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Purpose: Studies have shown a close relationship between gut microbiota (GM) 
and Alzheimer’s disease (AD). However, the causal relationship between them 
remains unclear.

Methods: We conducted a genome-wide association study (GWAS) using publicly 
available summary statistics data for GM and AD. We  extracted independent 
genetic loci significantly associated with GM relative abundances as instrumental 
variables based on predefined thresholds (p  <  1*e−5). The inverse variance-
weighted (IVW) method was primarily used for causal relationship assessment. 
Additional analyses, including MR-Egger, weighted median, simple mode, and 
weighted mode, were performed as supplementary analyses.

Results: IVW analysis revealed significant correlations between certain microbial 
taxa and the risk of AD. Higher abundances of Actinobacteria at the class level, 
phylum. Actinobacteria, class. Deltaproteobacteria, order. Desulfovibrionales, 
genus. Oscillospira, and genus. Ruminococcaceae UCG004 (p  <  0.048) was 
found to be positively associated with an elevated risk of AD. However, within 
the genus-level taxa, Ruminococcus1 (p  =  0.030) demonstrated a protective 
effect on lowering the risk of AD. In addition, to ensure the robustness of the 
findings, we employed Cochrane’s Q test and leave-one-out analysis for quality 
assessment, while the stability and reliability of the results were validated through 
MR-Egger intercept test, MR-PRESSO global test, and sensitivity analysis.

Conclusion: This study provided a comprehensive analysis of the causal 
relationship between 211 GM taxa and AD. It discerned distinct GM taxa linked 
to the susceptibility of AD, thereby providing novel perspectives on the genetic 
mechanisms governing AD via the GM. Additionally, these discoveries held promise 
as valuable biomarkers, enabling the identification of potential therapeutic targets 
and guiding forthcoming AD investigations.
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1. Background

The gut microbiota (GM) is a diverse microbial community in the 
human body, primarily composed of bacteria, viruses, protozoa, 
archaea, and fungi. It weighs 1.5 kg, with bacteria being the dominant 
group. About 70% of the microbiota resides in the gastrointestinal 
tract, forming a symbiotic relationship with the host (Zhao, 2013). 
Factors such as delivery mode, diet, and disease influence its 
composition (Conlon and Bird, 2014). GM plays a crucial role in 
nutrient metabolism and produces neuroactive compounds (Morais 
et al., 2021). Imbalances in the GM are associated with diseases like 
inflammatory bowel disease and diabetes (Lavelle and Sokol, 2020; 
Iatcu et  al., 2021). The gut-brain axis facilitates bidirectional 
communication between the microbiota and the central nervous 
system (Morais et al., 2021). The GM is essential for overall health and 
is implicated in neurological disorders like Alzheimer’s disease (AD) 
(Jiang et al., 2017).

AD is a common neurodegenerative disorder characterized by 
cognitive impairment, predominantly affecting the elderly population. 
The onset of the disease is insidious and slow, with a progressive 
worsening of symptoms (Lane et al., 2018). The latest data from the 
Centers for Disease Control and Prevention (CDC) published in 
Alzheimer’s Association (2022) indicated an increasing mortality rate 
with affecting nearly 6.5 million people for AD in the United States 
(Alzheimer’s Association, 2022). This places a significant psychological 
and economic burden on families of individuals with AD and exerts 
a substantial economic pressure on society as a whole. The typical 
histopathological changes observed in AD involve abnormal 
accumulation of extracellular β-amyloid protein (Aβ) forming senile 
plaques and intracellular hyperphosphorylated tau protein leading to 
the formation of neurofibrillary tangles (NFTs) within neurons 
(d'Errico and Meyer-Luehmann, 2020). The exact pathogenic 
mechanisms of AD remain unclear; however, research has 
demonstrated notable differences in the GM of AD patients compared 
to healthy individuals, indicating significant alterations in 
its composition.

