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Background: In this study, we present a novel system for quantifying glutamine 
metabolism (GM) to enhance the effectiveness of Alzheimer’s disease (AD) 
diagnosis and risk prediction.

Methods: Single-cell RNA sequencing (scRNA-seq) analysis was utilized to 
comprehensively assess the expression patterns of GM. The WGCNA algorithm 
was applied to investigate the most significant genes related to GM. Subsequently, 
three machine learning algorithms (Boruta, LASSO, and SVM-RFE) were employed 
to identify GM-associated characteristic genes and develop a risk model. Patients 
were divided into high- and low-risk groups based on this model. Moreover, 
we explored biological properties, distinct signaling pathways, and immunological 
characteristics of AD patients at different risk levels. Finally, in vitro and in vivo 
models of AD were constructed to validate the characteristics of the feature 
genes.

Results: Both scRNA-seq and bulk transcriptomic analyses revealed increased 
GM activity in AD patients, specifically in certain cell subsets (pDC, Tem/Effector 
helper T cells (LTB), and plasma cells). Cells with higher GM scores demonstrated 
more significant numbers and strengths of interactions with other cell types. 
The WGCNA algorithm identified 360 genes related to GM, and a risk score was 
constructed based on nine characteristic genes (ATP13A4, PIK3C2A, CD164, 
PHF1, CES2, PDGFB, LCOR, TMEM30A, and PLXNA1) identified through multiple 
machine learning algorithms displayed reliable diagnostic efficacy for AD onset. 
Nomograms, calibration curves, and decision curve analysis (DCA) based on 
these characteristic genes provided significant clinical benefits for AD patients. 
High-risk AD patients exhibited higher levels of immune-related functions and 
pathways, increased immune cell infiltration, and elevated expressions of immune 
modulators. RT-qPCR analysis revealed that the majority of the nine characteristic 
genes were differentially expressed in AD-induced rat neurons. Knocking down 
PHF1 could protect against neurite loss and alleviate cell injury in AD neurons. In 
vivo, down-regulation of PHF1  in AD models decreases GM metabolism levels 
and modulates the immunoinflammatory response in the brain.

Conclusion: This comprehensive identification of gene expression patterns 
contributes to a deeper understanding of the underlying pathological mechanisms 
driving AD pathogenesis. Furthermore, the risk model based on the nine-gene 
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signature offers a promising theoretical foundation for developing individualized 
treatments for AD patients.
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response

Introduction

AD is a neurodegenerative syndrome that worsens progressively 
with age. The most common clinical manifestation of AD is a slowly 
progressing amnestic disorder, which reflects a neurofibrillary tangle 
pathology. This pathology is mainly distributed early in the medial 
temporal lobe structures and eventually develops into a multidomain 
dementia, with amnesia being the predominant feature (Scheltens 
et al., 2021). Neurodegenerative dementia is predominantly caused by 
AD, accounting for 50–70 percent of all cases. Unfortunately, more 
than 50 million people worldwide are currently suffering from 
neurodegenerative disorders, and this number is expected to triple by 
2050 if no effective preventative or therapeutic solutions are found 
(Winblad et al., 2016). Although various treatment strategies have 
been explored in clinical trials for decades, the significant 
heterogeneity of AD has led to the availability of primarily symptom-
based treatments rather than actual curative therapies (Author, 2021; 
Passeri et  al., 2022). AD is known to start at least 20 years before 
symptoms appear. Moderate cognitive impairment (MCI) is a 
common stage of the progression of AD. However, not all patients 
with MCI develop AD, suggesting that there may be protective or 
causative variables that affect different groups of patients, even within 
conventional categories (Braak et al., 2011; Lombardi et al., 2020). 
Moreover, research suggests that over 30% of AD cases globally may 
be  linked to modifiable risk factors, both genetic and acquired 
(Scheltens et  al., 2021). These factors could serve as targets for 
prevention interventions aimed at reducing the risk of cognitive 
decline associated with AD (Silva et al., 2019; Lombardi et al., 2020). 
Therefore, it is essential to understand the heterogeneity of AD and 
accurately distinguish the molecular characteristics of each patient to 
guide personalized treatment.

Recent longitudinal studies have partially attributed the decline in 
the incidence of dementia to improved control of metabolic factors 
(Satizabal et al., 2016; Rejc et al., 2022). Glutamine, which is the most 
abundant and versatile amino acid in the human body, is often used 
to maintain TCA flux in cellular aerobic glycolysis or as a source of 
citric acid for lipid synthesis in reductive carboxylation (Cruzat et al., 
2018). The glutamate-glutamine cycle is recognized as a crucial 
element for the transmission of excitatory singles in the central 
nervous system (CNS), impacting cognition and other brain processes, 
as well as the neurodegenerative process (Sidoryk-Wegrzynowicz and 
Aschner, 2013). Insufficient levels of glutamine and glutamate in the 
brain have been proposed as possible biomarkers for AD (González-
Domínguez et al., 2015; Stevenson-Hoare et al., 2023). A two-sample 
Mendelian randomization study indicated that circulating glutamine 
can act as a neuroprotectant and that modifications in glutamine/
glutamate metabolism may prevent cognitive decline in Alzheimer’s 
disease (AD) (Sun et al., 2022). Animal models of AD have shown that 

disruption of glutamine homeostasis is related to the severity of 
cognitive impairment (Baek et al., 2023; Sun et al., 2023). However, 
two cohort studies found that a higher serum glutamine level was 
significantly associated with an increased risk of AD (van der Lee 
et al., 2018; Cui et al., 2020). These studies suggest that glutamine 
metabolism may play a complicated role in the onset and progression 
of AD. However, the landscape of glutamine metabolism in AD is still 
largely unknown. Targeting GM alongside AD treatment has shown 
promising results (Adams, 2020; Dejakaisaya et al., 2021; Sun et al., 
2022). Therefore, we conducted this study to systematically analyze 
glutamine metabolism in AD.

Our research comprehensively evaluated the expression patterns 
of GM-related variants in AD patients. A single-cell approach was 
applied to display the GM landscape of various cell types and 
intracellular communication in AD samples with different levels of 
Gln. bulk-RNA-Seq-based weighted gene co-expression network 
analysis (WGCNA) was performed to identify GM-associated gene 
modules, and then three machine learning methods, including Boruta, 
Least Absolute Shrinkage and Selection Operator (LASSO), and SVM 
Recursive Feature Elimination (SVM-RFE), were employed to explore 
characteristic genes. Then a GM-related risk scoring system and a 
nomogram scoring system were constructed, and biological traits, 
involved pathways, and immunological features were explored in AD 
patients at different risk levels. We also verified the expression of nine 
signature genes by RT-qPCR and the Geo database. Finally, we used 
lentivirus-mediated gene knockdown technology to conduct further 
functional studies on the most representative feature gene in an in 
vitro model of AD.

Altogether, our study highlighted significantly the relationship 
between GM expression patterns and AD heterogeneity, providing 
unique insights into how to treat AD patients on an individualized level.

