations between each risk score (adORS: red, PRS: blue) and cognitive assessments in the entire cohort. Results are shown for the following tasks: 
CN vs. AD classification (A and B) and MCI conversion prediction (C and D). CNAD, CN vs. AD classification; MCI-CP, MCI conversion prediction; ADAS 
13, Alzheimer’s disease assessment scale-cognitive subscale 13; CDRSB, Clinical dementia rating scale-sum of boxes; RAVLT, Rey auditory verbal 
learning test; MMSE, Mini mental state examination; and FAQ, Functional activities questionnaire.
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risk levels based on their genetic predispositions, reflecting the true 
prevalence rate of the cohort compared to PRS. Lastly, adORS delves 
into gene-level interpretations of the risk factors, paving the way for 
personalized therapeutic strategies for individuals with AD.

We conclude that the empirical data assessing AD risk are 
consistent with an oligogenic architecture of the disease. To represent 
oligogenicity of the disease, we  implemented a gene-level burden 
analysis which collapses variants into genes. Because SNP data are 
extremely sparse and sample size is limited, we attempted to enlarge 
the gene-level effects that are relevant to AD by significantly reducing 
the feature size from 1.7 million SNPs to 23,000 genes. In other words, 
this approach allowed a denser input which permits the prediction 
model to train with increased stability. We expected several main 
effects from this architecture: enrichment of the AD-related signal, 
reduction of the degree of freedom, and gene-level interpretability. 
We anticipate that these outcomes may help establish the prospective 
clinical utility of adORS which PRS has been lacking thus far.

Compared to PRS, we  found that the oligogenic model better 
represented the genetic heterogeneity of the disease by improving risk-
based stratification for both CN vs. AD classification and MCI 
conversion prediction (Figure 1). When APOE was included in both 
models, the staircase effect portrayed in Figure 1 demonstrated that 
adORS is well-calibrated to AD risk level, whereas the decile of risk 
scores binned by PRS appears less as a staircase effect and more 
uniform across all bins. In other words, as adORS assigned higher risk 
scores to patients, the number of cases in higher risk groups increases 
accordingly. By refining stratification, adORS may prove to be a more 
appropriate choice of differentiating patients into high or low genetic 
risk of AD in clinical studies or settings. We were able to further 
support adORS’s potential clinical utility via our association analysis 
with common cognitive assessments used to clinically evaluate risk for 
AD (Figure 3).

However, while APOE is the most prominent genetic risk factor 
for AD, not all AD patients carry the APOE risk allele (Guerreiro 
et al., 2012). As such, we deemed it essential to conduct analyses both 
inclusive and exclusive of APOE effects. The conventional PRS model 
has been evidenced to heavily depend on APOE and nongenetic 
factors, such as age and sex, for effective risk assessment, which 
compromises its clinical relevance (Riedel et al., 2016; Harrison et al., 
2020; Leonenko et al., 2021). When APOE effects were excluded from 
the adORS and PRS models, adORS still improved the stratification of 
patients from lowest to highest risk group, while PRS continued to 
disperse patients more uniformly across all risk levels 
(Supplementary Figure 2). Moreover, the overwhelming contribution 
of APOE in PRS made it challenging to gage the significance of 
individual SNPs or genes, especially in predicting MCI conversion 
(Supplementary Figures 3E,G). This disproportionate contribution by 
APOE obscures the roles of other genetic components, leaving us to 
question their significance in the overall risk model. adORS overcomes 
this limitation, as evidenced not only by the improved stratification 
results without APOE, but also by the gene-level interpretability 
analyses with and without APOE. Within the adORS framework, the 
genetic contributions are more balanced and dispersed, ensuring that 
no single gene, including APOE, monopolizes the risk prediction 
(Supplementary Figures 3A,C). This distribution not only provides a 
more holistic view of the multifactorial contributors to the disease, but 
also unmasks the latent potential of these genes in AD pathology. The 
ability of adORS to interpret specific genetic information allows the 

focus to be  shifted from general relative risk based on a given 
population to the information that adORS can provide for a single 
individual, thus permitting the possibility of personalized 
treatments for AD.