Research indicated that the GM and its metabolites induce the 
release of downstream inflammatory factors by activating the nuclear 
factor-κB (NF-κB) signaling pathway and nucleotide-binding domain 
and leucine-rich repeat containing protein 3 (NLRP3) inflammasome 
formation, leading to the generation of neuroinflammation, ultimately 
damaging neurons and affecting the onset of AD (Sun et al., 2022). In 
the context of the cholinergic hypothesis, GM alterations, specifically 
a decrease in lactobacilli in the gut, could result in a corresponding 
reduction in acetylcholine (Ach) levels. The decrease in Ach leaded to 
dysregulation of cholinergic neurotransmitter function in the cortex, 
which forms the basis of cognitive impairment in AD patients (Hira 
et al., 2019). AD had been reported to be associated with infections 
caused by herpes simplex virus, spirochetes, Chlamydia pneumoniae, 
and fungi (Piekut et al., 2022). Moreover, several gut bacterial strains, 
including Escherichia coli, Bacillus subtilis, Salmonella enterica, 
Enterococcus faecalis, Mycobacterium tuberculosis, and Staphylococcus 
aureus, are capable of producing abundant amyloid-like proteins. The 
abnormal accumulation and folding of these proteins contribute to the 
pathological changes involved in AD, particularly the formation of 
amyloid-beta (Aβ) plaques (Megur et  al., 2020). Preliminary 
observations in the amyloid precursor protein/presenilin 1 (APP/PS1) 
transgenic mouse model of AD had revealed an increase in 

Rikenellaceae and a decrease in Allobaculum and Akkermansia species 
(Stephenson et al., 2018). Establishing research on the relationship 
between GM and AD is necessary because different study designs can 
lead to different conclusions, and the human gastrointestinal tract is 
influenced by various factors, including diet and rest. Therefore, there 
may be a causation between them.

The objective of this study is to investigate the causal relationship 
between GM and AD by utilizing two-sample Mendelian 
randomization (TSMR) analysis. Mendelian randomization (MR) is 
a statistical method used in epidemiological inference to elucidate 
causal relationships between exposures and outcomes (Bowden and 
Holmes, 2019). It employs genetic variations associated with the 
exposure as instrumental variables (IVs) (Woolf et al., 2022). MR is 
an epidemiological investigative tool that assesses causal relationships 
between exposure factors and outcomes by leveraging genetic 
variations. Unlike observational studies, genetic variations form at 
birth and remain stable, rendering the associations derived from MR 
more robust. MR enhances etiological research efficiency, gaining 
prominence in post-genetic era epidemiology. It’s easier than costly 
clinical trials, utilizing genome-wide data to study millions of genetic 
influences on traits, potentially uncovering complex disease causes. 
MR analysis has been widely applied in various disease studies, 
thanks to the significant advancements in large-scale genome-wide 
association studies (GWAS) (Xu et al., 2022; Gibson et al., 2023; Jiang 
et al., 2023). However, the mechanisms underlying the application of 
MR analysis to unravel the causal relationship between GM and AD 
have not been thoroughly investigated. Previous observational 
studies have laid the groundwork by establishing general associations 
and shedding some light on the intricate relationship between GM 
and AD. Nevertheless, a more profound understanding of this 
connection and the underlying regulatory mechanisms within 
specific genetic contexts demands more comprehensive investigation. 
Notably, this study marks a pioneering effort in the field, presenting 
the inaugural MR analysis focused on discerning the causal 
relationship between GM and AD. This innovative approach was 
propelled by the ongoing quest to unravel the multifaceted 
mechanisms driving AD, with the ultimate goal of unraveling the 
intricate interplay between GM and the disease. By establishing a 
causal connection, our study introduces new theoretical 
underpinnings that could pave the way for future intervention 
strategies targeting AD.

