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Introduction: Alzheimer’s disease is a prevalent disease with a heavy global 
burden and is suggested to be a metabolic disease in the brain in recent years. The 
metabolome is considered to be the most promising phenotype which reflects 
changes in genetic, transcript, and protein profiles as well as environmental 
effects. Aiming to obtain a comprehensive understanding and convenient 
diagnosis of MCI and AD from another perspective, researchers are working on 
AD metabolomics. Urine is more convenient which could reflect the change 
of disease at an earlier stage. Thus, we  conducted a cross-sectional study to 
investigate novel diagnostic panels.

Methods: We first enrolled participants from China-Japan Friendship Hospital 
from April 2022 to November 2022, collected urine samples and conducted 
an LC–MS/MS analysis. In parallel, clinical data were collected and clinical 
examinations were performed. After statistical and bioinformatics analyzes, 
significant risk factors and differential urinary metabolites were determined. 
We attempt to investigate diagnostic panels based on machine learning including 
LASSO and SVM.

Results: Fifty-seven AD patients, 43 MCI patients and 62 CN subjects were 
enrolled. A total of 2,140 metabolites were identified among which 125 
significantly differed between the AD and CN groups, including 46 upregulated 
ones and 79 downregulated ones. In parallel, there were 93 significant differential 
metabolites between the MCI and CN groups, including 23 upregulated ones 
and 70 downregulated ones. AD diagnostic panel (30 metabolites+ age  +  APOE) 
achieved an AUC of 0.9575  in the test set while MCI diagnostic panel (45 
metabolites+ age  +  APOE) achieved an AUC of 0.7333  in the test set. Atropine, 
S-Methyl-L-cysteine-S-oxide, D-Mannose 6-phosphate (M6P), Spiculisporic 
Acid, N-Acetyl-L-methionine, 13,14-dihydro-15-keto-tetranor Prostaglandin D2, 
Pyridoxal 5’-Phosphate (PLP) and 17(S)-HpDHA were considered valuable for 
both AD and MCI diagnosis and defined as hub metabolites. Besides, diagnostic 
metabolites were weakly correlated with cognitive functions.

Discussion: In conclusion, the procedure is convenient, non-invasive, and useful 
for diagnosis, which could assist physicians in differentiating AD and MCI from 
CN. Atropine, M6P and PLP were evidence-based hub metabolites in AD.
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1 Introduction

Dementia poses a significant global public health challenge. In 
2019, the worldwide prevalence of dementia was 57.4 million 
individuals, with projections indicating a rise to 152.8 million by 2050 
(GBD 2019 Dementia Forecasting Collaborators, 2022). Among the 
different types of dementia, Alzheimer’s disease (AD) is the most 
prevalent, accounting for approximately 60 to 80% of cases 
(Alzheimers Dement, 2020). In China’s older population aged 60 and 
above, it is estimated that 15.07 million individuals are living with 
dementia, while 9.83 million have specifically been diagnosed with 
AD (Jia et al., 2020). These data highlight the substantial burden on 
China’s society and economy that cannot be  overlooked. Mild 
cognitive impairment (MCI), considered as a pre-dementia stage with 
clinical symptoms, represents a continuum of cognitive decline where 
individuals experience mild cognitive deficits without requiring 
assistance for daily activities. Early identification of MCI can serve as 
an indication of increased risk for developing AD, and early 
comprehensive interventions hold the potential to delay or prevent the 
progression from MCI to dementia (Langa and Levine, 2014).

Recently, studies have revealed that several pathophysiological 
processes associated with insulin resistance are common to both AD 
and diabetes mellitus (Kandimalla et al., 2017; Hamze et al., 2022; 
Michailidis et al., 2022). Amylin, tau protein, and beta-amyloid may 
gather in the brains of people who suffered type 2 diabetes mellitus 
and AD (Michailidis et  al., 2022). Based on the evidence, many 
scholars suggested that AD is type 3 diabetes (Kandimalla et al., 2017; 
Nguyen et al., 2020; Hamze et al., 2022; Michailidis et al., 2022). The 
underlying cause of amyloid proteinopathy and its related 
neurodegeneration in AD is considered as metabolism dysfunction 
(Poddar et al., 2021). In other words, AD is a metabolic disease in the 
brain. Thus, identifying metabolic alterations during AD disease 
trajectory and their connection to clinical phenotypes contributed to 
a deep understanding of AD and further provided a powerful basis for 
drug and biomarker discovery (Toledo et al., 2017).