Materials

Data acquisition and preprocessing

The peripheral blood scRNA-seq data GSE181279 (based on the 
GPL24676 platform), including three AD patients and two 
age-matched cognitive normal controls (NC), was obtained from the 
Gene Expression Omnibus (GEO) database (Xu and Jia, 2021). The 
“NormalizeData” function in the R Seurat package was used to 
normalize the expression matrix. Then integrated analysis and 
elimination of batch variation were performed using the harmony R 
package. Afterwards, principal component analysis (PCA) and 
uniform manifold approximation and projection for dimensionality 
reduction (UMAP) were adopted for dimensionality reduction of the 
combined data. High-quality scRNA-seq data was filtered using the 
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following parameters: Genes were expressed in more than three cells 
per cell, with 200 to 5,000 genes and not more than 15% mitochondrial 
genes. After filtering, a total of 34,738 cells were selected for the 
following analysis. The top  4,000 most variable genes were then 
identified using the vast technique included in the Seurat package’s 
“Find Variable Features” function. The “Find Clusters” tool was used 
to cluster the cells after embedding them in the PCA space’s graph 
structure, and cell annotations were predicted using the CellTypist 
Python package. Furthermore, the differentially expressed genes 
(DEGs) of each cluster were determined using the “Find ALL Markers” 
function of the “Seurat” program with logfc. Threshold = 0.5. The bulk 
transcriptome data (GSE33000 and GSE5281) were also acquired from 
the GEO. In brief, GSE33000 is based on the GPL4372 platform and 
consists of 157 normal and 319 AD brain tissue samples, while 
GSE5281 is built on the GPL570 platform and contains 74 normal and 
87 AD brain tissues (Blalock et al., 2011; Narayanan et al., 2014). The 
raw data from each dataset were then normalized and log-transformed 
using the robust multi-array averaging (RMA) function of the “affy” 
R package.

Construction of a GM score

According to previous studies, we extracted 118 regulators as the 
biomarkers of GM (Liberzon et al., 2015; He et al., 2022). Additionally, 
the single-cell-based and bulk RNA-based GM scores were calculated 
using the “Ucell” and single-sample gene set enrichment analysis 
(ssGSEA) algorithms, respectively. Differences in the distribution of 
high and low glutamine metabolism at the single-cell level in the AD 
group were bound by the 75% quantile of GM scores, and the result 
was illustrated using UMAP plots.

Cell-cell interaction analysis

The “CellChat” R package was utilized to investigate cell–cell 
communications and essential pathways with default parameters 
based on the UMI count matrix for each group (High_Gln and 
Low_Gln). “CellChatDB.human” was employed as the database of 
receptor-ligand interactions. The “mergeCellChat” function was 
applied to combine CellChat objects from each group to evaluate 
the total number of interactions and the strength of interactions. 
Then the “netVisual DiffInteraction” function was used to visualize 
the variations between groups in the quantity or intensity of cell–
cell interactions. Finally, the “rankNet” function was chosen to 
identify signaling pathways with differential expression, and the 
“netVisual bubble” and “netVisual aggregate” functions were 
applied to display the distribution of gene expression 
between groups.

The weighted gene co-expression network 
analysis

The weighted gene co-expression network analysis (WGCNA) 
method was used to investigate the gene expression modules 
associated with the GM score through the “WGCNA” R package. The 

brief processes were as follows: Gene expression landscapes from 
GSE33000 were chosen as input data, and the ideal soft threshold for 
adjacency computation was then immediately identified. Next, to 
determine the genetic connectivity of the network, the expression 
matrix was transformed into an adjacency matrix and a topological 
overlap matrix (TOM). Then, based on the TOM values, the genes in 
the matrix were hierarchically clustered to generate clustering trees. 
Modules with strong associations with the GM score were ultimately 
evaluated and chosen for further analysis.

Enrichment analysis

Enrichment analysis, including Gene Ontology (GO), biological 
process (BP), cellular components (CC), and molecular functions 
(MF), and the Kyoto Encyclopedia of Genes and Genomes (KEGG), 
was performed via the ClusterProfiler R package. For the enrichment 
results, the value of p was corrected based on the Benjamini-
Hochberg method, and an adjusted p < 0.05 was 
considered significant.

The “GSVA” R package was utilized to conduct Gene Set Variation 
Analysis (GSVA) enrichment to assess the heterogeneity of a variety 
of biological processes and pathway activities. The MSigDB hallmark 
gene sets “c2.cp. Kegg.v7.4.symbols” and “c5.go.bp.v7.5.1.symbols” 
were selected as the preferred gene sets for GSVA. The “limma” R 
package was used to calculate the variances in biological functions and 
signaling pathways, and absolute t-values for GSEA scores >2 were 
considered to be statistically significant.

Furthermore, we performed gene set enrichment analysis (GSEA) 
to evaluate the differences in pathway activity depending on the 
“GSEA” R package. Normalized enrichment scores (NES) were sorted, 
and adjusted p values <0.05 were deemed significant.

Screening of characteristic GM-related 
genes based on machine learning

Three machine learning algorithms, namely Boruta, SVM 
Recursive Feature Elimination (SVM-RFE), and Least Absolute 
Shrinkage and Selection Operator (LASSO) were utilized to identify 
potential features associated with GM. The R packages ‘Boruta’, 
“e1071” and ‘caret’ were used for this purpose. The Boruta algorithm 
was used for identifying important GM-related gene signatures, with 
parameters set at 300 iterations and a value of p less than 0.01. The 
identified gene signatures were then further analyzed using LASSO 
and SVM-RFE algorithms. The LASSO model was used to determine 
the final coefficients of important variables, based on the optimal 
penalty parameter γ. To avoid over-fitting, SVM-RFE and LASSO 
were conducted with default parameters using 10-fold cross-
validation. The AD brain tissue samples in the GSE33000 dataset were 
randomly divided into a training cohort (70%) and a verification 
cohort (30%). The final GM-related characteristic genes were 
determined by intersecting the results of LASSO and SVM-RFE. To 
evaluate the effectiveness of different machine learning methods, 
we utilized the ‘pROC’ R package to calculate the area under the 
receiver operating characteristic curve (AUC) for both the GSE33000 
and GSE5281 datasets.
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Nomogram and risk model establishment 
based on GM-related characteristic genes

A predictive nomogram was created using the R package ‘rms’, 
which included riskScore and clinical factors such as age and gender. 
To evaluate the precision of the nomogram, a calibration curve was 
drawn. The clinical utility of the nomogram was quantified and 
evaluated using the R package ‘ggDCA’, which produced the results of 
the decision curve analysis (DCA).

GM-related riskScore were determined using a LASSO machine 
learning model. The formula used to calculate the risk score was: 
riskScore = ∑iCoefficientsi × Expression level of characteristic genesi. 
Based on the median value of the risk score, AD patients were divided 
into two groups: high-risk and low-risk.

Immune microenvironment evaluation

The ssGSEA algorithm included in the R “GSVA” package was 
employed to estimate the immune infiltration levels and quantify the 
fractional enrichment or relative abundance of 28 immune cell 
subtypes in different risk groups. The Wilcoxon rank-sum test was 
used to compare the levels of immune scores between groups. In 
addition, immune scores for each group were calculated via the R 
package “ESTIMATE.” The difference in the expression levels of 60 
immunoregulatory genes (antigen presentation, cell adhesion, 
co-inhibitor, co-stimulator, ligand, and receptor) and between groups 
was further displayed using a heat map. The correlation between 28 
immune cell subtypes and the riskScore was elucidated by Pearson 
correlation analysis. This study was approved by the Institutional 
Animal Care and Use Committee of Zhengzhou University and 
conducted following the Guidelines for the Care and Use of 
Laboratory Animals.