2. Materials and methods

2.1. Study design

The exposure factor was defined as the presence of 211 GM taxa, 
while the outcome was represented by AD in this study. Causal 
relationship between GM and AD was assessed through a two-sample 
MR analysis. Initially, GWAS data associated with GM and AD were 
obtained. The MR analysis was conducted based on three classical 
assumptions: (1) the selected IVs were strongly associated with the 
exposure factor, (2) the IVs were independent of any confounding 
factors, and (3) the IVs influenced the outcome solely through the 
pathway of GM exposure. Furthermore, adherence to the 
STROBE-MR guidelines was ensured throughout the study 
(Skrivankova et al., 2021).
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2.2. Sources of exposure data

Genetic data of the GM was obtained from the latest large-scale 
GWAS meta-analysis data (MiBioGen consortium),1 including 18,340 
individuals from 24 cohorts. This GWAS study examined 211 
transgenic taxa (from phylum to genus) and 122,110 associated single 
nucleotide polymorphism (SNPs) (Kurilshikov et al., 2021). The GM 
composition was identified using three different variable regions of the 
16S rRNA gene (V4, V3-V4, and V1-V2) and genetic variations 
influencing the relative abundance of microbial taxa were identified 
through the localization of microbiome quantitative trait loci 
(mbQTL). Given that all statistical analyses relied on existing publicly 
available summary data, no additional ethical approval was required. 
Figure 1 illustrated the entire flow chat of this study.

1 www.mibiogen.org, accessed on 2 May 2023.

2.3. Outcome data collection

We obtained summary statistics data for late-onset AD from the 
eighth edition of the FinnGen consortium’s publicly available 
GWAS.2 This prospective cohort study included a total of 342,499 
participants as of March 2023. Using the IEU database with 
“Alzheimer’s disease” as the keyword for searching, we identified 15 
relevant GWAS studies and compiled relevant information. 
We selected one GWAS study with a more recent publication year 
and a larger number of SNPs, which included 63,926 AD patients 
and 10,528,610 controls (Kunkle et al., 2019). The diagnosis of AD 
was based on the International Classification of Diseases code 
(ICD-10: F00). For more information with FinnGen on the above, 
please refer to https://r8risteys.finngen.fi/.

2 https://www.finngen.fi/en, id: ieu-b-2, accessed on 2 May 2023.

FIGURE 1

Flow chat of this work.
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2.4. Instrumental variables identification

Based on the previous investigations, the objective of this work 
was to evaluate the causal association between GM and IVs 
(p < 1*e−5). The methodology employed in this study was consistent 
with previous investigations (VanderWeele et al., 2014). The specific 
screening steps conducted were as follows: Relevant SNPs were 
extracted using the TwoSampleMR package in R software (version 
4.2.0); SNPs were subjected for clustering analysis to mitigate the 
impact of linkage disequilibrium (LD). The LD differentiation ability 
of MR surpassed other methods. SNPs with LD status were identified 
using two parameters: LD clustering algorithm (r2) and kb values. 
SNPs with an r2 threshold of <0.001 and a window size of 10,000 kb 
were selected; Echo SNPs were excluded from the analysis; The 
remaining SNPs were derived from the initial SNP pool after 
undergoing value of p filtering, chain imbalance removal, and echo 
sequence elimination; The PhenoScanner database3 was utilized to 
retrieve significant results from GWAS data regarding genomic 
correlations (p < 1*e−5) (Yavorska and Burgess, 2017). Furthermore, 
confounding factors were accounted for excluding; To avoid bias from 
weak instruments, the IVs strength for each bacterial taxon was 
estimated using the F-statistic (Burgess and Thompson, 2011). With 
the increase of F-statistic value, the deviation will decrease. The 
formula of F-statistic is R2 (N–2)/(1–R2), see detail in 
Supplementary Table 1.

2.5. Statistical and sensitivity analysis

In this study, we utilized the TSMR method to assess the potential 
causal relationship between GM and AD. The primary analytical 
methods used were the inverse variance weighted (IVW), MR-Egger, 
Weighted median (WM), Simple Mode, and Weighted Mode methods. 
Robust analysis was conducted to avoid the influence of outliers. 
Cochran’s Q and I2 values were computed to assess heterogeneity 
among the estimated SNP effects. IVs with p-values less than 0.05 were 
considered heterogeneous (Kennedy et al., 2020).