Many studies have been conducted on the metabolome, a 
collection of small-molecule chemical elements involved in 
metabolism, to identify and predict biomarkers for disease, and 
further, for the discovery of active drivers of biological processes 
(Rinschen et al., 2019). The metabolome is thought to be the most 
promising phenotype (Schrimpe-Rutledge et al., 2016) which reflects 
alterations in gene, transcript, and protein profiles and environmental 
effects (Wilkins and Trushina, 2017). In AD application, CSF 
(Kaddurah-Daouk et  al., 2013; Muguruma et  al., 2018) or blood 
(Wang et al., 2014; Tynkkynen et al., 2018) metabolomics revealed 
several diagnostic panels and involved pathways. However, 
homeostatic processes might mitigate alterations in CSF and blood 
brought on by brain disorders. Urine, non-invasive and readily 
available bio-fluid, is not dependent on homeostatic systems, which 
can reflect a lot of variations that could indicate how the body is 

functioning (Wu and Gao, 2015). The probable application of urinary 
biomarkers for brain diseases is usually disregarded. Actually, urine 
could be applicated as biomarkers for brain diseases (An and Gao, 
2015) and neurodegenerative diseases (Seol et al., 2020), including 
AD. The role of urinary metabolomics remained to be illustrated.

In this study, we initially enrolled AD patients, MCI patients 
and cognitive normal (CN) participants. Then we collected urine 
samples and the urine were undergone an ultra-high-performance 
liquid chromatography coupled with mass spectrometry (UHPLC–
MS/MS) test. We aim to identify novel diagnostic panels for early 
diagnosis of MCI and AD based on urine metabolomics and 
machine learning and provide a basis for the discovery of the active 
role of metabolites in AD. The study protocol was approved by the 
China-Japan Friendship Hospital ethics committee and institutions 
(Ethics ID: 2020-31-Y06-32). Consent forms were obtained from 
all participants.

2 Methods

2.1 Subjects enrollment

A total of 162 participants, over 50 years old, including 57 AD 
patients, 43 MCI patients and 62 CN subjects were included in this 
cross-sectional study. All participants were enrolled in China-Japan 
Friendship Hospital from April 2022 to November 2022. 
Apolipoprotein E (APOE) genotype testing, a battery of cognitive 
tests, and medical history gathering were all performed on each 
participant. The majority of participants underwent quantitative 
electroencephalography (qEEG) and Magnetic Resonance 
Imaging (MRI).

AD is clinically diagnosed with the 2011 National Institute on 
Aging-Alzheimer’s Association (NIA-AA) criteria (McKhann et al., 
2011). MCI is also defined by the 2011 NIA-AA diagnostic criteria 
(Albert et al., 2011). CN controls were those who performed normally 
on the standardized neuropsychological tests and with or without 
cognitive complaints or concerns during the structured interview.

Listed below are exclusion criteria: (1) Cognitive dysfunction 
caused by severe psychiatric disorders or mental retardation, (2) 
Cognitive decline resulting from other nervous diseases, such as 
trauma, stroke, tumor, Parkinsonism, encephalitis or epilepsy or other 
types of dementia, such as vascular dementia (VaD), frontotemporal 
dementia (FTD), and Lewy body dementia (LBD), (3) Cognitive 
decline resulting from diseases of other systems such as severe anemia 
and thyroid disorders, (4) A history of malignant tumor, severe 
diseases, or other conditions affecting the urinary system, (5) A refusal 
to participate during neuropsychological testing; or incomplete 
clinical data.

