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Background: Alzheimer’s disease (AD) is among the leading contributors of 
dementia globally with approximately 60–70% of its cases. Current research 
is focused on the mild cognitive impairment (MCI), which is associated with 
cognitive decline but does not disrupt routine activities. Event-related potential 
(ERP) research is essential in screening patients with MCI. Low-density channel 
electroencephalography (EEG) is frequently used due to its convenience, 
portability, and affordability, making it suitable for resource-constrained 
environments. Despite extensive research on neural biomarkers for cognitive 
impairment, there is a considerable gap in understanding the effects on early 
stages of cognitive processes, particularly when combining physiological and 
cognitive markers using portable devices. The present study aimed to examine 
cognitive shortfalls and behavioral changes in patients with MCI using prefrontal 
selective attention ERP recorded from a prefrontal two-channel EEG device.

Methods: We assessed cognitive decline using the Mini-Mental State Examination 
(MMSE) and the Seoul Neuropsychological Screening Battery (SNSB). 
We  administered auditory selective attention tasks to 598 elderly participants, 
including those with MCI (160) and cognitively normal (CN) individuals (407). 
We  conducted statistical analyses such as independent t-tests, Pearson’s 
correlations, and univariate and multiple logistic regression analyses to assess 
group differences and associations between neuropsychological tests, ERP 
measures, behavioral measures, and MCI prevalence.

Results: Our findings revealed that patients with MCI demonstrated slower 
information-processing abilities, and exhibited poorer task execution, 
characterized by reduced accuracy, increased errors, and higher variability in 
response time, compared to CN adults. Multiple logistic regression analyses 
confirmed the association between some ERP and behavioral measures with 
MCI prevalence, independent of demographic and neuropsychological factors. 
A relationship was observed between neuropsychological scores, ERP, and 
behavioral measures.

Discussion: The slower information processing abilities, and poor task execution 
in the MCI group compared to the CN individuals suggests flawed neurological 
changes and reduced attentional maintenance during cognitive processing, 
respectively. Hence, the utilization of portable EEG devices to capture prefrontal 
selective attention ERPs, in combination with behavioral assessments, holds 
promise for the identification of mild cognitive deficits and neural alterations in 
individuals with MCI. This approach could potentially augment the traditional 
neuropsychological tests during clinical screening for MCI.
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1. Introduction

Dementia, with an estimated morbidity of 55 million and a yearly 
incidence of approximately 10 million is a prominent contributor of 
death and incapacity among the elderly population globally (WHO, 
2022). The leading contributor of dementia is Alzheimer’s disease 
(AD), with approximately 60–70% of its cases (WHO, 2022). With an 
expected rise in the prevalence and related social costs of AD in the 
period between 2030 and 2050, current scientific and clinical research 
on AD prioritizes early detection of the intermediate stage between 
cognitively normal aging, mild cognitive impairment (MCI), and 
dementia (Dubois et al., 2007; Mantzavinos and Alexiou, 2017).

Mild cognitive impairment is a syndrome pronounced by 
cognitive decline which is higher than anticipated for a person’s age 
and level of education, without disrupting routine life activities 
(Gauthier et  al., 2006). It could be  an early indication of various 
degenerative, vascular, psychiatric, and medical disorders, with a 
potential to advance into degenerative conditions like AD dementia, 
frontotemporal dementia (FTD), and dementia with Lewy bodies 
(DLB). Furthermore, it might manifest as a symptom within 
non-degenerative conditions like vascular cognitive impairment 
(VCI), major depressive disorder, generalized anxiety disorders, 
uncompensated heart failure, and poorly managed diabetes mellitus 
(Petersen, 2016). Its further categorized into amnestic MCI (aMCI) if 
memory domain is affected or non-amnestic MCI (naMCI) if other 
cognitive domains are impaired. The quantity of impacted domains 
plays a crucial role in assessing the magnitude of underlying brain 
pathology, the disease’s impact, and the probability of transitioning to 
dementia. The yearly rate of progression from MCI to dementia 
fluctuates between 8 and 15% (Petersen, 2016) and its prevalence in 
persons ≥60 years is estimated to be between 15 and 20%, making it a 
rampant condition clinicians encounter (Gauthier et al., 2006).

This has attracted profound research interests as it’s crucial to 
promptly diagnose and treat individuals with a high risk of developing 
dementia prior to the emergence of substantial structural deficits. 
These individuals are suitable for therapeutic intervention (Missonnier 
et al., 2005). Furthermore, detecting individuals with increased risk of 
dementia is crucial in stopping disease progression, enabling the 
adoption of preventive healthcare, and easing potential emotional and 
financial pressures for both patients and caregivers. At present, 
patients with MCI and dementia are identified through assessment of 
cognitive function using neuropsychological tests. The Mini-Mental 
State Examination (MMSE) (Dick et al., 1984) is among the most 
extensively accessible and conveniently administered 
neuropsychological screening tests by primary care practitioners 
(Langa and Levine, 2014).