The pleiotropic analysis is as follows: the IVW method obtains the 
overall effect estimate by weighted averaging of all IVs, assuming no 
horizontal pleiotropy bias. The WM method estimates the causal 
relationship by taking the median of the genetic IVs, which is more 
robust and mitigates the influence of outliers. The MR-Egger intercept 
test is used to assess the horizontal pleiotropy and SNP-level 
pleiotropy. If the intercept term in the MR-Egger intercept test is 
statistically significant, it indicates substantial horizontal pleiotropy in 
the MR analysis (Bowden et al., 2015).

The Mendelian Randomization Pleiotropy Residual Sum and 
Outlier (MR-PRESSO) method was used to used to validate the results 
of the IVW model and correct for the influence of outliers (Verbanck 
et al., 2018). We performed leave-one-out analysis by systematically 
removing each SNP and repeating the IVW analysis to assess the 
consistency of the causal effect driven by individual SNPs (Cai et al., 
2022). These methods require adherence to the underlying 

3 http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner, accessed 

on May 2, 2023.

assumptions and employ various analytical techniques to correct for 
various biases and confounders, including the removal of genetic 
variants that exhibit pleiotropy based on biological or statistical 
evidence. Statistical analysis was performed using R Studio and 
relevant packages, and the results were labeled as p < 0.001. Funnel 
plots and forest plots were constructed for visualizing the presence of 
horizontal pleiotropy in the MR analysis (Cai et al., 2022).

3. Result

3.1. Screening selection of IVs and MR 
analysis outcomes

According to the aforementioned steps, we selected a total of 2,506 
SNPs as IVs for 211 GM taxa. By applying screening criteria based on 
p < 1*e−5 and LD analysis thresholds, a total of 7 GM taxa were 
identified. This study is not influenced by weak instrument bias 
(F-statistic value ranged from = 15.91 ~ 114.65). After matching the 
data from GM and AD, a final set of 88 SNPs were included in the 
TSMR study. Considering the potential confounding factors, we used 
Phenoscanner to search for SNPs associated with the aforementioned 
confounders, but found no significant associations.

3.2. MR analysis between GM and AD

Based on the results from five different methods of MR, as shown 
in Figure 2; Table 1, at least one method observed 7 causal relationships 
between the GM features (1 phylum, 2 class, 1 order, and 3 genus) and 
AD traits. The results of the MR analysis using the IVW method with 
a random-effects model were as follows: an increased relative 
abundance of the Actinobacteria class (OR = 1.210, 95%CI: 1.067–
1.373, p = 0.003), Actinobacter phylum (OR = 1.215, 95%CI: 1.038–
1.422, p = 0.015), Deltaproteobacteria class (OR = 1.195, 95%CI: 1.006–
1.420, p = 0.043), Desulfovibrionales order (OR = 1.210, 95%CI: 1.016–
1.442, p = 0.032), Oscillospira genus (OR = 1.204, 95%CI: 1.021–1.418, 
p = 0.027), and Ruminococcaceae UCG004 genus (OR = 1.146, 95%CI: 
1.001–1.311, p = 0.048) was found to be correlated with an elevated 
risk of AD. However, within the genus-level taxa, Ruminococcus1 
genus (OR = 0.841, 95%CI: 0.719–0.983, p = 0.030) demonstrated a 
protective effect on lowing the risk of AD.