Construction of a cellular model of AD in 
primary cortical neurons

Primary cortical neurons were cultured as described previously 
(Chen et al., 2019). Briefly, cerebral cortex samples were isolated from 
the brains of Sprague–Dawley rat embryos (16–18 days). Cell 
suspensions were plated on 6-well plates with poly-L-lysine and 
cultured in neurobasal medium (Gibco, USA) containing 2% B27 
(Gibco, USA), 0.5 mM glutamine, and 50 U/mL penicillin/
streptomycin, and neurons were cultured at 37°C and 5% CO2. The 
neurobasal medium was first refreshed after 12 h, and then half of the 
medium was refreshed every two days. In a 37°C, 5% CO2 incubator, 
neurons were cultured for 7–9 days.

Oligomeric Aβ1-42 was prepared according to previous research 
with minor modifications (Stine et al., 2011; Jayatunga et al., 2021). 
First, Aβ1-42 was dissolved in pre-cooled hexafluoroisopropanol 
(HFIP) at a concentration of 1 mM. The Aβ1-42-HFIP solution was 
incubated at room temperature for 30 min, followed by 10 min on ice. 
Then, the solution was dispensed into microcentrifuge tubes and 
placed in a fume hood to air dry overnight. The Aβ1-42 peptide films in 
tubes were dissolved in DMSO (Gibco, USA) and stored at −20°C 
before use. Next, pre-cooled F-12 (Gibco, USA) medium was added 
to each tube to maintain oligomerization conditions, and they were 

incubated at 4°C overnight for 24 h. After centrifugation and removal 
of the precipitate, the supernatant containing Aβ1-42 peptide was 
prepared for subsequent experiments. Finally, neurons were incubated 
with 20 umol/L Aβ1-42 oligomer at 37°C for 12 h, then cultured in a 
replaced neurobasal medium before harvest.

Lentivirus transfection

Before Aβ1-42 oligomer exposure, neurons in culture were 
transfected with rat PHF1 shRNA lentivirus or a non-targeting 
scramble shRNA lentivirus (Genechem, Shanghai, China) at an MOI 
of 5, as per the manufacturer’s guidelines. The PHF1 shRNA target 
sequences were as follows: 5′ -GATCAUUGAUTTTTTGGAAC-3′. 
Scrambled shRNA was used as the control, with sequences: 
5′-TGTGATGTCTCTCAT-3′. Post-transfection, neurons were 
processed for various experiments after 48 h. RT-qPCR was applied to 
confirm the knockdown efficiency. The experiment groups were 
named as Control, AD model (AD), AD + normal control scramble 
shRNA lentivirus (AD+ le-shNC), AD + PHF1 shRNA lentivirus 
(AD+Le-shRNA). All the following experiments in vitro were repeated 
at least three times.

Animals

All experiments involving animals were performed following 
approved guidelines and ethical approval from the Animal Care and 
Use Committee and according to the NIH Guidelines for the Care and 
Use of Laboratory Animals (NIH publication, 1996). Two-month-old 
Sprague Dawley (SD) male rats were housed three-per-cage in an 
animal lab under standard conditions (12-h light/dark cycle in a room 
at a temperature of 20–25°C) with access to food and water adlibitum.

Construction of an in vivo model of AD

To induce Alzheimer’s disease in the present study, beta-amyloid 
1–42 (Aβ1-42) was injected into the CA1 region of the dorsal 
hippocampus of Aβ rats using a stereotaxic device (RWD, China). To 
prepare the injection solution, 1 mg/mL of Aβ1-42 (Abcam, 
Cambridge, UK, Cat no. ab120301) was initially diluted with ice-cold 
1,1,1,3,3,3-hexafuoro-2-propanol (HFIP) and incubated at room 
temperature for at least 60 min with occasional vortexing. Next, the 
HFIP was removed using a SpeedVac, and the peptide flm was stored 
at−80°C. Ten for aggregation, the peptide was first resuspended in 
DMSO (5 mM), sterile phosphate buffer saline (PBS) was added to 
bring the peptide to a final concentration of 1 μg/μL, and the Aβ1-42 
peptide was incubated at 37°C for 72 h. To perform stereotaxic 
surgery, the animals were anesthetized with isofurane inhalation. 
Aβ1-42 suspension (1 μL/site) was injected into the CA1 region of the 
dorsal hippocampus of A-C, and A-Ex groups (A-4.2, L ± 3.0, 
V-2.0 mm) based on the Paxinos and Watson atlas by a Hamilton 
syringe attached to an infusion pump12. Moreover, isotonic saline 
solution was injected into the control animals.

Four weeks after the AβO injection, a PHF1 knockdown 
model was developed in AD rats to endorse the role of PHF1 in 
Alzheimer’s disease (AD). In this process, adenoviral vectors 
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containing short hairpin RNA (shRNA) targeting the rat PHF1 
gene (Ad-shPHF1), and scrambled negative control shRNA 
(Ad-shNC) were acquired from RiboBio (Guangzhou, China). For 
individual rats, about 3×10^10 plaque-forming units (PFU) of 
Ad-shPHF1, dissolved in 200 μL of normal saline, were 
administered via tail vein injection. This substance served as the 
treatment group’s remedy, while an equal quantity of Ad-shNC 
was assigned to the control group. On the 14th day post-injection, 
the efficiency of the knockout was assessed through quantitative 
real-time PCR (qRT-PCR).

Collection of brain samples

The rats were anesthetized with carbon dioxide and then 
decapitated. The brain was subsequently removed and washed with 
distilled water. Using an electric homogenizer, the whole brain was 
homogenized in bidistilled water.

Enzyme-linked immunosorbent assay 
(ELISA)

Rat brain glutamine (Gln), and inflammatory cytokines (IL-6, 
IL-10, IFN-γ and TNF-α) were measured by using ELISA kits from 
Cusabio (Wuhan, China).

Real-time RT-PCR analysis

Total RNA was extracted from cultured primary cortical neurons 
and rat brains using Trizol reagent (Life Technologies, USA), and then 
reverse-transcribed into complementary DNA using Revert Aid First 
Strand cDNA Synthesis Kit following the manufacturer’s instructions. 
The quantitative RT-PCR was performed with the ABI PRISM 7500 
real-time PCR system (Applied Biosystems, USA) using the SYBR 
Premix EX Taq (Takara, Japan). Primer sets were displayed as follows:

ATP13A4: 5′ -GTCAAGCCTGGTGGAAGAAT-3′ (forward) and 
5’-CTGATAACGAGACGCCAACAT-3′ (reverse);

PIK3C2A: 5’-GGAGGAGCAGTGAAGTTATCG-3′ (forward) 
and 5’-GGTATCTGGAAGCAGGTATGTT-3′ (reverse);

CD164: 5’-GCATCTCCCAACGTGACTGA-3′ (forward) and 
5’-GGCGTTGACACAGGAAACAC-3′(reverse);

PHF1: 5’-CCATCTTGTTCTCTACCATCTCAG-3′ (forward) and 
5’-CGGTCCTTGTGGCTGTTAAG-3′(reverse);

CSE2: 5’-TTGACTTCACTGAGGAGGAGAG-3′ (forward) and 
5’-CTGCTCATCGTGGTCCAATG-3′(reverse);

PDGFB: 5’-CTGCTACCTGCGTCTGGTC-3′ (forward) and 
5’-TGCTCGGGTCATGTTCAAGT-3′(reverse);

LCOR: 5’-CTGCCTTCCTCAACCTACAAC-3′ (forward) and 
5’-GTGTCTGAATCTTCCTCGTCTAAG-3′(reverse);

TMEM30A: 5’-TGCGTACTGCAGCTTTACCT-3′ (forward) and 
5’-TGGATTCTTTCCTCCCATCCA-3′(reverse);

PLXNA1: 5’-TCGAATCCGGGCCAAGTATG-3′ (forward) and 
5’-CAATCTCATCTGGCCGCTCT-3′(reverse).