The neuropsychological test battery included measures of global 
cognition such as Mini-Mental State Examination (MMSE) and 
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Montreal Cognitive Assessment (MoCA) and cognitive performance 
in the domains of memory, executive function, attention, language 
and visuospatial ability. Activity of Daily Living Scale (ADL) was used 
for accessing the function ability during daily life. The specific scales 
have been applied in clinical practice and published in previous 
articles from our team (Qiao et al., 2022).

2.2 Metabolites extraction

The urine samples (200 μL) were placed in the centrifuge tubes 
and re-suspended with prechilled 80% methanol by well vortex. The 
samples were then centrifuged at 15,000 g for 20 min at 4°C after being 
incubated on ice for 5 min. A portion of the supernatant was diluted 
with LC–MS grade water to a final concentration that contained 53% 
methanol. The samples were then moved to a brand-new centrifuge 
tube and centrifuged there for 20 min at a speed of 15,000 g at 4°C. The 
supernatant was then added to the analysis of the LC–MS/MS system 
(Want et al., 2006; Barri and Dragsted, 2013).

2.3 UHPLC–MS/MS analysis

In Novogene Co., Ltd. (Beijing, China), UHPLC–MS/MS 
analyzes were carried out utilizing a Vanquish UHPLC system 
(Thermo Fisher, Germany) paired with an Orbitrap Q Exactive™HF 
mass spectrometer (Thermo Fisher, Germany). A 17-min linear 
gradient was used to inject samples onto a HypesilGoldcolumn (100 
× 2.1 mm, 1.9 ) at a flow rate of 0.2 mL/min. Eluents A (0.1% formic 
acid (FA) in water) and B (methanol) were used in the positive 
polarity mode. Eluents A (5 mM ammonium acetate, pH 9.0) and B 
(Methanol) were used in the negative polarity mode. The following 
settings were made for the solvent gradient: 2% B, 1.5 min; 2–85% 
B, 3 min; 85–100% B, 10 min; 100–2% B, 10.1 min; 2% B, 12 min. 
With a spray voltage of 3.5 kV, capillary temperature of 320°C, 
sheath gas flow rate of 35 psi, aux gas flow rate of 10 L/min, S-lens 
RF level of 60, and aux gas heater temperature of 350°C, the 
QExactive™HF mass spectrometer was operated in positive/
negative polarity mode.

2.4 Data processing and metabolite 
identification

Peak alignment, peak selection, and quantification for each 
metabolite were carried out using Compound Discoverer 3.1 (CD3.1, 
Thermo Fisher) to handle the raw data files produced by UHPLC–MS/
MS. The following primary parameters were set: 0.2 min for the 
retention time tolerance; 5 ppm for actual mass tolerance; 30% for the 
signal intensity tolerance; 3 for the signal/noise ratio; and minimum 
intensity, etc. Peak intensities were then normalized to the total 
spectral intensity. The molecular formula was predicted using the 
normalized data based on additive ions, molecular ion peaks, and 
fragment ions. The peaks were then compared with the MassList, 
mzVault, and mzCloud databases to generate accurate qualitative and 
relative quantitative findings. When data were not normally 
distributed, standardize using the following method to produce 
relative peak areas: sample raw quantitation value/(The sum of sample 

metabolite quantitation value/The sum of QC1 sample metabolite 
quantitation value); Finally, the findings of the relative quantification 
and metabolite identification were determined after molecules with 
relative peak areas in QC samples with CVs more than 30% were 
eliminated. The Kyoto Encyclopedia of Genes and Genomes (KEGG)1, 
Human Metabolome Database (HMDB),2 and Lipid metabolites and 
pathways strategy (LIPIDMaps)3 databases were used to annotate 
these metabolites.