As expected, APOE had the highest contribution in the adORS.
with.APOE models for both CN vs. AD classification and MCI 
conversion prediction (Figures 2A,C; Supplementary Figures 3A,C). 
APOE pathogenesis is known to affect amyloid-β peptide 
aggregation and clearance, as well as tau neurofibrillary 
degeneration, microglia and astrocyte responses, and blood–brain 
barrier disruption (Serrano-Pozo et al., 2021). ATF6 achieved the 
subsequent highest contribution in adORS.with.APOECNAD 
(Figure 2A; Supplementary Figure 3A). This gene was also the top 
contributor for adORSMCI-CP (Figure 2D; Supplementary Figure 3D). 
In a recent study, ATF6 demonstrated an involvement in reducing 
amyloid precursor protein expressions in AD model mice (Du et al., 
2020). ATF6 was also found to be strongly activated in AD and 
amyotrophic lateral sclerosis (ALS) individuals in pathways related 
to endoplasmic reticulum homeostasis (Montibeller and de 
Belleroche, 2018). ING5, a tumor suppressor protein that inhibits 
cell growth, achieved the second-highest contribution in adORS.
with.APOEMCI-CP (Figure 2C; Supplementary Figure 3C). ING5 is 
associated with various cancer types and rare diseases involving 
neuronal abnormalities, such as Ohdo Syndrome (Gou et al., 2015; 
Zhang et al., 2015; Gene Cards Human Gene Database, 2022). In 
particular, ING5 was found to be highly expressed in stem cells 
which promotes self-renewal of brain tumor initiating cells, which 
typically lead to glioblastomas (Wang et al., 2018). Another study 
has found that ING5 is silenced by short hairpin RNAs during the 
generation of neuronal precursor cells (Zhang et al., 2013). The 
evidence of ING5 in neuronal-related development suggests a 
possible connection to AD pathophysiology.

In adORSCNAD, EFCAB11, which is predicted to enable calcium 
binding activity, was the highest contributing factor for AD 
classification (Figure 2B; Supplementary Figure 3B). Circular RNAs 
(circRNAs), including EFCAB11, have been found to be  highly 
expressed in the brain compared to other tissues, suggesting that 
circRNAs may constitute as relevant aging biomarkers (Pan et al., 
2020). One research group found EFCAB11 to be overexpressed in 
brain samples of patients with multiple system atrophy, another type 
of neurodegenerative disorder (Chen et al., 2016). Although there is 
little information specific to EFCAB11 in AD, studies have found 
connections of alternative circRNAs to AD, such as dysregulated cIRS-
7-miR-7 interaction in the hippocampus of AD patients (Lukiw, 2013; 
Zhao et  al., 2022). Such evidence proposes circRNAs as potential 
targets for AD treatment.

Other genes observed in the various adORS models and supported 
by AD-related literature include PTPN5 and VAT1L. PTPN5 (seen in 
Figure 2; Supplementary Figures 3A–D) is involved in pathways that 
regulate neuronal signal transduction, neuronal maturation and 
survival, synaptic function, and learning and memory. Abnormal 
alterations in PTPN5 activity are associated with several neurological 
disorders, and it is known that upregulation of PTPN5 may have a 
causal role in Alzheimer’s disease (Chin et al., 2005; Saavedra et al., 
2011). VAT1L (seen in Figures 2A,B; Supplementary Figures 3A,B) has 
been identified as associated with functions related to neuronal 
maintenance, neurotransmission, and Tau pathology (Jain et al., 1991; 
Dringen, 2000).
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SIK3 and CD46 displayed reversed directions of effect from 
adORS.with.APOEMCI-CP to adORSCNAD (Figures 2B,C). In MCI-CP, 
lower gene burden values for both genes resulted in higher risk scores, 
whereas this effect was reversed in CNAD. Limited investigation exists 
on SIK3’s role in AD. A gain-of-function SIK3 mutation has previously 
been shown to cause an acute decrease in total wake time, resulting in 
high sleep need despite increased sleep amount (Funato et al., 2016; 
Wang et  al., 2018; Zhou et  al., 2022). Interestingly, literature also 
evidences that sleep disturbances occur more frequently as AD 
increases in severity. Excessive daytime sleepiness, one of the most 
common sleep disturbances in demented patients, is characterized by 
symptoms that align with the SIK3 mutation, as mentioned above 
(Vitiello et al., 1990; Honda et al., 2018; Wang and Holtzman, 2020). 
Further research linking SIK3-involved pathways, sleep regulation, 
and AD may provide additional insight in AD pathology. Similar to 
SIK3, CD46 is also rarely discussed in relation to AD. CD46 is a 
significant complement receptor protein that promotes human 
cytotoxic CD8+ T cell activity and relates with autoimmune diseases 
(Liszewski and Atkinson, 2015; Arbore et al., 2018; Stein et al., 2019). 
One study identified CD46 as significantly dysregulated in AD patients 
based on a transcriptome-wide meta-analysis of blood-based 
microarray gene expression profiles (Nho et  al., 2020). The 
complement system has also been previously linked to AD. An 
AD-protective variant of CD33—another complement protein—is 
postulated to truncate the protein, reducing functions such as cell 
signaling and inflammation (Siddiqui et al., 2017). This suggests that 
lower expression of complement genes may have beneficial effects on 
the brain, supporting our data that higher CD46 gene burden values 
resulted in higher risk scores in the CNAD task. The reversal of effects 
for both genes may indicate a potential shift in their roles within MCI 
progression to AD. We suggest further research exploring the effects 
of SIK3 and CD46 particularly in MCI converter patients.