In South Korea, the Seoul Neuropsychological Screening Battery 
(SNSB) is a widely used comprehensive neuropsychological evaluation 
tool that provides scores in cognitive domains such as attention, 
memory, frontal/executive function, language, and visuospatial skills 
(Ryu and Yang, 2023). It provides key information for the evaluation 
of early cognitive decline, analysis of cognitive decline patterns, 

judgment of dementia severity, and differential diagnosis of dementia 
(Ryu and Yang, 2023). The complete administration of SNSB-II (the 
present version of SNSB) approximately takes 1 h and 45 min to 2 h. 
When exclusively conducting cognitive function tests, the duration is 
reduced to about 1 h to 1 h and 15 min (Ryu and Yang, 2023). This long 
duration renders the test impractical for patients with diminished 
attention spans and does not provide the global cognitive function 
(GCF) score, a valuable metric for continuous patient monitoring 
(Ahn et al., 2010).

Degenerative cognitive impairment is marked by a decline in 
several cognitive processes involving sensation, perception, cognition, 
and recognition, which precede higher-level cognitive functions 
(Perry and Hodges, 1999; Morrison et al., 2018). It’s often accompanied 
by the neurological alterations in the cerebral cortex and limbic system 
leading to deficits in learning, memory, language, and visuospatial 
skills (Corey-Bloom, 2002; Murman, 2015). While extensive research 
has been devoted to discovering the neural biomarkers responsible for 
cognitive impairment (Paitel et al., 2021), there is a considerable gap 
in understanding their effects on the early stages of cognitive 
processes, particularly when examining the combination of 
physiological and cognitive markers in a larger participant pool using 
a portable measurement device.

Using sensory or oddball event-related potential (ERP) paradigms, 
features that indicate impairments in cognitive processes have been 
studied (Nessler et al., 2007; Lai et al., 2010). Synchronized with an 
event, such as the start of a stimulus or the performance of a manual 
response (Kappenman and Luck, 2012), ERPs allow for the 
observation of a sequence of cognitive processes that unfold prior to 
the delivery of sensory information to the peripheral nervous system, 
persisting even after a behavioral response is executed (Woodman, 
2010). In addition, they are more effective due to being readily 
accessible, cost-effectiveness, and high temporal specificity in contrast 
with other neuroimaging modalities (Paitel et al., 2021). The P300 
ERP component signifies the cognitive processes associated with 
allocating attention and engaging working memory (Polich, 2007). It’s 
an expression of the central nervous system’s (CNS) activity involved 
in processing novel information while actively updating memory 
representations (Polich and Kok, 1995). Disparities in P300 observed 
during a simple stimulus discrimination task can reliably reflect 
individual variations in cognitive processing proficiency and swiftness 
(Polich and Kok, 1995), making it valuable for cognitive evaluation to 
identify and track the onset and progression of neurogenerative 
diseases (Medvidovic et al., 2013).

Recently, several studies have shown that EEG or ERP measures 
can be utilized to differentiate patients with MCI from cognitively 
normal persons or those with other cognitive impairments. For 
instance, Chapman et  al. (2011) used the ERP obtained in the 
perceptual or cognitive paradigm to predict individuals with MCI who 
would later develop AD, using discriminant analysis with cross-
validation accuracies of 70–78%. Ganapathi et al. (2022) obtained an 
area under the curve (AUC) of 0.72, differentiating between subjective 
cognitive impairment (SCI) and MCI. Bennys et al. (2007) observed 
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significantly prolonged N200 and P300 latencies in patients with AD 
when compared to those with MCI or controls. Studies by Frodl et al. 
(2002) and Golob et al. (2002, 2007, 2009) provided more evidence 
suggesting a compromised P300 in individuals with MCI. However, 
some studies reported no differences in P300 measurements of 
amplitude (Papaliagkas et al., 2008; Lai et al., 2010; Cid-Fernández 
et al., 2014) and latency (Frodl et al., 2002; Papadaniil et al., 2016; 
Tsolaki et al., 2017; Cintra et al., 2018) between the CN and patients 
with MCI.

To enhance the early detection of MCI, there is a critical need for 
a diagnostic tool that is easily accessible, objective, and user-friendly, 
suitable for both clinical and non-clinical settings. Recent 
advancements in EEG technology have created the potential to 
develop a portable, cost-effective, and widely accessible EEG tool for 
MCI screening in primary care and outpatient settings (Doan et al., 
2021; Smith, 2022). For instance, Khatun et al. (2019) achieved an 
accuracy of 87.9% in detecting MCI using a Support Vector Machine 
(SVM) with auditory ERPs obtained from a single-channel EEG 
device positioned at Fpz. Additionally, Choi et al. (2019) devised a 
regression model that exhibited a strong correlation of 0.757  in 
predicting MMSE scores in the elderly, utilizing resting-state 
prefrontal EEG data from a 2-channel EEG device (Fp1 and Fp2, per 
the 10-20 system). In a similar setup to Choi et al. (2019), Doan et al. 
(2021) achieved an Area Under the Receiver Operating Characteristic 
(AUROC) of 89.1% when distinguishing patients with Alzheimer’s 
Disease (AD) from healthy individuals, employing selective attention 
auditory ERPs.

This study aimed to assess the effectiveness of a portable EEG 
system in detecting MCI, with a specific focus on an auditory oddball 
task that elicits memory and attention ERPs, such as P300. By 
analyzing the ERP components related to selective attention, higher 
cognitive functions believed to be impaired in patients with MCI can 
be  understood. We  hypothesized that MCI-related neurological 
changes might impact ERP measures (Woodman, 2010), resulting in 
decreased task performance and ERP alterations in components 
associated with the oddball task in contrast to cognitively normal 
(CN) individuals of matching age. Furthermore, we  anticipated a 
correlation between neuropsychological scores and both ERP and 
task-based behavioral measures.