2.5 Statistical analysis and bioinformatics 
analysis

The statistical software R (version 3.4.3) and Python (version 
2.7.6) were used to conduct the statistical analysis. Partial least 
squares discriminant analysis (PLS-DA) were performed at metaX 
(Wen et  al., 2017). We  used t-test to determine the statistical 
significance (p-value). The metabolites with Variable Importance in 
the Projection (VIP) > 1 and value of p<0.05 and fold change 
(FC) ≥ 1.2 or FC ≤ 0.833 were regarded as differential metabolites. 
The functions of these metabolites and metabolic pathways were 
researched using the KEGG database. SPSS 23.0 was used for 
statistical analysis. The Shapiro–Wilk test was used to examine the 
normality of quantitative data. Mean (x ± s) was used for the 
description of normal data while non-normal data used median (P25, 
P75). Analysis of Variance (ANOVA) was used for normal data mean 
comparison while the Kruskal-Wallis H test was utilized for 
non-normal data distribution comparison. For post hoc comparisons, 
value of ps were Bonferroni-corrected. Besides, Pearson’s chi-square 
test or Fisher’s exact probability were used for comparision of the 
proportions of categorical variables. Statistical significance was 
defined as a two-tailed value of p<0.05.

2.6 Machine learning

Machine learning was utilized to identify the optimal multivariate 
signatures, which took both metabolites and demographic data (age 
and APOE ε4 status) as input parameters, in order to discriminate AD 
from CN and MCI from CN. The classifier was made up of feature 
selection and classifiers (Shi et al., 2019). The dataset was separated 
into a training set (0.7) and a test set (0.3). The “n” top input variables 
with the lowest mean square error (MSE) that best distinguished AD 
or MCI diagnostic groups were chosen using the least absolute 
shrinkage and selection operator (LASSO). Support vector machine 
(SVM) classifiers were constructed in order to anticipate the outcome 
under 10-fold cross-validation on top of these “n” features. The kernel 
functions of linear, polynomial, radial, and sigmoid were contrasted. 
When evaluating the model in the test set, accuracy and area under 
the curve (AUC) (Receiver Operating Characteristic, ROC curve) 
were applied to assess the diagnostic value.

1 https://www.genome.jp/kegg/pathway.html

2 https://hmdb.ca/metabolites

3 http://www.lipidmaps.org/
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3 Results

3.1 Metabolites identification and 
differential metabolites

Basic information and clinical characteristics of enrolled 
participants were included in Supplementary material. A total of 2,140 
metabolites were identified. Compared to the CN group, significantly 
differential metabolites were filtered in the AD group and MCI group 
by setting VIP > 1.0, FC > 1.2 or < 0.833, and value of p<0.5. The 
expression of the differential metabolites in AD group was displayed 
as a volcano plot and the top  10 regulated metabolites either 
upregulated or downregulated were displayed in a stem plot 
(Figures 1A,B) while the expression of the differential metabolites in 
MCI group was shown in Figures 1C,D. There were 125 significantly 
differential metabolites between the AD and CN groups, including 46 
upregulated ones and 79 downregulated ones. In parallel, there were 
93 significantly differential metabolites between the MCI and CN 
groups, including 23 upregulated ones and 70 downregulated ones. 23 
metabolites were significantly regulated in both AD and MCI group, 

including 6 upregulated ones and 17 downregulated ones. Atropine 
was the most upregulated metabolite in both AD and MCI group 
while riboflavin-5-phosphate and N1-isopropyl-2-(phenylthio)
benzamide was the most downregulated metabolite in AD and MCI, 
respectively. All differential metabolites were shown in a heatmap in 
Supplementary Figure S1. Z-scores of the top  30 differential 
metabolites were shown in Supplementary Figure S2.

3.2 Correlation between metabolites

Among the top 20 differential metabolites ranged by value of p, 
many metabolites were correlated with each other, most positively. A 
strong correlation (r > 0.7) between metabolites was shown in the chord 
diagram (Figure  2). In AD-CN group, robinetin was found to 
be positively correlated with 1,7-bis(4-hydroxyphenyl) heptan-3-one, 
4-hexyloxyaniline was found to be  positively correlated with 
6,7,8-trimethoxy-2-[3-(trifluoromethyl) phenyl]-4H-3,1-benzoxazin-
4-one and desmethylcitalopram was found to be positively correlated 
with 2-[(3S)-1-(3-Methoxybenzyl)-3-pyrrolidinyl]-1,3-benzothiazole. 