The cycle threshold (CT) of the target gene was normalized to the 
CT value of β-actin, and the results were expressed as fold changes 
using the 2−ΔΔCT method to evaluate the relative quantification of 
mRNA expression.

Immunofluorescence staining

To ascertain the role of PHF1  in neurite outgrowth in AD, 
we  performed immunofluorescence staining to observe neurite 
outgrowth, as previously described (IL-10). At day 15, neurons were 
rinsed with PBS three times and fixed with 4% paraformaldehyde (pH 
7.4) for 15 min. Cells were then subjected to overnight incubation at 
4°C with the primary antibody: mouse anti-class III-β-Tubulin 
antibody (1400, Beyotime, China). Subsequently, the cells were 
washed three times with PBS and incubated with corresponding 
secondary antibodies (Dylight488 donkey anti-mouse IgG, 1:800, 
Jackson Immunoresearch, USA) for 2 h at room temperature. Nuclei 
were stained with Hoechst33342 (5 μg/mL, Sigma, USA). The slides 
were examined under a ZEISS LSM 780 confocal microscope (Carl 
Zeiss, Germany), and quantification was performed using the LSM 
Image Browser (V4.2.0.121) to assess the number and length of 
primary neurites originating directly from the soma.

Cell viability assay

To assess the degree of cell injury after PHF1 knockdown in the 
AD model. A Cell Counting Kit from Seven Sea Biotech, Shanghai, 
China was used to assess cell viability, with strict adherence to the 
manufacturer’s instructions. Briefly, 50 μL of CCK-8 solution was 
added to each 500 μL of medium in a 24-well plate and was incubated 
for 4 h at a temperature of 37°C. Absorbance was then measured at 
450 nm using an Infinite M200 microplate reader (TECAN).

LDH release assay

The degree of cell injury in each group was also assessed using the 
LDH-Cytotoxicity Colorimetric Assay Kit II (#K313-500, BioVision, 
USA), according to the manufacturer’s instructions. Briefly, 10 μL of 
medium per well was added to an optically clear 96-well plate. 100 μL 
of LDH Reaction Mix was then added to each well, mixed well, and 
left to react at room temperature for 30 min. Absorbance 
measurements were made at 450 nm using an Infinite M200 
microplate reader (TECAN).

Statistical analysis

The statistical analysis of this study was performed via R 4.1.0 
software. Differences between groups were compared by Wilcoxon, 
sum-rank test, or t-test. The correlation between two continuous variables 
was elucidated by Pearson correlation analysis. The ROC curve analysis 
was used to predict binary categorical variables. The value of p was 
adjusted for the false discovery rate (FDR) using the Benjamin-Hochberg 
method, and two-sided p < 0.05 were considered statistically significant.

Results

Analysis of GM at the level of single-cell

We first investigated the differences in glutamine metabolic 
activity of different cell types. A total of 34,738 filtered cells were 
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grouped into 12 cell clusters, including CD16+ NK cells, classical 
monocytes, megakaryocytes/platelets, memory B cells, NK cells, Naive 
B cells, non-classical monocytes, plasma cells, regulatory T cells, Tcm/
Naive cytotoxic T cells, Tcm/Naive helper T cells, Tem/Temra 
cytotoxic T cells, Tem/Trm cytotoxic T cells, and PDC (Figure 1A). 
The top 5 DEGs for each cell cluster were exhibited by a heat map 
(Figure  1B). Cell type fractions of each sample are shown in 
Figure 1C. The “UCell” algorithm was then applied to calculate the 
GM score for each cell subset, and the results demonstrated that AD 
samples had a higher GM score in particular cell subsets, particularly 
in the plasma cell, Tem/Effector helper T cells (LTB), and pDC 
(plasmacytoid dendritic cells) regions (Figures 1D–F). Subsequently, 
filtered cells in the AD group were divided into the high-glutamine 

group and the low-glutamine group based on the 75% quantile of the 
GM score (Figure 1G).

Intercellular communication analysis

To determine possible interactions between cells in low-glutamine 
and high-glutamine groups, CellChat analysis was performed. Larger 
interaction numbers and greater interaction strength were represented 
in the high-glutamine group (Figure  2A). Compared to the 
low-glutamine group, memory B cells, megakaryocytes/platelets, 
plasma cells, and pDC cells in the high-glutamine group showed 
greater interaction counts and interaction strengths than other cell 

FIGURE 1

Characteristic of GM at the single-cell level. (A) The UMAP plot of GSE181279 illustrated the distribution of 15 major cell clusters in each group. (B) The 
top five differential expressed genes per cell type were visualized with a heat map. (C) Cell type fraction of each sample in GSE181279. (D) Differences 
in GM score based on the UCell algorithm were presented via UMAP plots. (E) The violin diagram demonstrated the differences in GM scores between 
the AD and control groups. (F) The violin diagram exhibited the differences in GM score among each cell type. (G) UMAP plot demonstrated the 
difference in the distribution of high and low GM at the single-cell level in the AD group, bounded by the 75% quantile of the GM score.
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types. In the low-glutamine group, monocytes and pDC cells 
predominantly communicated with classical monocytes and 
regulatory T cells (Figure 2B). Next, the specific signaling pathways 
were further identified between the two groups. In the high-glutamine 
group, signaling pathways including MIF, RESISTIN, ANNEXIN, 
PARs, BAG, GALECTIN, BAFF, BTLA, VISFATIN, APRIL, CCL, 
OX40, WNT, GAS, and TRAIL were more active compared with the 
other group. Among them, BAFF, CCL, and APRIL exhibited 
particularly high activity. Interestingly, WNT, GAS, and TRAIL were 

active only in the high glutamine group. In addition, IL-16, CD70, 
CXCL, and TNF signal pathways were significantly more active in the 
low-glutamine group (Figure  2C). Furthermore, we  explored 
communication probabilities between cells in the high-glutamine 
group. We found that pDC and non-classical monocytes had great 
communication probabilities with other cells. In brief, except for 
plasma cells, pDC interacted with the majority of cells by up-regulating 
LGALS9-PTPRC/CD44/SORT1 signaling pathways, while pDC 
interacted with plasma cells and memory cells by binding TNFRSF13 