2. Materials and methods

2.1. Participants

The present study included 598 participants, recruited between 
October 2019 and December 2020 at the Gwangju Alzheimer’s Disease 
and Related Dementia (GARD) center (Gwangju City, South Korea). 
We excluded 264 participants from the analysis because they were 
neither CN nor had MCI [n = 31], did not respond to target stimuli or 
had extreme errors compared to correct responses in the behavioral 
measures [n = 19], and had incomplete neuropsychological 
information [n = 2]. In addition, visual assessment was conducted by 
two experts, to identify a prominent P300 peak in the averaged ERPs. 
This criterion was used for participant inclusion, resulting in the 
exclusion of participants who did not display a discernible peak in the 
oddball ERP trace when compared to the standard ERP trace within 
the 300-600 ms time window [n = 212] (Supplementary Figure S2). 
This exclusion criterion was implemented in order to use the 

differential ERP method (Levi-Aharoni et al., 2020). This method is 
applicable when the data demonstrate two dependable time zero-
crossing points, namely T1 and T2, between the oddball ERP and 
standard ERP.

The study participants were divided into two groups of similar 
ages: CN individuals and those diagnosed with MCI. This grouping 
was carried out as per the methodology described by Opwonya et al. 
(2022) which states, “All participants were examined through a clinical 
interview, which included assessment of the clinical dementia rating 
(CDR). The CN participants had a CDR score of 0. They had normal 
cognitive function with no evidence of brain atrophy, white matter 
changes, multiple lacunae, infarction, or other focal brain lesions on 
magnetic resonance imaging (MRI) scans. Participants with MCI met 
the Petersen criteria (Petersen, 2004) and had a CDR score of 0.5. 
Their neuropsychological test z scores were below −1.5 on at least one 
of five domain tests according to age, education, and 
sex-specific norms.”

The CN group had 239 participants (99 men and 140 women), 
with mean age ± standard deviation of 72.17 ± 5.72 years; the MCI 
group had 95 participants (42 men and 53 women), with mean 
age ± standard deviation of 74.13 ± 6.27 years (Table 1).

Every participant gave written informed consent, and the study 
received approval from the Institutional Review Board of Chonnam 
National University Hospital (IRB No. CNUH-2019-279).

2.2. Neuropsychological battery

In the present study, the latest version of the SNSB (SNSB II) was 
used to assess the cognitive function of the participants (Kang et al., 
1997, 2003). Comprised of five cognitive domain scores—attention, 
language, memory, visuospatial, and frontal/executive functions—the 
SNSB II serves as a prominent neuropsychological screening battery 
in South Korea, usually employed to assess cognitive function in 
patients with MCI and dementia. We  additionally employed the 
Korean Mini-Mental State Examination (K-MMSE) as the primary 
screening tool.

2.3. ERP recording

Event-related potentials were recorded using NeuroNicle FX2 
(LAXTHA, Daejeon, South Korea) based on the 10-20 International 
system using 2 prefrontal monopolar scalp electrodes placed on Fp1 
and Fp2 with a reference on the right earlobe. Additional details of our 
EEG/ERP experiments, as quoted below, were drawn from our earlier 
studies by Choi et  al. (2019), Doan et  al. (2021): “In addition, a 
bandstop filter was set between 55 and 65 Hz. All the EEG electrode 
contact impedances were maintained below 10 kΩ. The data were 
digitized in continuous recording mode at a sampling frequency of 
250 Hz and 15-bit resolution. To eliminate muscle and eye movement 
artifacts and monitor sleepiness in the participants, qualified operators 
inspected the individuals and EEG traces during the recording. The 
operator guided the participants to remain comfortably seated with 
their eyes closed and alerted them whenever signs of behavioral or 
EEG drowsiness were detected. The EEG signals from the participants 
were acquired while they remained seated in an upright position 
under three sequential conditions: (1) spontaneous brain activity to 
establish background EEG signals in a resting state for 5 min 
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(resting-state EEG), (2) sensory-evoked potentials for 8 min, and (3) 
a selective attention task to acquire the corresponding ERPs for 5 min. 
To elicit selective-attention ERP, we  adopted an active auditory 
oddball task presenting 64 rare random target stimuli of 2,000 Hz (1/5 
ratio) and 256 standard auditory stimuli of 750 Hz (4/5 ratio).”

In this study, only selective attentional ERPs were considered. Prior 
to the commencement of the experiment, all participants underwent 
evaluations of their auditory hearing acuity for both the rare tone 
(2,000 Hz) and the standard tone (750 Hz). Furthermore, participants 
were assessed for their capacity to distinguish between these tones 
(using earphones set at a uniform volume level of 70 dB). During the 
ERP experiment, participants were instructed to press a response key 
when they recognized the target stimuli. Recordings were made while 
participants kept their eyes closed in a soundproof room with regular 
illumination, ensuring a controlled environment for data collection.

2.4. Data pre-processing and feature 
extraction

The EEG data were analyzed using custom scripts written in Python 
(version 3.8.16). The features extracted for the present study are described 
in Supplementary Table S1 and illustrated in Supplementary Figure S2.