FIGURE 1

Volcano plots of differential metabolites and stem plots of the top 20 differential metabolites ranged by fold change. (A) Volcano plot showed the 
distribution of all metabolites between AD and CN. (B) Stem plot of top 20 differential metabolites in AD-CN group. (C) Volcano plot showed the 
distribution of all metabolites between MCI and CN. (D) Stem plot of top 20 differential metabolites in MCI-CN group. Red indicates upregulation and 
blue indicates downregulation. The size of the circle indicates the VIP value.
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In MCI-CN group, 3-hydroxydecanoic acid, decanoic acid, undecanoic 
acid and N-(p-Coumaroyl) serotonin were found to be  positively 
correlated with each other. Decanoic acid, N-(p-Coumaroyl) serotonin 
and capric acid were also found to be positively correlated with each 
other. There was also strong positive relationship between metabolites 
which could not be categorized. The overall correlation heatmap was 
shown in Supplementary Figure S3 when the red indicated a positive 
relationship and the blue indicated a negative relationship.

3.3 Enrichment results of KEGG analysis

According to KEGG enrichment analysis results, caffeine 
metabolism was enriched in AD-CN group (p < 0.05). In parallel, 

vitamin B6 metabolism and fructose and mannose metabolism 
pathway were enriched in MCI-CN group (p < 0.05). The relative 
pathways were shown in Supplementary Figure S4. The metabolic 
network showed the relationship among compounds, pathways, 
modules, enzymes and reactions to facilitate the presentation of the 
overall metabolic response. In AD-CN group, 32 compounds were 
mapped with the KEGG database while 17 compounds were 
differential metabolites as indicated by green squares. Neuroactive 
ligand-receptor interaction, galactose metabolism, dopaminergic 
synapse and other 8 metabolism pathways were enriched as shown in 
Figure 3A. In MCI-CN group, 29 compounds were mapped with the 
KEGG database while 10 compounds were differential metabolites as 
indicated by green squares. Degradation of flavonoids and vitamin B6 
metabolism, and other 4 metabolism pathways were enriched as 

FIGURE 2

Chord plots showing the relationship between the top 20 differential metabolites ranged by correlation p-value. (A) Correlation between top 20 
differential metabolites in AD-CN group. (B) Correlation between top 20 differential metabolites in MCI-CN group. The red line indicates a positive 
correlation. The width of the line indicates the absolute value of the correlation coefficient. The size of the circle indicates log2 fold change. The colors 
of the circles indicate the classification of metabolites.
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shown in Figure 3B. Antigen processing and presentation, vitamin 
digestion and absorption and lysosome were enriched in both AD-CN 
and MCI-CN group.

3.4 Identification of novel diagnostic panel

Based on previous analysis, we extracted differential metabolites 
plus age and APOE ε4 status to construct the LASSO model. Based on 
LASSO results, we built SVM classifiers with 10-fold cross-validation 
to investigate the ideal multivariate signatures that distinguished AD 
from CN. After training in training sets, we compared the results of 
test sets using different kernel functions in SVM. For AD-CN model, 
30 metabolites, age and APOE ε4 status were identified when MSE 
reached minimum with the value of lambda (min) equaling 0.03614 
(Figure 4A). The linear kernel function achieved the highest predictive 
value with an accuracy of 0.9143  in AD-CN group. Figures  4B,C 
showed the ROC curves in training set and test set in AD-CN group. 
Similarly, for MCI-CN model, 45 metabolites, age and APOE ε4 status 
were identified when MSE reached minimum with the value of 
lambda (min) equaling to 0.02197 (Figure 4D). Linear kernel function 
achieved the highest predictive value with an accuracy of 0.6452 in 
MCI-CN group while Figures  4E,F showed the ROC curves in 
MCI-CN group. The optimal model achieved an AUC of 0.9575 in 
AD-CN group and an AUC of 0.7333 in MCI-CN group in test sets. 
The specific metabolites included in the diagnostic panel were shown 
in Supplementary Table S3. The evaluation of diagnostic models was 
shown in Supplementary Table S4.

