Alzheimer’s disease (AD) is among the leading contributors of dementia globally with approximately 60–70% of its cases. Current research is focused on the mild cognitive impairment (MCI), which is associated with cognitive decline but does not disrupt routine activities. Event-related potential (ERP) research is essential in screening patients with MCI. Low-density channel electroencephalography (EEG) is frequently used due to its convenience, portability, and affordability, making it suitable for resource-constrained environments. Despite extensive research on neural biomarkers for cognitive impairment, there is a considerable gap in understanding the effects on early stages of cognitive processes, particularly when combining physiological and cognitive markers using portable devices. The present study aimed to examine cognitive shortfalls and behavioral changes in patients with MCI using prefrontal selective attention ERP recorded from a prefrontal two-channel EEG device.
We assessed cognitive decline using the Mini-Mental State Examination (MMSE) and the Seoul Neuropsychological Screening Battery (SNSB). We administered auditory selective attention tasks to 598 elderly participants, including those with MCI (160) and cognitively normal (CN) individuals (407). We conducted statistical analyses such as independent t-tests, Pearson’s correlations, and univariate and multiple logistic regression analyses to assess group differences and associations between neuropsychological tests, ERP measures, behavioral measures, and MCI prevalence.
Our findings revealed that patients with MCI demonstrated slower information-processing abilities, and exhibited poorer task execution, characterized by reduced accuracy, increased errors, and higher variability in response time, compared to CN adults. Multiple logistic regression analyses confirmed the association between some ERP and behavioral measures with MCI prevalence, independent of demographic and neuropsychological factors. A relationship was observed between neuropsychological scores, ERP, and behavioral measures.
The slower information processing abilities, and poor task execution in the MCI group compared to the CN individuals suggests flawed neurological changes and reduced attentional maintenance during cognitive processing, respectively. Hence, the utilization of portable EEG devices to capture prefrontal selective attention ERPs, in combination with behavioral assessments, holds promise for the identification of mild cognitive deficits and neural alterations in individuals with MCI. This approach could potentially augment the traditional neuropsychological tests during clinical screening for MCI.