2.4.1. ERP measures
The EEG data for the two prefrontal channels (Fp1 and Fp2) were 

averaged to obtain EEG data from which subsequent pre-processing 
and feature extraction were performed. We extracted time epochs 
from −200 to 800 ms with respect to the presentation of stimuli from 
each of the correct trials (only the trials in which the standard stimuli 
were not responded to, and the target stimuli were responded to). The 
average standard and target ERPs were calculated by averaging the 
ERPs extracted from the EEG data for each participant’s stimuli. Each 
of the derived ERP traces (standard and target) was then baseline-
corrected relative to a −200 to 0 ms period, and a moving average filter 
of order nine was applied to the final ERP traces. To isolate the ERP 

components, we derived the difference in ERP trace by subtracting the 
standard ERP trace from the target ERP trace, which was used to 
generate ERP variables (Levi-Aharoni et al., 2020) and 300-600 ms 
after stimulus onset was considered as the ERP time window.

The ERP measures extracted encompass various parameters, 
including Peak Amplitude (AMP), Latency (LAT), 50% Fractional 
Area Latency (FAL), onset zero-crossing point (T1), late zero-crossing 
point (T2), Area Under the Curve (AUC), the difference between T1 
and T2 (T2T1), the difference between FAL and T1 (FALT1), and the 
difference between T2 and FAL (T2FAL).

2.4.2. Behavioral measures
We also extracted features related to the behaviors of the 

participants during the ERP experiment. These include the number of 
incorrect or committed error responses (NI), error to correct ratio, i.e., 
ratio of all errors (incorrect and omitted error responses) to the 
correct responses (ER), response accuracy (ACC), weighted error 
percentile (WER), mean response time (RT), and variability in 
response time (RTSD), as measured by the standard deviation of the 
response times (Supplementary Table S1).

2.5. Statistical analysis

The statistical analyses were carried out using R Studio (version 
2022.07.2 + 576), running on R (version 4.1.3) for Windows, including 
packages gtsummary (version 1.6.1), ggplot2 (version 3.4.0) and 
corrplot (version 0.92) (Wickham, 2016; Sjoberg et al., 2021; Wei and 
Simko, 2021; R Core Team, 2022) with a significance level of α = 0.05 
for all tests. Independent sample t-tests were performed using 
Student’s t-test for continuous variables, and chi-squared tests were 
used for categorical variables. Univariate and multiple logistic 
regression analyses were performed to calculate the odds ratios 
associated with MCI for each ERP and behavioral measure while 
controlling for covariates such as age, sex, and years of education. The 
MMSE score was incorporated as an extra covariate to assess the 

TABLE 1 Demographic characteristics and neuropsychological test domain scores.

Characteristic CN, N =  2391 MCI, N =  951 T-statistic Value of p2

Demographic characteristics

Age 72.17 (5.72) 74.13 (6.27) −2.747 0.006

Sex 0.217 0.6

Female 140/239 (59%) 53/95 (56%)

Male 99/239 (41%) 42/95 (44%)

EDUYR 10.58 (4.37) 9.40 (4.78) 2.165 0.031

Neuropsychological test domain scores

MMSE 27.62 (1.91) 26.04 (2.54) 6.192 <0.001

Attention 9.49 (2.21) 8.38 (1.90) 4.292 <0.001

Language 0.21 (0.25) −0.13 (0.49) 8.251 <0.001

Visuospatial 0.52 (0.37) 0.00 (0.88) 7.541 <0.001

Memory 0.32 (0.59) −0.55 (0.67) 11.621 <0.001

Frontal 0.22 (0.55) −0.42 (0.71) 8.940 <0.001

1Mean (SD); n/N (%); 2Two Sample t-test; Pearson’s Chi-squared test; significant features (value of p ≤ 0.05) are bolded.
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independent relationship between ERPs, behavioral variables, and 
MCI. In addition, Pearson’s correlations were examined separately to 
understand the relationships between the neuropsychological 
domains and both attentional ERP and behavioral variables in the 
MCI and CN groups.

3. Results

3.1. Participant characteristics

The demographic information and neuropsychological 
characteristics of the participants considered for analysis in the 
present study are listed in Table 1.

The number of participants with MCI and CN was 95 and 239, 
respectively. The patients with MCI comprised 56% women and 44% 
men while the CN group comprised 59% women and 41% men. 
Patients with MCI were older than CN individuals, with mean 
age ± standard deviation of 74.13 ± 6.27 and 72.17 ± 5.72 years 
(p = 0.006) respectively. Furthermore, the patients with MCI had less 
years of education [9.40 ± 4.78] than CN individuals [10.58 ± 4.37] 
(p = 0.031). As expected, the patients with MCI had lower MMSE 
scores than CN individuals, with 26.04 ± 2.54 and 27.62 ± 1.91 score 
(p < 0.001) respectively. Overall, patients with MCI had lower MMSE 
scores and higher mean age than CN (Opwonya et al., 2022).

Patients with MCI had lower scores in all the SNSB II domains; 
attention [8.38 ± 1.90], language [−0.13 ± 0.49], visuospatial 

[0.00 ± 0.88], memory [−0.55 ± 0.67], and frontal [−0.42 ± 0.71] 
compared to CN individuals [9.49 ± 2.21, 0.21 ± 0.25, 0.52 ± 0.37, 
0.32 ± 0.59, and 0.22 ± 0.55] (p < 0.001) respectively.

There were no statistically significant differences between the CN 
and MCI in sex.