Atropine, S-Methyl-L-cysteine-S-oxide, D-Mannose 6-phosphate 
(M6P), Spiculisporic Acid, N-Acetyl-L-methionine, 

13,14-dihydro-15-keto-tetranor Prostaglandin D2, Pyridoxal 
5’-Phosphate (PLP) and 17(S)-HpDHA were considered valuable for 
both AD and MCI diagnosis. They were also differential metabolites 
for both AD-CN and MCI-CN group and were defined as hub 
metabolites. The boxplots showed the log2 transformed quantitative 
value (Figure 5).

3.5 Relationship among hub metabolites 
and cognitive functions

Hub metabolites were found to be correlated with cognitive tests, 
although most weakly (Figure 6). Significant labels were shown on the 
dots. Among 8 diagnostic metabolites, atropine, M6P and N-Acetyl-
L-methionine were significantly correlated with more than half of 
cognitive tests while S-Methyl-L-cysteine-S-oxide, 13,14-dihydro-15-
keto-tetranor Prostaglandin D2, PLP and 17(S)-HpDHA were 
significantly correlated with less than half cognitive tests. Nevertheless, 
none of the correlations between Spiculisporic Acid and cognitive 
domains reach significance. The relative ρ and p were shown in 
Supplementary Table S5 and scatter dot plots were shown in 
Supplementary Figures S5–S11.

4 Discussion

In this research, we first enrolled 57 AD patients, 43 MCI patients 
and 62 CN subjects from China-Japan Friendship Hospital from April 
2022 to November 2022, collected urine samples and conducted an 
UHPLC–MS/MS analysis. Age and APOE 4 status were notable risk 

FIGURE 3

KEGG regulation map enriched by differential metabolites. (A) KEGG regulation map in AD-CN group. (B) KEGG regulation map in MCI-CN group. The 
red circle indicates a metabolism pathway. The purple circle indicates a module of a class of metabolites. The yellow circle indicates an enzyme related 
to a certain substance. The blue circle indicates interactions between chemical substances. The green circle indicates background substance in a 
metabolism pathway. The green square indicates input differential metabolites.
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variables, in line with earlier findings. Most clinical indicators varied 
across the groups. Then, we reported the identified urine metabolites 
and conducted differential analysis. After filtering out differential 
metabolites, correlation analysis between metabolites and kegg 
enrichment were performed. Next, we attempted to figure out novel 
diagnostic panels based on LASSO and SVM models. AD diagnostic 
panel (30 metabolites+ age + APOE) achieved an AUC of 0.9575 in the 
test set while MCI diagnostic panel (45 metabolites+ age + APOE) 
achieved an AUC of 0.7333 in the test set. Diagnostic metabolites that 
appeared in both AD-CN panel and MCI-CN panel were defined as 

hub metabolites. Finally, we conducted a correlation analysis among 
hub metabolites and clinical indicators and found that diagnostic 
metabolites were weakly correlated with cognitive functions.

In previously published articles, several studies reported the role 
of urine metabolites in AD. 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF, 
prostaglandin E2, neuroprostanes, isoprostanes, isofurans (Garcia-
Blanco et  al., 2018), γ-aminobutyric acid, glutamate (Zhou et  al., 
2020), xanthurenic acid, kynurenic acid, serotonin, 
5-hydroxyindoleacetic acid and tryptophan (Whiley et al., 2021) were 
found to differentially expressed in disease group and control group. 

FIGURE 4

Diagnostic panel selection and ROC curve constructed by LASSO and SVM. (A) LASSO model for variable selection in AD-CN group. (B) ROC curve for 
AD diagnosis in the training set. (C) ROC curve for AD diagnosis in the test set. (D) LASSO model for variable selection in MCI-CN group. (E) ROC curve 
for MCI diagnosis in the training set. (F) ROC curve for MCI diagnosis in the test set.
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Moreover, several studies performed diagnostic tests, either. Kurbatova 
et al. (2020) built a random forests model with 1,542 metabolites along 
with age, sex and study site. The model was trained in AD and CN 
samples with an AUC of 0.99 and tested in stable and converted MCI 
samples which resulted in an AUC of 0.88. Zhang et  al. (2022) 
identified 19 differential metabolites as diagnostic panel and achieved 
an AUC of 0.976. Similar to our methods, Yilmaz et al. (2020) used 
LASSO and SVM as well as logistic regression to construct diagnostic 
models (AD-CN, AD-MCI, MCI-CN) and achieved 3 AUC more than 
0.9. Capryloylglycine (Zhang et al., 2022), caffeine and paraxanthine 
(Watanabe et al., 2021) were also found to be downregulated in AD 
samples which were consistent with our results. Unfortunately, our 
results failed to match with previous diagnostic metabolites.