3.3. Sensitivity analysis

In these seven causal associations, all I2 values in the Cochran’s Q 
heterogeneity test are less than 50%, and all p-values are greater than 
0.05, indicating no evidence of heterogeneity (Table 2). Furthermore, 
according to the results of the MR-Egger regression intercept analysis, 
there is no significant directional pleiotropy in each taxa (p > 0.05). 
The MR-PRESSO global analysis demonstrates no evidence of 
horizontal pleiotropy (global test p > 0.05). The leave-one-out plot 
does not show any significant influence on the overall results when 
removing any individual SNP, confirming the credibility of the MR 
results (Supplementary Figure 1). The funnel plot demonstrates a 
relatively symmetrical distribution of the various instrumental 
variables with minimal bias (Supplementary Figure 2). As shown in 
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the scatter plot, the calculated directions are consistent for all taxa, 
except for the Actinobacteria class and Ruminococcus1 genus 
(Supplementary Figure 3).

4. Discussion

In this study, we utilized Mendelian Randomization (MR) design 
to explore the causal relationship between gut microbiota (GM) and 
the risk of Alzheimer’s disease (AD). Genetic predictions indicated a 
positive correlation between Actinobacteria, Bacteroidetes, 
Desulfobacterales, Oscillospira, and Ruminococcaceae UCG004 and the 
risk of AD. Furthermore, we identified a protective causal effect of 
Ruminococcus1 on the pathogenesis of AD. These findings were 
consistently demonstrated through a series of sensitivity and quality 
control analyses.

In contemporary research, it has been discovered that the human 
gastrointestinal tract harbors over 4 trillion microorganisms, with a 
total gene count approximately 150 times greater than the number of 

genes in the human genome. Among these microorganisms, 99% are 
bacteria collectively known as the GM (Adak and Khan, 2019). There 
is mounting evidence suggesting a close correlation between the 
ecological imbalance of the GM and the intestinal mucosal immune 
system. Particularly in the context of AD research, it has been 
observed that AD is often associated with dysbiosis or alterations in 
the GM, making the concept of the gut-brain axis a prominent focus 
in this field.

The GM is involved in the pathogenesis of AD through various 
mechanisms. Simultaneously, the pathological conditions of AD may 
lead to changes in the GM (Angelucci et  al., 2019). Therapeutic 
interventions such as probiotic supplementation and fecal microbiota 
transplantation (FMT) can improve AD by modulating the GM (Kim 
et  al., 2020; Imbimbo and Watling, 2021). Probiotics, serving as 
psychobiotics, hold potential in regulating gastrointestinal and neural 
homeostasis. Probiotics and prebiotics, as dietary supplements, 
maintain health through enhancement of immunity, intestinal 
mucosal adhesion, and metabolite transport. Research indicates that 
probiotic interventions alter the fecal microbiota composition in 

FIGURE 2

Forest plot visualizing the results of MR methods to analyze the causal relationship between GM and the risk of AD. GM, Gut Microbiota; AD, 
Alzheimer’s Disease; IVs, Instrumental variables; MR, Mendelian randomization; GWAS, Genome-wide association study; SNP, Single nucleotide 
polymorphism; LD, Linkage disequilibrium; IVW, Inverse variance weighted.
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individuals with AD, thereby sustaining gut-brain axis equilibrium 
(Abraham et al., 2019; Den et al., 2020). Studies reveal that probiotics 
significantly alleviate depressive emotions and improve mood related 
to various neurological disorders, including AD (Cheng et al., 2019). 
Probiotics enhance cognitive function in AD patients by reducing 
levels of inflammatory and oxidative biomarkers. A clinical trial has 
demonstrated that the novel anti-AD drug, GV-971, can restore GM 
and alleviate brain neuroinflammation (Bonfili et  al., 2021). 
Furthermore, another study suggests that substantial utilization of 

probiotics can enhance cognitive abilities in AD mice (Xiao et al., 
2021). Current research advancements underscore the potential of 
probiotics in modulating gut-brain axis disorders, offering promising 
new therapeutic avenues for individuals with AD.

Fecal Microbiota Transplantation (FMT) is a therapeutic approach 
wherein donor fecal material is transferred to a recipient to modulate 
the composition of the intestinal microbiota, aimed at treating 
diseases. Although FMT has demonstrated success in various 
gastrointestinal disorders, notably in cases of Clostridium difficile 

TABLE 1 Genetic connection for GM vs. AD by five methods (p  < 1*e−5).