In clinical settings, adORS can be particularly valuable for trials 
targeting therapies to prevent disease progression. By identifying 
cognitively normal adults at high AD risk through an elevated adORS, 
clinicians can concentrate on those most representative of disease 
progression and most likely to benefit. This approach also enhances 
trial efficiency and cost-effectiveness (Lewis and Vassos, 2020). adORS 
also has the potential to aid treatment decisions. For example, 
individuals with a low adORS might postpone screenings, whereas 
those with a higher score could start earlier than typically advised 
(Lewis and Vassos, 2020). Especially for a condition such as AD, in 
which treatments target symptom management, pinpointing 
individuals at high genetic risk for earlier interventions can elevate 
their quality of life. However, it is crucial to note that adORS merely 
indicates a genetic predisposition to the disease and cannot serve as a 
diagnosis. As risk scores gain broader applications in both clinical and 
research settings, recognizing the difference between prediction and 
definitive diagnosis is essential.

There are several limitations in this study. Note that the success of 
a gene-level burden analysis depends on several conditions (Li and 
Leal, 2008). First, the model input should be limited to functional 
variants and exclude nonfunctional variants. Restricting input to such 
is crucial to building an interpretable and well-generalized model that 
performs well across multiple test cohorts. Currently, our model 
collapses both functional and nonfunctional variants into genes, 
which likely introduces noise and thus hinders our model from 
detecting relevant genes with increased accuracy. Although 

aggregation methods can amplify association signals and minimize 
the degrees of freedom more effectively than variant-level tests, they 
are not always robust to the misclassification of nonfunctional 
variants. We  are actively exploring this avenue in our ongoing 
research, in which nonfunctional variants are separately considered 
and grouped according to their intergenic regions. Second, we assume 
that the direction of effect is consistent within genes. Indeed, two 
variants with opposite directions of effect will be canceled out. While 
we  adjust for variants negatively associated with AD through the 
complement operation (see section 2.5), it is also vital to weigh the 
magnitude and statistical relevance of these effects. As long as 
we  implement a gene-level burden analysis, information loss is 
inevitable due to the inclusion of nonfunctional variants and exclusion 
of functional variants. Enhancing the representation of nonfunctional 
variants is expected to improve the prediction performance. We are 
investigating the possibility as a sequel to this work.

To ensure generalizability, adORS must be validated on external 
cohorts. The datasets suitable for training are somewhat restrictive, 
as both genomic and neuroimaging data must be  available to 
compute our proposed risk score. Despite the constrained number 
of training data, our model still demonstrates improved performance. 
Gathering larger training sets is likely to produce a significant boost 
in accuracy. For validation purposes, adORS has the benefit of 
requiring only genomic data. For example, by leveraging the adORS 
generated using ADNI, we can extend its application to other sizable 
cohorts with available genomic data, such as the Alzheimer’s Disease 
Sequencing Project (ADSP) (2020), and evaluate its proficiency in 
stratifying the population based on risk levels. Among the many 
neuroimaging biomarkers that are available in the ADNI dataset, 
only two were used to generate adORS. In doing so, we may have 
inadvertently excluded SNPs which are highly associated with other 
AD biomarkers and may therefore hold predictive ability for AD 
risk. Additionally, this score only relies on common variants and 
excludes rare variants. We are considering these limitations as well 
in the continuations of this study.

Overall, we developed adORS to leverage genetic information that 
can identify individuals with high or low risk of developing 
Alzheimer’s disease. Compared to conventional PRS, adORS was able 
to improve prediction performance, risk-based stratification of 
patients, and interpretability of genetic factors contributing to risk. 
Further study is required to functionally validate the genes in adORS 
and their roles in underlying AD-related processes, and ultimately 
contribute to risk or progression-related biomarkers that can aid in the 
downstream development of therapeutic treatments for AD.
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