FIGURE 2

Intercellular communication differences between the high-glutamine and low-glutamine groups. (A,B) Charts with bars and circles depicted the 
variations between low-glutamine and high-glutamine groups in the number of interactions (left) or strength of interactions (right) in the network of 
cell–cell communication. Stronger interactions were represented by thicker lines and increased or decreased singling in the high-glutamine group 
when compared to the low-glutamine group was represented by red or blue colors, respectively. (C) Stack plots depicted the variations in intercellular 
singling networks between the high- and low-glutamine groups. Orange and green colors denote up-regulated signaling pathways in low- and high-
glutamine groups, respectively. The X-axis represented the relative enrichment degree of the signaling pathway. (D,E) Chord plots indicated the 
difference in singling molecules between each cell cluster in the high-glutamine group.
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and up-regulating TNFRSF13B/TNFRSF13C/TNFRSF13 (Figure 2D). 
pDC interacted with non-classical monocytes, plasma cells, Tem/Trm 
cytotoxic T cells, and pDC itself by down-regulating MIF-CD74-
CXCR4/CD74-CD44. Non-classical monocytes interacted with other 
cells by down-regulating LGALS9-CD4/CD44/PTPRC, IL-16-CD4, 
TNFRSF13B-TNFRSF17, and RETN-CAP1 (Figure 2E).

Investigation of GM-associated genes

To further investigate the relationship between GM and AD, 
we calculated the GM score for each simple in GSE 33000 utilizing the 
ssGSEA algorithm. Interestingly, we discovered that samples from the 

AD group had greater GM scores than those from the control group, 
which consisted of single-cell analysis results (Figure  3A). 
Subsequently, we  performed the WGCNA algorithm to further 
determine the regulatory pattern of GM and verified GM-related 
genes based on their expression profiles in GSE33000. In detail, a total 
of 10 modules containing 4,425 genes were finally identified, and the 
heatmap displayed the correlation between each module and the GM 
score (Figures 3B–E). Modules with high correlation coefficients (177 
genes in the pink module and 183 genes in the red module) were 
selected for subsequent analysis (Figure 3D). KEGG and GO analysis 
demonstrated that the 360 module-related genes were broadly 
involved in some human diseases, signaling pathways related to 
environmental information processing, organismal systems, and some 

FIGURE 3

Identification of GM-associated genes. (A) GM score established via the ssGSEA algorithm to compare differences in GM levels between the Control 
and AD groups in the GSE33000 dataset. (B) The selection of soft threshold power. (C) Dendrogram of co-expression module clustering. (D) The 
WGCNA analysis investigated the modules that were most closely related to the GM score. Scatter plots represented the module membership (pink or 
red) and gene significance of GM. (E) A representative heatmap of the correlations among 10 modules. (F) KEGG analysis of 360 genes from the pink 
and red modules. (G) GO analysis of 360 genes from the pink and red modules.
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metabolic pathways (Figure  3F). Moreover, the most significant 
enrichment functions were neurotransmitter secretion, cell–cell 
adhesion, neurotransmitter transport, neuron projection development 
(a biological process), calyx of Held, axon terminus, neuron projection 
terminus, glutamatergic synapse, distal axon (a cellular component), 
RNA polymerase ll transcription factor binding, and cation channel 
activity (a molecular function) (Figure 3G).

Selection of characteristic GM-associated 
genes via machine learning approaches

To determine potential markers for the diagnosis of AD, 
we  employed three machine learning algorithms to identify 
characteristic features associated with GM. First, based on the 

Boruta algorithms, a total of 68 important variables were chosen as 
candidates for further investigation (Figure  4A). LASSO and 
SVM-RFE were utilized to further fit into LASSO regression 
distinguished 22 GM-related genes with an optimal lambda value 
of 0.0258 (Figures 4B–D). Analysis of the ROC curve revealed that 
the AUC of the LASSO model based on 22 genes was 0.97 in the 
training set and 0.95 in the test set (Figure 4E). In addition, based 
on the SVM-RFE model, the combination of 27 genes exhibited the 
highest precision for predicting AD, with a reliable AUC value in 
the training set (0.962) and the test set (0.964) (Figures  4F,G). 
Ultimately, the Venn plot indicated that PLXNA1, CES2, 
TMEM30A, PIK3C2A, LCOR, PDGFB, ATP13A4, CD164, and 
PHF1 were determined as the distinct GM-related genes after 
intersecting the results of the Lasso and SVM-RFE approaches 
(Figure 4H).

FIGURE 4

Selection of features associated with GM. (A) The Boruta analysis validated 68 important variables as candidates. (B) Tuning feature selection in the 
LASSO model. The vertical coordinate is the value of the coefficients, the subscript is log (lambda), and the superscript is the number of non-zero 
coefficients in the model at this point. (C) LASSO coefficient profiles of the feature genes associated with GM. (D) The specific coefficient value of the 
22 genes associated with GM, is identified by the optimal lambda value. (E) The ROC curves and AUC values of the 22-gene-based model constructed 
by the LASSO algorithm in the training and testing cohorts. (F) SVM-RFE algorithm in the training and testing cohorts. (G) The ROC curves and AUC 
values of the 27-gene-based model constructed by the SVM-RFE algorithm in the training and testing cohorts. (H) Venn plot of feature genes selected 
by LASSO and SVM-RFE.
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Construction and validation of a diagnostic 
riskScore

A GM-related riskScore was established by using the following 
formula based on the corresponding LASSO model coefficients of 
the nine distinct genes: riskScore = (−7.424770887 × PLXNA1) + 
(−3.126593503 × CES2)+ (−2.200333626 × TMEM30A) + 

(−1.654918874 × PIK3C2A) + (0.403074115 × LCOR) + 
(0.418069564 × PDGFB) + (1.047735126 ATP13A4) + 
(3.209147766 × CD164) + (6.022106335 × PHF1). A ROC curve 
analysis was then used to compare the diagnostic accuracy of 
riskScore and clinical characteristics (age and gender) in predicting 
AD onset (Figures 5A–C). Compared to gender and age, riskScore 
showed higher AUC values in test, validation, and combined 

FIGURE 5

Construction and validation of a diagnostic riskScore. (A–C) The ROC curves illustrated the diagnostic efficacy of riskScore and typical clinical 
characteristics in the training cohort (A), the test cohort (B), and GSE33000 (C). (D) The ROC curves illustrated the diagnostic efficacy of riskScore and 
typical clinical indicators in GSE5281. (E) Construction of a predictive nomogram based on risk scores and clinical characteristics in GSE5281. 
(F) Calibration curve for the appraisal of the reliability of a predictive nomogram. (G) DCA showed the clinical benefit of the nomogram.
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cohorts, indicating its higher potential for the diagnosis of AD. To 
further validate the efficacy of riskScore, we selected another dataset 
(GSE5281) for further analysis. The AUC values of the ROC curve 
for GSE5281 were 0.700 for riskScore, 0.448 for age, and 0.429 for 
gender, indicating that the riskScore maintained its better predictive 
potential (Figure  5D). Moreover, we  constructed a nomogram 
consisting of clinical characteristics (age and gender) along with the 
riskScore for AD prediction, which also indicated that the riskScore 
was a superior predictor of AD progression compared to 
conventional clinical indicators (Figure  5E). We  also used a 
calibration curve to confirm the stability of the nomogram 
(Figure  5F). In addition, the DCA curves of the nomogram 
demonstrated that AD patients may benefit from the nomogram-
based clinical diagnosis (Figure 5G).