Exposure 
group

GM NSNP MR methods SE p value MR effect

OR 95% LCI 95% UCI

Class

Actinobacteria 17

Inverse variance weighted 0.064 0.003 1.210 1.067 1.373

MR Egger 0.209 0.754 0.936 0.621 1.409

Simple mode 0.157 0.189 1.240 0.912 1.685

Weighted median 0.091 0.012 1.258 1.052 1.504

Weighted mode 0.137 0.120 1.252 0.957 1.636

Deltaproteobacteria 13

Inverse variance weighted 0.088 0.043 1.195 1.006 1.420

MR Egger 0.432 0.326 1.560 0.670 3.632

Simple mode 0.233 0.747 1.080 0.684 1.705

Weighted median 0.113 0.225 1.147 0.919 1.432

Weighted mode 0.223 0.762 1.071 0.692 1.660

Genus

Oscillospira 9

Inverse variance weighted 0.084 0.027 1.204 1.021 1.418

MR Egger 0.382 0.429 1.378 0.652 2.915

Simple mode 0.180 0.136 1.349 0.947 1.921

Weighted median 0.105 0.079 1.202 0.979 1.477

Weighted mode 0.175 0.125 1.349 0.958 1.900

Ruminococcaceae 

UCG004
10

Inverse variance weighted 0.069 0.048 1.146 1.001 1.311

MR Egger 0.365 0.956 1.021 0.500 2.087

Simple mode 0.119 0.110 1.235 0.979 1.558

Weighted median 0.086 0.051 1.183 0.999 1.401

Weighted mode 0.127 0.153 1.219 0.951 1.563

Ruminococcus1 13

Inverse variance weighted 0.080 0.030 0.841 0.719 0.983

MR Egger 0.240 0.212 0.729 0.456 1.164

Simple mode 0.217 0.778 1.064 0.696 1.627

Weighted median 0.111 0.127 0.844 0.678 1.049

Weighted mode 0.211 0.749 1.072 0.709 1.620

Order Desulfovibrionales 12

Inverse variance weighted 0.090 0.032 1.210 1.016 1.442

MR Egger 0.420 0.514 1.329 0.583 3.029

Simple mode 0.201 0.400 1.193 0.804 1.769

Weighted median 0.112 0.203 1.154 0.9257 1.438

Weighted mode 0.204 0.436 1.179 0.791 1.759

Phylum Actinobacteria 14

Inverse variance weighted 0.080 0.015 1.215 1.038 1.422

MR Egger 0.333 0.182 1.603 0.835 3.077

Simple mode 0.193 0.583 1.115 0.764 1.626

Weighted median 0.105 0.130 1.173 0.954 1.443

Weighted mode 0.176 0.500 1.132 0.801 1.598

GM, Gut Microbiota; AD, Alzheimer’s disease; MR, Mendelian randomization; SNP, Single nucleotide polymorphism.
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infection (Wang et  al., 2019). A recent research has uncovered 
potential therapeutic prospects of FMT in the broadly used AD 
model: APP/PS double transgenic (Tg) mouse model. This approach 
exhibits the ability to mitigate cerebral Aβ deposition, regulate Tau 
protein phosphorylation, reduce levels of Aβ40 and Aβ42, enhance 
cognitive function, and promote synaptic plasticity (Sun et al., 2019). 
Another animal experiment has also substantiated the capacity of 
FMT to ameliorate cognitive decline and amyloid-like protein 
accumulation in AD mice (Cheng et al., 2023). Hang Z et al. observed 
that FMT treatment can reverse the GM remodeling in AD mice, also 
rectifying the metabolic aberrations of inorganic and organic salts in 
the intestinal microbiota of AD mice (Hang et al., 2022). Despite 
predominantly being investigated in animal models, FMT holds 
promise as a potential avenue for treating neurodegenerative 
disorders, particularly AD, through mechanisms encompassing 
restoration of Short-Chain Fatty Acids (SCFA) and disruption of Aβ 
oligomers in the future.