3.2. ERP measures

Patients with MCI showed a significantly larger AUC of the P300 
duration [t = −2.13, p = 0.034] and an early onset zero-crossing time 
point (T1) [t = 2.38, p = 0.018] compared to the CN individuals, while 
exhibiting a higher difference between the onset zero-crossing time 
point and the 50% fractional area latency (FALT1) [t = −3.08, p = 0.002], 
the difference between the 50% fractional area latency and the late zero-
crossing time point (T2FAL) [t = −2.25, p = 0.025], and the duration of 
the P300; the difference between the late and onset zero-crossing time 
points (T2T1) [t = −3.30, p = 0.001]. However, there were no significant 
differences in the distribution of peak amplitude (AMP), peak latency 
(LAT), late zero-crossing time point (T2), or 50% fractional area latency 
(FAL) among participants in either group (Figure 1A and Table 2).

3.3. Behavioral measures

Compared to the CN individuals, patients with MCI exhibited 
significantly more incorrect responses (NI) [t = −3.49, p < 0.001], a higher 

FIGURE 1

Box plot and t-test for (A) ERP variables and (B) behavioral measures for CN (red) and MCI (green) groups. Significance levels are denoted as follows: 
*** for p  <  0.001, ** for p  <  0.01, * for p  ≤  0.05, and ns for not significant. Detailed statistical scores and value of ps can be found in Table 2.
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ratio of error to correct responses (ER) [t = −5.82, p < 0.001], a greater 
response time variability (RTSD) [t = −2.90, p = 0.004], and higher 
weighted error percentile (WER) [t = −5.47, p < 0.001]. In addition, they 
showed a reduced response accuracy (ACC) [t = 4.92, p < 0.001].

However, the distribution of response time (RT) was similar 
between the two groups (Figure 1B and Table 2).

3.4. Logistic regression

Table 3 presents the odd ratios for ERP and behavioral measures 
for the risk of MCI.

3.4.1. ERP measures
In the unadjusted model, the odds ratios and corresponding 95% 

confidence intervals for the following variables were notably distinct 
from 1, indicating a potential association with the risk of MCI: AUC 
[OR = 1.27, p = 0.039], T1 [OR = 0.74, p = 0.017], FALT1 [OR = 1.45, 
p = 0.002], T2FAL [OR = 1.29, p = 0.026], and T2T1 [OR = 1.48, 
p = 0.001]. However, AMP, T2, LAT, and FAL did not show any 
significant risk of MCI.

After adjusting for the demographic characteristics of sex, age, 
and years of education, the second model showed that T1 [OR = 0.74, 
p = 0.019], FALT1 [OR = 1.42, p = 0.005], and T2T1 [OR = 1.44, 
p = 0.004] remained predictors for MCI. This confirmed their 
independence from demographic characteristics as predictors 
for MCI.

Further adjusting the second model with MMSE scores, FALT1 
[OR = 1.33, p = 0.029] and T2T1 [OR = 1.36, p = 0.019] remained as 
predictors for MCI. An increase of 1 ms in the FALT1 and T2T1 
levels increased the risk of MCI by 33 and 36%, respectively. This 
confirmed the true independence of FAT1 and T2T1 from both 
demographic characteristics and MMSE scores as predictors 
for MCI.

3.4.2. Behavioral measures
The unadjusted model revealed that several behavioral measures 

had odds ratios and corresponding 95% confidence intervals notably 
distinct from 1, suggesting a risk of MCI. These measures included the 
NI [OR = 1.47, p < 0.001], ER [OR = 1.92, p < 0.001], ACC [OR = 0.57, 
p < 0.001], WER [OR = 1.87, p < 0.001], and RTSD [OR = 1.39, 
p = 0.005]. However, RT did not result in a significant risk for MCI.

After adjusting for the demographic characteristics of sex, age, 
and years of education, the second model showed that NI [OR = 1.43, 
p = 0.002], ER [OR = 1.83, p < 0.001], ACC [OR = 0.59, p < 0.001], WER 
[OR = 1.80, p < 0.001], and RTSD [OR = 1.31, p = 0.027] were predictors 
for MCI, confirming their independence from the influence of 
demographic characteristics.

Further adjusting the second model for MMSE score, revealed 
that NI [OR = 1.42, p = 0.004], ER [OR = 1.72, p < 0.001], ACC 
[OR = 0.63, p = 0.001], and WER [OR = 1.69, p < 0.001] persisted as 
predictors for MCI. Therefore, a unit increase in NI, ER, and WER 
increased the risk of MCI by 42, 72, and 69%, respectively. However, 
a unit decrease in the ACC increased the risk of MCI by 37%. 
However, RTSD is no longer considered a predictor for MCI.

3.5. Correlation

To identify significant relationships between ERP, behavioral and 
neuropsychological measures (MMSE and SNSB II domain scores) in 
each participant group (CN and MCI), we  calculated Pearson 
correlation coefficients while controlling for the effects of demographic 
characteristics of age, sex, and years of education (Figure 2).

3.5.1. ERP measures and neuropsychological test 
scores

Among CN individuals, no significant correlations were observed 
between ERP variables and the neuropsychological tests.

TABLE 2 Participant’s ERP and behavioral measures.