Construction and molecular characteristic 
of a risk model

To further elucidate the GM-related mechanisms in AD, 
we constructed a risk model based on the riskScore. The heat map and 
violin plot illustrated the varying expression patterns of nine 
GM-related genes in the low- and high-risk groups. CD164, PHF1, 
CES2, and PDGFB displayed higher levels of expression in the high-
risk group, while TMEM30A and PLXNA1 showed significantly 
higher expression in the low-risk group. The expression of ATP13A4, 
PIK3C2A, and LCOR did not differ between the two groups 
(Figure 6A). The Sankey plot illustrated the distribution of age and 
gender in AD patients in two risk groups. We further concluded that 
in the high-risk group, the majority of patients were older than 

FIGURE 6

The construction and molecular characteristics of a risk model. (A) A heatmap displayed the expression profiles of 9 distinct genes associated with GM 
glutamine in low- and high-risk AD patients age, gender, and riskScore were exhibited as patient annotations. (B) The Sankey diagram showed the 
relationships among riskScore, age, and gender. (C) GSVA showed differences in biological function between high- and low-risk groups. (D) GSEA 
showed the top five upregulated pathways in the high-risk group. (E) GSEA showed the top five pathways down-regulated in the high-risk group.

https://doi.org/10.3389/fnagi.2023.1275793
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Guo et al. 10.3389/fnagi.2023.1275793

Frontiers in Aging Neuroscience 12 frontiersin.org

75 years; however, there was no gender difference. Interestingly, in the 
low-risk group, AD patients were predominantly male, but there was 
no age discrepancy (Figure 6B).

We then annotated the enriched biological functions and selected 
significant enrichment pathways using GSVA and GSEA, respectively. 
In the high-risk group, immune response-related biological functions, 
including macrophage activation, immune response (T-helper 17 type 
immune response, adaptive immune response), chronic inflammatory 
response, cytokine production (IL-6, IL-8), leukocyte migration, 
CD4+ alpha-beta T cell activation, and immunoglobulin production, 
were highly enriched. The biological functions of the low-risk group 
were mainly involved in intracellular protein transport, organelle 
synthesis (endoplasmic reticulum organization, Golgi organization), 
and cytoskeleton-dependent intracellular transport (Figure  6C). 
According to GSEA, the low-risk group was primarily influenced by 
pathways related to the TCA cycle, DNA replication, nucleotide 
excision repair, oxidative phosphorylation, and RNA degradation 
(Figure 6E), while the high-risk group was particularly impacted by 
autoimmune thyroid disease, cytokine-cytokine receptor interactions, 
the JAK–STAT signaling pathway, and natural killer cell-mediated 
cytotoxicity (Figure 6D).

Immune characteristics analysis

To demonstrate the landscape of infiltrating immune cells in the 
high- and low-risk groups, we first compared the differences in 28 
immune cell subtypes and calculated the scores of 28 immune cells by 
the ssGSEA algorithm. A majority of immune cell subtypes, including 
activated B cells, activated dendritic cells, central memory CD4 T cells, 

central memory CD8 T cells, effector memory CD8 T cells, immature 
B cells, MDSC, memory B cells, natural killer cells, natural killer T 
cells, neutrophils, regulatory T cells, T follicular helper cells, and type 
17 T helper cells, presented higher infiltration in the high-risk group 
compared with the other group. In contrast, the low-risk group got 
higher immune cell scores in CD56 bright natural killer cells, effector 
memory CD4 T cells, monocytes, and type 2 T helper cells 
(Figures 7A,B). Besides, the differences in immune modulators in the 
high- and low-risk groups were assessed to further elucidate the 
differences in immune characteristics of AD patients. The high-risk 
group showed significantly higher levels of immune genes associated 
with antigen presentation (HLA-DPA1, HLA-DQB1, HLA-DRA, and 
MICB), cell adhesion (ICAM1 and ITGB2), co-inhibitor (CD276, 
PDCD1LG2, and SLAMF7), co-stimulator (CD80), ligand (CD70, 
CXCL10, IL1B, and TNF), receptor (CD27 and CD40), and other 
immune-modulators (HMGB1 and PRF1) as depicted in 
Figure  7C. Immune scores from each risk group were compared, 
reflecting a qualitative assessment of immunological features. Patients 
in the high-risk group obtained higher immune scores than those in 
the low-risk group (Figure 7D). Furthermore, correlation analysis 
revealed that heightened riskScores were positively connected with the 
entirety of immune cell types and demonstrated higher levels of 
immune infiltration (Figure 7E).

Validation of characteristic genes in vitro

To further investigate the expression landscape of nine 
characteristic genes related to GM, we analyzed their expression levels 
in the GSE33000 and GSE5281 datasets. LCOR, PDGFE, CD164, and 

FIGURE 7

Immunological features of the high- and low-risk groups in AD patients. (A) The heat map showed the degree of infiltration of 24 immune cell 
subtypes in high- and low-risk groups based on the ssGSEA algorithm. (B) A split-half violin plot showed differences in 24 immune cell scores between 
high- and low-risk groups. (C) A heat map depicted the differences in immune-modulators between high- and low-risk groups. (D) A comparison of 
the immune score between high- and low-risk groups. (E) The interaction between the risk score and the 24 immune cell subtypes.
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PHF1 were substantially elevated in both GSE33000 and GSE5281 
(Figures 8A,B). Additionally, we established an in vitro AD model of 
rat primary cortical neurons and analyzed the expression levels of 
these genes in both the model and control groups using the RT-qPCR 
technique. The majority of the nine characteristic genes showed 
different levels of expression. The expression levels of LCOR, CD164, 
and PHF1 were notably higher in AD cortical neurons, consistent with 
the results of the datasets (Figure 8C).

To further verify the role of PHF1 in AD, a PHF1 knockdown 
model was constructed in vitro. Compared to other feature genes 
identified in this study, it appeared that PHF1 played a crucial role 
within the risk scoring system due to obtaining the highest specific 
coefficient value. Consequently, an in vitro PHF1-knockdown model 
of AD was established. To verify the model’s performance, RT-qPCR 
was applied. In the Ad-shPHF1 group, the expression level of PHF1 
was nearly four times lower than that in the AD+Ad-shNC group, 
affirming the model’s knockdown efficiency (Supplementary Figure S1). 
Immunofluorescence staining was employed to determine the mean 

length of the longest neurites and the average count of primary 
neurites (Figure 9A). Neurons in the AD model exhibited shorter 
neurite lengths and fewer primary neurites compared to the control 
group. However, PHF1 knockdown in AD neurons led to increased 
neurite length and higher numbers of primary neurites, suggesting a 
potential protective function against neurite loss during AD 
progression (Figures 9B,C). Furthermore, PHF1 knockdown in AD 
neurons indicated higher cell viability and reduced levels of LDH 
release compared to standard AD neurons (Figures 9D,E).