Among hub metabolites, atropine, a cholinergic antagonist, could 
interfere with cholinergic dysfunction in AD (Ma et  al., 2013; 
Muramatsu et  al., 2019; Alcantara-Gonzalez et  al., 2021). M6P 
glycosylation is an important post-translational modification and is 
involved in several other biological processes. Aberrant M6P 
modifications were implicated in AD (Huang et al., 2019) which might 
be related to excretion values. PLP, the active form of vitamin B6, was 

involved in neurotransmitter biosynthesis which was related to AD 
(Parra et al., 2018) and was suggested to improve learning and memory 
capabilities in Aβ25–35-injected mice (Choi et  al., 2022). However, 
we failed to find studies investigating the role of S-Methyl-L-cysteine-
S-oxide, Spiculisporic Acid, N-Acetyl-L-methionine, 13,14-dihydro-
15-keto-tetranor Prostaglandin D2, or 17(S)-HpDHA in AD.

As for the KEGG pathway, a protective role of caffeine in AD was 
suggested (Larsson et al., 2022). Caffeine metabolism pathway was 
reported to be associated with AD (Watanabe et al., 2021; Dong et al., 
2022; Siokas et al., 2022) which was consistent with our result. In 
healthy older adults, lower vitamin B6, as measured by PLP, was 
associated with a higher risk of accelerated cognitive decline (Hughes 
et al., 2017). In MCI patients, supplementing B-vitamin could reduce 
whole brain atrophy rate (Wu et  al., 2021) or enhance cognitive 
function, as indicated by MMSE (Lee et al., 2016). Besides, vitamin B6 
intake was positively associated with BNT in MCI patients (Kim et al., 
2014). The role of vitamin B6 supported the significance of vitamin B6 
metabolism pathway in MCI-CN group.

Our findings should be  released with concern due to several 
limitations. On one side, the patients came from a single site. 

FIGURE 5

Boxplot of hub metabolites intersected by two diagnostic panels constructed by LASSO model; *p  <  0.05; **p  <  0.01; ***p  <  0.001.

FIGURE 6

Correlation heatmap between diagnostic metabolites and cognition tests. Red indicates a positive correlation. Blue indicates a negative correlation; 
*p  <  0.05; **p  <  0.01; ***p  <  0.001.
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We  lacked real-world research from multiple hospitals and 
communities. Whether the findings can apply to other populations, 
more research is required. In another, no in vivo or in vitro experiments 
were conducted to investigate the function of metabolites and 
mechanisms of the diagnostic metabolites described in this study that 
participate in AD pathophysiological processes. Besides, the metabolic 
profiling was associated with dietary pattern (Nik Mohd Fakhruddin 
et al., 2020) or other factors. We failed to match all the confounding 
factors. Thus, some of these results may be coincidental.

In conclusion, we  performed proteomics analysis based on 
UHPLC–MS/MS using urine samples from 57 AD patients, 43 MCI 
patients and 62 CN subjects. After multiple traditional statistical 
analyzes and bioinformatics analyzes, we  identified a novel AD 
diagnostic panel that included 30 metabolites, age and APOE ε4 and 
an MCI diagnostic panel that included 45 metabolites, age and APOE 
ε4. The urine diagnostic panel could help clinicians differentiate AD 
and MCI from CN, the method of which is convenient, non-invasive, 
and valuable for diagnosis. Atropine, M6P and PLP were evidence-
based hub metabolites in AD while the role of S-Methyl-L-cysteine-
S-oxide, Spiculisporic Acid, N-Acetyl-L-methionine, 13,14-dihydro-
15-keto-tetranor Prostaglandin D2, or 17(S)-HpDHA in AD need to 
be investigated.
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