Encouragingly, Clostridium butyricum (CB), a butyrate-producing 
probiotic from the GM, has already undergone a clinical trial for AD 
treatment (Den et al., 2020).

In both case–control studies and observational researches, the 
determination of the exposure time and outcomes can be challenging, 
making them susceptible to confounding factors (Abraham et al., 
2019). Few studies have conducted a comprehensive and genetic 
investigation at the species level between GM and AD. Therefore, 
investigating the causal relationship between the two not only deepens 
our understanding of the pathogenesis of AD but also facilitates the 
exploration of microbiological therapeutic interventions for AD in 
clinical practice. Consequently, it is imperative to elucidate the causal 
relationship between GM and different types of AD.

The combination of 16S rRNA gene sequencing and metabolomics 
provide a new perspective for understanding the relationship between 
GM and AD. Imbalance of the intestinal microbiota may be a key 
factor in the occurrence of AD. Actinobacteria, Proteobacteria, 
Firmicutes, and Bacteroidetes are the major bacterial phyla found in 
the human gastrointestinal tract (Morais et al., 2021). A cohort study 
of elderly AD patients in China revealed that, compared to the healthy 
control (HC) group, AD patients had reduced fecal microbial diversity 
and increased abundance of Bacteroidetes in the early stages of the 
disease. Furthermore, when compared to individuals with pre-onset 
amnestic mild cognitive impairment (aMCI), AD patients exhibited 

decreased levels of Ruminococcus at the phylum level in their fecal 
microbiota (Cheng et al., 2019), findings that are consistent with the 
conclusions of our study.

Researchers have found a significant association between the 
abundance of certain bacterial phyla at the genus level with 
AD. Subjects with higher abundance of Actinobacteria had a 1.16 
times higher likelihood of developing AD compared to the HC group. 
Additionally, Bacteroidetes showed decreased abundance, and 
abnormal levels of Ruminococcus at the strain and species level were 
unique to AD patients (Bonfili et al., 2021).

Fragilis Bacteroides (BF) lipopolysaccharide can penetrate the 
blood–brain barrier (BBB) and enter the cytoplasm of neural cells, 
coupling with and significantly upregulating pro-inflammatory 
microRNA-146a (miRNA-146a) and microRNA-155 (miRNA-155). 
Each miRNA’s direct promoter contains multiple NF-kB DNA binding 
and activation sites, leading to neuro-inflammation (Xiao et al., 2021). 
When compared to the control group, AD subjects showed increased 
abundance of Proteobacteria, Firmicutes, Actinobacteria, and 
Bacteroidetes in brain tissue. Researchers observed variations in β 
diversity between hippocampal and cerebellar samples, suggesting the 
presence of brain microbiota (Wang et  al., 2019). Xi et  al. (2021) 
measured the fecal microbial and metabolic profiles of 21  AD 
individuals. Non-targeted GM classification was analyzed based on 
next-generation sequencing (NGS) of 16S ribosomal RNA genes, and 
fecal metabolites were quantified using ultra-high-performance liquid 
chromatography-mass spectrometry (UPLC-MS). The study revealed 
that AD participants exhibited increased abundance of 
Ruminococcaceae UCG-007 compared to non-AD participants (Sun 
et al., 2019). Conversely, in a study conducted in the United States, AD 
patients showed reduced abundance of Firmicutes and Actinobacteria, 
and increased abundance of Bacteroidetes and Proteobacteria (Cheng 
et al., 2023). The possible reasons for the inconsistency in the results 
of GM research include individual differences, technical variations, 
sample sources, dietary factors, age and lifecycle, disease status, and 
differences in reporting and interpretation. To reduce inconsistency, 
it is essential to employ rigorous research design, sample selection, 
and control for potential confounding factors.