Detection of glutamine and inflammatory 
factors after PHF1 knockdown in vivo

An in vivo animal model of AD was established to investigate the role 
of PHF1 in glutamine metabolism and inflammation in AD. RT-qPCR 
was used to assess the performance of the knockdown model. The 
expression level of PHF1 in the AD+Ad-shPHF1 group was approximately 

FIGURE 8

External validation of characteristic genes. (A) Violin plots showed the relative expression levels of characteristic genes in GSE33000. (B) Violin plots 
depicting the relative expression levels of characteristic genes in GSE5281. (C) Box plots reveal the expressional differences of characteristic genes 
based on RT-qPCR analysis in vitro. *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.001.

https://doi.org/10.3389/fnagi.2023.1275793
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Guo et al. 10.3389/fnagi.2023.1275793

Frontiers in Aging Neuroscience 14 frontiersin.org

three times lower than in the AD+Ad-shNC group, providing evidence 
of the efficiency of this knockdown model (Figure 10A). The level of 
glutamine in the brains of AD rats was lower compared to the levels in the 

control and vehicle groups. Intriguingly, AD rats with PHF1 knockdown 
exhibited higher glutamine levels compared to the AD group and 
AD+Ad-shNC group (Figure  10B). Moreover, elevated levels of 

FIGURE 9

Detection of neurites and cell injury after PHF1 knockdown in vitro. (A) Immunofluorescence demonstrated the growth of neurites in each group. The 
scale bar  =  20  μm. (B) Average Length of the longest neurite of neurons in each group. (C) Average number of primary neurites per cell in each group. 
(D) CCK-8 cell viability assay after PHF1 knockdown. (E) LDH release assay after PHF1 knockdown. *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.001.
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pro-inflammatory factors (IL-6, IFN-γ, and TNF-α) were observed in the 
brains of AD subjects compared to the control group. Conversely, 
knockdown of PHF1 resulted in a reduction of these pro-inflammatory 
factors in the AD rat brain. Furthermore, the AD+Ad-shPHF1 group 
exhibited higher levels of the anti-inflammatory cytokine IL-10 compared 
to the AD group (Figure 10C).

Discussion

Due to the diversity of AD, patients exhibit varying therapeutic 
efficacy and clinical outcomes, and there has been minimal progress 
in personalizing AD treatment. Therefore, identifying and 
understanding the heterogeneity of AD would aid in comprehending 

FIGURE 10

Detection of glutamine and inflammatory factors after PHF1 knockdown in AD rats. (A) The relative expression levels of PHF1 in the control, vehicle, 
AD, AD+Ad-shNC, and AD+Ad-shPHF1 group. (B) Glutamine levels in the brains of animals in each group. (C) Levels of inflammatory factors in the 
brains of animals in each group (n  =  6 in each group). *p  <  0.05, **p  <  0.01, ***p  <  0.001, ****p  <  0.001.
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the pathology of this debilitating disease and developing more 
effective therapies. Recent studies have shown that the metabolism of 
certain amino acids in plasma, including branched-chain amino acids, 
glutamate, glutamine, and taurine, is linked to AD (Horgusluoglu 
et  al., 2022). Specifically, glutamine is associated with AD, and 
impaired GM has been identified as a pathological process that occurs 
before the appearance of amyloid plaques in AD mouse models 
(Olabarria et al., 2011; Andersen et al., 2017). Previous studies have 
shown that could worsen cognitive impairment in patients with AD 
(Hashimoto et al., 2016; van der Lee et al., 2018). Other research has 
demonstrated that glutamine possesses neuroprotective properties 
and may serve as a promising target for the prevention of AD 
(Andersen et al., 2021, 2022; Sun et al., 2022, 2023). Therefore, it may 
be beneficial to explore potential modifications to glutamine in future 
research aimed at preventing this debilitating condition.

In this study, we  performed single-cell analysis and bulk 
RNA-seq-based transcriptional analysis based on 118 metabolic 
regulators related to GM. We  calculated GM scores using two 
methods, Ucell and ssGSEA and found that AD patients had higher 
GM scores than the control group in both analyses. This suggests 
that there is an abnormal glutamate-glutamine cycle during the 
pathological process of AD. Recent research has shown that the ratio 
of glutamate to glutamine is decreased in the blood plasma of 
patients with AD and amnestic moderate cognitive impairment 
(Wang et al., 2014). Interestingly, we found the level of glutamine 
was lower in the AD rat’s brain, suggesting that the level of GM may 
increase in AD. Moreover, previous studies have established a 
correlation between neurological diseases and increased glutamine 
activity, which leads to the neurotoxicity of glutamate (Li et al., 2017; 
Le et  al., 2019). Based on both our own and previous research 
findings, we can hypothesize that an excessive production rate of 
glutamine may contribute to the development and progression of 
AD. However, more research is required to validate this assumption. 
Therefore, we  developed a riskScore for AD based on nine 
characteristic genes related to GM and divided patients into high- 
and low-risk groups. Our results showed that the GM-related risk 
score had significantly higher diagnostic accuracy for AD compared 
to the classical clinical assessment criteria of age and gender. Among 
these nine GM-related genes, ATP13A4, PIK3C2A, CD164, PHF1, 
CES2, and PDGFB were found to be overexpressed in the high-risk 
group and are promising targets for AD prediction and treatment. 
ATP13A4 is a calcium transporter that operates within the 
endoplasmic reticulum (Vallipuram et al., 2010). Over-expression of 
ATP13A4 results in increased intracellular calcium levels (Biamino 
et al., 2016). Studies on families have revealed that ATP13A4 gene 
variants are associated with both schizophrenia and autism. 
PIK3C2A is a member of the phosphoinositide 3-kinase (PI3K) 
family and may be a risk factor for chronic stable angina and acute 
coronary syndrome (ACS) (Soliman et al., 2023). CD164 has been 
identified as a dependable marker for the specification of 
Hematopoietic Stem/Progenitor cells (Pellin et al., 2019) and as a 
potential therapeutic target for Sézary syndrome (Wysocka et al., 
2014). Furthermore, PHF1, a crucial factor in epigenetic regulation 
and genome maintenance, has been discovered as a novel reader for 
histone H4R3 symmetric dimethylation. Its interaction with the 
PRMT5-WDR77-CRL4B complex leads to the induction of 
carcinogenesis (Liu et  al., 2018). CES2 is an important enzyme 