Characteristic CN, N =  2391 MCI, N =  951 T-statistic Value of p2

ERP measures

FAL 390.88 (53.42) 392.21 (49.52) −0.21 0.8

AUC 245.88 (297.27) 321.52 (281.66) −2.13 0.034

AMP 6.58 (7.12) 7.99 (6.80) −1.65 0.10

LAT 388.35 (62.41) 393.35 (63.52) −0.66 0.5

T1 247.21 (101.51) 218.32 (96.81) 2.38 0.018

T2 484.75 (98.34) 503.66 (91.35) −1.62 0.11

FALT1 143.67 (79.94) 173.89 (82.99) −3.08 0.002

T2FAL 93.87 (65.18) 111.45 (62.10) −2.25 0.025

T2T1 237.54 (119.41) 285.35 (119.62) −3.30 0.001

Behavioral measures

NI 1.52 (2.19) 2.71 (3.96) −3.49 <0.001

ER 0.04 (0.05) 0.09 (0.12) −5.82 <0.001

ACC 98.80 (2.23) 96.30 (7.02) 4.92 <0.001

WER 0.01 (0.01) 0.02 (0.04) −5.47 <0.001

RT 347.80 (64.15) 348.80 (75.60) −0.12 >0.9

RTSD 92.76 (39.96) 106.89 (40.72) −2.90 0.004
1Mean (SD); 2Two Sample t-test; Significant variables (value of p ≤ 0.05) are bolded.

https://doi.org/10.3389/fnagi.2023.1273008
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Eyamu et al. 10.3389/fnagi.2023.1273008

Frontiers in Aging Neuroscience 07 frontiersin.org

For patients with MCI, we found a significant negative correlation 
between the frontal/executive function and T1 [r = −0.28, p = 0.01], 
and a positive correlation between the frontal and FALT1 [r = 0.26, 
p = 0.01]. However, no correlations were observed between the 
remaining ERP variables and neuropsychological tests.

3.5.2. Behavioral measures and 
neuropsychological test scores

The CN participants displayed statistically significant negative 
correlations between frontal and various behavioral measures of task 
performance. Specifically, negative correlations were found between 
the frontal and the ER [r = −0.14, p = 0.03], WER [r = −0.16, p = 0.02], 
and RTSD [r = −0.18, p = 0.01], and between language and ACC 
[r = −0.14, p = 0.03].

However, there were significant positive correlations between the 
frontal and ACC [r = 0.17, p = 0.01] and between language and WER 
[r = 0.14, p = 0.03]. Notably, no significant correlations were found 
between behavioral measures and any of the MMSE, and the 
neuropsychological domains of attention, visuospatial function, and 
memory in CN individuals.

In patients with MCI, significant negative correlations were found 
between the MMSE and WER [r = −0.23, p = 0.03], MMSE and RTSD 
[r = −0.21, p = 0.04], language and ER [r = −0.30, p < 0.001], language 
and WER [r = −0.26, p = 0.01], language and RTSD [r = −0.22, 
p = 0.03], memory and RT [r = −0.21, p = 0.04], frontal and NI 
[r = −0.22, p = 0.03], frontal and ER [r = −0.37, p < 0.001], frontal and 
WER [r = −0.36, p < 0.001], and frontal and RTSD [r = −0.50, 
p < 0.001]. Furthermore, there were significant positive correlations 
between the MMSE and ACC [r = 0.25, p = 0.01], language and ACC 
[r = 0.26, p = 0.01], and frontal and ACC [r = 0.34, p < 0.001].

Behavioral measures showed no significant correlation with the 
neuropsychological domains of attention, visuospatial function, and 
memory in patients with MCI.

4. Discussion

This study examined the use of selective attention prefrontal ERP 
and task-related behavioral measures as possible biomarkers for 
identifying MCI using a portable EEG system. We  analyzed the 
differences in ERP and task-related behavioral measures between 
individuals with MCI and CN individuals using an auditory oddball 
paradigm. Furthermore, we  investigated the correlation between 
neuropsychological tests commonly used in MCI screening and both 
ERP and behavioral measures.

The ERP analysis indicated that patients with MCI displayed an 
elevated AUC and early T1, while demonstrating slower P300 timings 
of FALT1, T2FAL, and T2T1, compared to CN individuals. However, 
there were no notable differences in AMP, T2, LAT, or FAL between 
the two groups. After accounting for demographic factors of age, sex, 
and years of education, the T1, FALT1, and T2T1 ERP measures still 
showed a significant association with MCI. Even after additional 
consideration of the MMSE score, FALT1 and T2T1 retained their 
ability to differentiate between individuals with MCI and CN among 
the previously identified significant ERP variables. This suggests the 
true influence of ERP measures of FALT1 and T2T1 as possible 
predictors for MCI, independent of demographic characteristics and 
neuropsychological tests.

Specifically, we did not observe any significant difference in the 
amplitude between the two groups, although the MCI group had 
larger amplitudes than the CN group. This was similar with prior 
studies (Papaliagkas et al., 2008; Lai et al., 2010; Cid-Fernández et al., 
2014) that reported no difference in P300 amplitudes between patients 
with MCI and CN individuals. These results indicate that both groups 
comparably mobilized the attentional resources needed for stimuli 
categorization and updating the context in working memory (Gironell 
et al., 2005). These results could be attributed to several factors. First, 
it is possible that patients with MCI compensate for cognitive deficits 

TABLE 3 Estimated OR and 95% CI for ERP and behavioral measures derived from LR models.