The study discovered a possible association GM dysbiosis and AD 
risk, which may involve the following mechanisms: ① Gram-negative 
bacteria, including Bacteroidetes, in the GM produce endotoxins that 
activate macrophages, triggering an inflammatory response (Stilling 

TABLE 2 Sensitivity analysis for GM vs. AD by MR analysis.

Exposure Horizontal pleiotropy Heterogeneity Steiger MR-PRESSO 
global test

MR egger-
interpreter

MR egger-
interpreter
p value

Cochran’s Q
p value

p value p value

Class
Actinobacteria 0.019 0.214 0.724 1.37E-64 0.756

Deltaproteobacteria −0.018 0.542 0.183 1.92E-39 0.215

Genus

Oscillospira −0.013 0.726 0.289 9.02E-28 0.332

Ruminococcaceae UCG004 0.010 0.757 0.855 6.61E-34 0.888

Ruminococcus1 0.011 0.539 0.501 1.11E-45 0.513

Order Desulfovibrionales −0.010 0.824 0.223 3.73E-37 0.25

Phylum 0. −0.018 0.408 0.289 2.50E-53 0.307

GM, Gut Microbiota; AD, Alzheimer’s disease; MR, Mendelian randomization.
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et al., 2016; Hang et al., 2022). ② Imbalance or dysregulation of the 
GM can impact the levels of short-chain fatty acids (SCFAs) and 
worsen cerebral Aβ burden in APP/PS1 transgenic mice (Yadav and 
Lewis, 2021; Hang et al., 2022). ③ Bacterial product lipopolysaccharide 
(LPS) has recently been shown to be associated with the peripheral 
region of neuronal cell nuclei in sporadic AD, affecting the expression 
of amyloid precursor protein (APP) or its processing enzymes. High 
abundance of Bacteroidetes may be associated with the production of 
metabolites that promote APP cleavage, leading to increased Aβ 
generation, affecting Aβ aggregation and clearance in the brain, and 
further exacerbating AD pathology (Liu et al., 2019). These studies 
support the notion that GM may promote the development of AD by 
crossing the biophysical barriers.

The present study has significant strengths. Firstly, it represents 
the most comprehensive genetic research conducted to date 
investigating the causal relationship between the GM and AD, as it 
encompasses analyses of 211 bacterial taxa. Secondly, the rigorous 
TSMR analysis technique has been employed to address inherent 
biases and confounders observed in previous studies. The use of 
multiple methods and detailed analyses has enhanced the reliability 
and validity of the findings.

The study has made significant progress in exploring the potential 
causal relationship between the GM and AD. However, there are 
several limitations to consider. Firstly, the TSMR analysis only utilized 
GWAS data from European populations. Further investigations in 
diverse populations are warranted. Secondly, the inclusion of limited 
data on GM abundance hinders a comprehensive analysis of the causal 
association. Additional GWAS data on GM are necessary for a 
thorough exploration of the GM-AD link. Thirdly, while TSMR is an 
effective causal analysis method, validation through future animal 
experiments is essential to confirm the potential causal link between 
the AD and GM. Lastly, it is crucial to acknowledge that the 
relationship between the two is not solely a unidirectional causal 
relationship. A multi-dimensional approach is required to investigate 
the etiology and pathogenesis of AD comprehensively.

5. Conclusion

This study highlights the importance of GM composition in 
relation to AD risk. Further research is warranted to elucidate the 
underlying mechanisms and explore the potential of modulating the 
GM as a preventive or therapeutic strategy for AD.

Our study confirms the causal effect of GM on AD through 
TSMR. Specific strains like Actinobacteria at the family level, phylum. 
Actinobacteria, class. Deltaproteobacteria, order. Desulfovibrionales, 
genus. Oscillospira, and genus. Ruminococcaceae UCG004 are 
associated with AD and could be potential biomarkers. GMs such as 
within the genus-level taxa, Ruminococcus1 may hold promise for AD 
prevention and treatment. This research provides genetic insights for 
managing AD.
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