involved in the metabolism of endogenous esters, ester-containing 
drugs, and environmental toxicants. A recent study has shown that 
CES2 can stimulate the expression of hepatocyte nuclear factor 4 
(HNF4) protein, which helps to maintain the progenitor subtype of 
pancreatic ductal adenocarcinoma. This discovery makes CES2 a 
potential new target for the treatment of pancreatic cancer (Chen 
et  al., 2022). PDGFB plays a crucial role in recruiting pericytes 
expressing platelet-derived growth factor receptor beta (PDGFRβ) 
to blood vessels. In two animal models, the lack of PDGFB in 
platelets resulted in increased hypoxia and epithelial-mesenchymal 
transition in initial tumors, elevated levels of circulating tumor cells, 
and increased spontaneous metastasis to the liver or lungs (Chen 
et al., 2022). Furthermore, the expression of LCOR, TMEM30A, and 
PLXNA1 was significantly higher in the low-risk group, indicating 
their potential involvement in slowing the progression of AD as 
neuroprotective factors. LCOR has been identified as a potential 
target to improve the efficiency of immune checkpoint blockade in 
triple-negative breast cancer. This is done by improving the tumor 
antigen processing/presentation machinery, independent of the IFN 
pathway. Additionally, inhibition of the MAPK signaling pathway 
through downregulating PLXNA1 has been found to reduce the 
proliferation, migration, invasion, and metastasis of esophageal 
squamous cell carcinoma (Wang et al., 2019). However, it should 
be noted that the relationship between the eight hallmark genes and 
the clinical AD progression has not been documented yet. It is 
noteworthy that TMEM30A is involved in various functions such as 
phospholipid transport, positive regulation of transport, and 
aminophospholipid flippase activity facilitation. According to a 
recent study, TMEM30A, which acts as a lipid flippase with 
P4-ATPase, has the potential to be a therapeutic target for AD by 
modulating vesicular trafficking through the asymmetric 
distribution of phospholipids (Kaneshiro et al., 2022). Additionally, 
our findings show that the high-risk group is primarily enriched in 
immune response-related functions and pathways, while the 
low-risk group is associated with intracellular substance synthesis 
and transport. The results of this study indicate that utilizing 
riskScore based on nine GM-related characteristic genes is a more 
effective method for predicting the progression of AD compared to 
using traditional clinical characteristics. This was demonstrated 
through the use of ROC curves, nomograms, calibration curves, and 
DCA. Overall, our findings suggest that the upregulation of six 
glutamine metabolism-related genes in the high-risk group may 
increase the risk of developing AD, whereas the upregulation of 
three other GM-related genes in the low-risk group exhibited a 
protective effect against AD.

The dysregulation of the immune system is a significant 
characteristic of AD. Numerous studies have identified pathological 
abnormalities in central and peripheral immune responses that 
fluctuate over time (Bettcher et  al., 2021). However, despite the 
progress, the precise mechanisms involved in immunotherapy for 
treating AD remain poorly understood and highly controversial. 
Glutamine, acting as a primary source of energy for specific 
immune cells, may have a unique effect on immunological 
activation (Krzywkowski et al., 2001). Targeting the regulation of 
the gut microbiota (GM) has potential as an immunotherapy 
approach for various types of tumors (de Jonge et  al., 2020; 
Udumula et al., 2021; Boyer et al., 2022). although its impact on the 

https://doi.org/10.3389/fnagi.2023.1275793
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Guo et al. 10.3389/fnagi.2023.1275793

Frontiers in Aging Neuroscience 17 frontiersin.org

immune microenvironment of AD remains unclear and requires 
further investigation. Our study revealed that immune cells, such 
as plasmacytoid dendritic cells (pDCs), plasma cells, and T effector/
memory helper T cells (LTB), showed significantly high GM scores 
at the single-cell level in AD. Moreover, plasma and pDC cells 
exhibited high interaction intensity and number with other immune 
cells, indicating their vital role in the GM-related immune 
microenvironment in AD. By investigating the ligand-receptor 
interactions, we  found that immune cells with high GM scores 
exhibited greater intercellular communication through LGALS9-
PTPRC/CD44/SORT1 and TNFRSF13B/TNFRSF13C-TNFRSF13 
pathways. Conversely, MIF-CD74-CXCR4/CD74-CD44 pathways 
showed suppression. Intriguingly, we  found that pDCs played a 
crucial role in the intercellular communication between immune 
cells in GM-associated processes. pDCs have been identified as a 
unique IFN-I-producing cell type, and their potential role in 
excessive cytokine production in autoimmune diseases has been 
proposed (Reizis, 2019). Throughout the progression of AD, the 
accumulation of danger-associated molecular patterns (DAMPs), 
such as beta-amyloid and hyperphosphorylated tau, continuously 
stimulate microglia, resulting in their prolonged activation. Chronic 
activation of microglia results in the secretion of an excess of 
pro-inflammatory cytokines, which, in turn, regulate further 
microglial responses (Lau et  al., 2021). Targeting the cytokine 
context in the brain has been a long-standing objective in AD 
research. However, the modulation of cytokine signaling in AD to 
produce beneficial effects is still uncertain. Further research is 
needed to fully understand the complex relationship between GM, 
pDCs, and cytokines. Our results suggest that pDCs heavily 
involved in GM in AD. We employed single-cell methods to screen 
for immune cells and their associated signaling pathways that 
influence glutamine metabolism throughout the onset and 
progression of AD. Consequently, this discovery reveals novel and 
extremely promising targets for future prevention and 
treatment of AD.

Subsequently, our study examined the distribution of 28 immune 
cell subtypes and various immune modulators in the AD 
immunological microenvironment of high- and low-risk Gln score 
groups. We discovered that immune cell infiltration and immune 
scores were substantially higher in the high-risk group. Furthermore, 
co-stimulators, cell adhesion molecules, co-inhibitors, ligands, and 
receptor-associated immune genes were more prominently expressed 
in the high-risk group, indicating a more pronounced immune 
response. As a result of increased immunological scores, immune cell 
infiltration, and immune modulators, we identified a high-risk group 
with an immune phenotype that could greatly benefit from 
immunotherapy. In contrast, the low-risk group is characterized by a 
focus on intracellular substance synthesis and transport. This research 
highlights that the established risk model not only allows for the 
implementation of immunotherapy but also serves as a vital tool for 
personalized treatment and medicine in patients with AD.

The accumulation of phosphorylated tau is a prominent 
pathological characteristic of AD as it leads to synaptic impairment, 
neuronal dysfunction, as well as the formation of neurofibrillary 
tangles (Wang and Mandelkow, 2016). According to a recent study, it 
was demonstrated that PHF1 immunoreactive pTau primarily 
interacts with proteins within neurons in patients who have advanced 

AD (Drummond et al., 2020). In our study, PHF1 was identified as a 
crucial gene feature in the GM-related risk-scoring system. 
Suppression of PHF1 expression could alleviate neurite damage and 
neuronal injury in neurons affected by AD. In vivo, down-regulation 
of PHF1 in AD models reduces GM metabolism levels and modulates 
the immunoinflammatory response in the brain. Our findings suggest 
that PHF1 may play a crucial role in immunoinflammatory responses 
associated with GM in AD. Therefore, targeting PHF1 holds promise 
as a therapeutic approach for AD.

However, this study is limited by its retrospective nature and the 
small sample size obtained from public databases. Further validation 
of the results is required through multicenter prospective studies. 
Furthermore, to determine the clinical utility of AD patients with 
varying molecular subtypes and riskScores, it is recommended to 
consider larger sample sizes that provide more prognostic and 
therapeutic information.

Conclusion

In this study, we  performed a comprehensive analysis of the 
expression patterns of GM in AD using both single-cell and bulk 
transcriptomic approaches. Our findings revealed that GM displays 
heightened activity in AD patients, correlating with excessive immune 
activation. Moreover, we identified nine GM-associated characteristic 
genes and developed a diagnostic and risk prediction model for 
glutamine metabolism-related conditions. These insights into 
GM-associated heterogeneity in AD hold significant implications for 
devising individualized treatments for patients with this disease.
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