Model 1 Model 2 Model 3
Variables

OR1 95% CI2 Value of p OR1 95% CI2 Value of p OR1 95% CI2 Value of p

ERP measures

FAL 1.03 0.81, 1.30 0.83 0.99 0.78, 1.26 0.97 0.98 0.75, 1.25 0.85

AUC 1.27 1.01, 1.59 0.039 1.25 0.99, 1.58 0.060 1.17 0.92, 1.49 0.20

AMP 1.21 0.96, 1.51 0.11 1.20 0.95, 1.52 0.12 1.14 0.89, 1.45 0.28

LAT 1.08 0.85, 1.37 0.51 1.06 0.83, 1.34 0.65 1.06 0.82, 1.36 0.66

T1 0.74 0.57, 0.95 0.017 0.74 0.57, 0.95 0.019 0.78 0.59, 1.01 0.059

T2 1.21 0.96, 1.53 0.11 1.16 0.91, 1.47 0.24 1.13 0.88, 1.45 0.33

FALT1 1.45 1.14, 1.85 0.002 1.42 1.11, 1.83 0.005 1.33 1.03, 1.73 0.029

T2FAL 1.29 1.03, 1.63 0.028 1.24 0.98, 1.57 0.071 1.22 0.95, 1.56 0.11

T2T1 1.48 1.17, 1.90 0.001 1.44 1.12, 1.85 0.004 1.36 1.05, 1.77 0.019

Behavioral measures

NI 1.47 1.17, 1.90 <0.001 1.43 1.14, 1.85 0.002 1.42 1.12, 1.83 0.004

ER 1.92 1.49, 2.55 <0.001 1.83 1.42, 2.43 <0.001 1.72 1.33, 2.30 <0.001

ACC 0.57 0.42, 0.73 <0.001 0.59 0.43, 0.76 <0.001 0.63 0.46, 0.84 0.001

WER 1.87 1.45, 2.51 <0.001 1.80 1.39, 2.41 <0.001 1.69 1.28, 2.31 <0.001

RT 1.01 0.80, 1.28 0.90 1.00 0.78, 1.28 0.99 0.98 0.76, 1.27 0.90

RTSD 1.39 1.10, 1.79 0.005 1.31 1.03, 1.70 0.027 1.23 0.96, 1.59 0.10
1OR, odds ratio; 2CI, confidence interval; LR, logistic regression; Model 1: the unadjusted LR model; Model 2: LR model adjusted for demographic characteristics of age, sex and years of 
education; Model 3: LR model adjusted for demographic characteristics and the MMSE score. Significant variables (value of p ≤ 0.05) are bolded.
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by recruiting additional neural resources (Scheller et al., 2014), leading 
to increased mobilization of attentional resources needed for stimulus 
categorization and context updating in working memory; (Gironell 
et  al., 2005) thus, demonstrating analogous performance to CN 
individuals. Second, differences in the ERP tasks used or variations 
among studies that employed similar auditory oddball tasks and 
discrepancies in the inclusion criteria for the MCI group [owing to the 
heterogeneity of the MCI patients (Petersen, 2004; Delano-Wood 
et al., 2009)] may have contributed to the discrepancies in the results 
of most of the other studies.

Next, we did not observe any statistically significant differences in 
the P300 latency measures of LAT and FAL between MCI and CN 
groups. This result suggests that the cognitive decline observed in our 
MCI group did not influence the duration required for the assessment 

and categorization of auditory target stimuli within working memory. 
This agrees with prior studies (Frodl et al., 2002; Papadaniil et al., 
2016; Tsolaki et al., 2017; Cintra et al., 2018) that used the auditory 
oddball task and found no significant differences in the latency 
between the MCI and CN groups. Evidence has shown that the P300 
peak latencies are more accurate in the prodromal phase when 
patients are typically younger than 70 years (Bennys et al., 2007). This 
could be a reason for our findings, as the participants in the present 
study were generally older (mean age, 73.15 years) and it’s possible that 
the increased neural degeneration associated with aging could render 
oddball tasks excessively demanding on cognitive resources, 
potentially making it challenging to attain a consistent distinction 
between patients and cognitively normal individuals (Howe 
et al., 2014).

FIGURE 2

Pearson correlation coefficients between the two group’s ERP, behavioral measures, and neuropsychological measures. (A) Correlation between the 
ERP, behavioral measures, and neuropsychological tests in CN. (B) Partial correlations between the ERP, behavioral measures and neuropsychological 
tests in CN adjusted for age, sex and years of education. (C) Correlation between the ERP, behavioral measures, and neuropsychological tests in MCI. 
(D) Partial correlation between the ERP, behavioral measures and neuropsychological tests in MCI adjusted for age, sex and years of education. Exact 
partial correlation scores and value of ps are presented in Supplementary Tables S2, S3; Blank (white colored cells) represents no significant correlation 
between the variables.
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In contrast to the behavior of P300 amplitude or latencies, in 
the novel difference measures, we observed that patients with 
MCI had lengthened P300 timings for T2T1, FALT1 and T2FAL, 
and a shorter T1 duration compared to the CN individuals. T2T1, 
the difference in the zero-crossing time points of the P300 
component suggests its duration and can be an index of cognitive 
processing time. The prolonged FALT1, T2FAL, and T2T1  in 
patients with MCI compared to the CN individuals indicated that 
the CN group possessed faster information processing and 
decision-making abilities than the MCI group. This delay within 
the MCI group during the task implies a need for extra time to 
process information, hinting at a possible impairment in 
cognitive ability (van Deursen et  al., 2009) and a possible 
neocortical dysfunction, which predicts further cognitive decline 
(Lai et al., 2010). T1 represents the time point extracted from the 
isolated P300 component using a differential wave approach 
(Vogel et  al., 1998; Luck et  al., 2009) where the P300 trace 
deviates from the baseline (Kiesel et al., 2008). Short T1 duration 
suggests an early onset of P300, indicating that information 
processing may commence earlier in the MCI group than in the 
CN group. Once adjustments were made for demographic 
measures of sex, age, and education level, T1, FALT1, and T2T1 
continued to exhibit noteworthy associations as predictors for 
MCI. Despite further adjustment for MMSE score, FALT1 and 
T2T1 remained significant predictors for MCI. This suggests that 
FALT1 and T2T1 are independent features for MCI screening and 
can be used in place or as supplements to the MMSE score.

Similarly, we found a significantly larger AUC in patients with 
MCI than in CN individuals. The AUC quantifies the overall pattern 
of the P300 waveform, providing insights into the level of cognitive 
processing across a temporal span (Kim et al., 2013). Reiterating this 
understanding with respect to the AUC results, suggests that patients 
with MCI perform more processing and use more effort and 
attentional resources to complete the same task than CN individuals. 
MCI refers to a state of cognitive impairment, primarily impacting 
memory and other cognitive domains, and an increased ERP AUC in 
patients with MCI compared to healthy individuals could also reflect 
altered cognitive processing. This suggests that patients with MCI may 
compensate for cognitive deficits by recruiting additional neural 
resources or exhibiting hyperactivation in certain brain regions 
(Scheller et al., 2014). Nonetheless, upon accounting for demographic 
measures of age, sex, and education level, the significance of the AUC 
diminished, suggesting that these factors might have exerted 
considerable influence on the extent of cognitive processing over time 
within the MCI group.

In the analysis of task-related behavioral measures, patients with 
MCI demonstrated significantly increased RTSD, NI, ER, and WER 
compared to CN individuals. Additionally, the MCI group showed 
reduced accuracy (ACC) in the task. The elevated RTSD in MCI 
patients indicates an underlying functional integrity that could 
potentially serve as a differentiator between MCI and CN individuals, 
suggesting RTSD’s sensitivity to cognitive decline, pathological load, 
and neurological dysfunction (Strauss et al., 2007; McLaughlin et al., 
2010). It is likely that RTSD might be  more pronounced in the 
presence of early stage and advanced dementia, further supported by 
previous studies that investigated response time variability in MCI or 
AD (Gorus et al., 2008; Burton et al., 2009; Bielak et al., 2010; Phillips 
et al., 2013). Furthermore, the increased error-related measures (NI, 

ER, and WER) in MCI patients suggest a decline in the capacity to 
sustain attention and manage actions while engaging in cognitive task 
processing (Vecchio and Määttä, 2011). This could imply impairments 
in the brain’s ability to filter irrelevant information and allocate 
attention efficiently to relevant stimuli, leading to heightened 
distractibility and difficulty in accurately identifying target stimuli in 
an ERP task, resulting in more incorrect responses (Lorenzo-López 
et  al., 2016). These findings are consistent with prior studies that 
reported a higher frequency of errors in MCI patients compared to 
CN individuals (Cid-Fernández et  al., 2014; Zurrón et  al., 2018). 
Notably, the statistical significance of RTSD, NI, ER, WER, and ACC 
as predictors for MCI remained intact, even after adjusting for age, 
sex, and education level, indicating their robust predictive power 
independent of these demographic factors. Additionally, after further 
adjustment for the MMSE score, the significance of NI, ER, WER, and 
ACC as predictors for MCI persisted, underscoring their true 
influence as independent predictors for MCI.

This study also investigated the correlation between 
neuropsychological measures and both ERP and behavioral measures. 
We  controlled for demographic characteristics to ensure that any 
correlations observed between neuropsychological measures and both 
ERP and behavioral measures were not confounded by demographic 
factors of age, sex, and years of education. Certain correlations seemed 
to be linked to demographic factors, as their impact diminished upon 
controlling for these factors. In the MCI group, we found negative and 
positive correlations between the frontal function and the T1 and 
FALT1, respectively (Figure 2).

We observed mild-to-moderate correlations between the 
behavioral measurements and neuropsychological scores. Particularly, 
we found significant negative correlations between the NI and frontal/
executive function in patients with MCI but not in the CN individuals. 
Furthermore, we observed polarized correlations within the language 
domain when analyzing both ACC and WER in both groups. In the 
CN group, we  found negative correlations between language and 
ACC, while in the MCI group, we  observed the opposite, with 
language showing a positive correlation with ACC. In contrast, the CN 
group displayed positive correlations between language and WER, 
whereas the MCI group demonstrated the reverse pattern. Moreover, 
we found significant negative correlations between the frontal and 
both the ER and WER in both groups. This implies that more errors 
during a task could indicate reduced executive function, which is a 
manifestation of age-related cognitive decline. This suggests that 
neurodegeneration taking place in the brain regions responsible for 
advanced cognitive functions and task execution advances laterally 
(Opwonya et al., 2022). Additionally, negative correlations between 
RTSD and frontal domain scores were observed in both groups. In 
addition, there were significant negative correlations between MMSE 
and RTSD and between language and both the ER and RTSD in the 
MCI group but not in the CN group. This implies that the higher the 
RTSD, the lower the MMSE and language function scores. These 
negative correlations suggest a link between onset cognitive decline 
and lapses in attention (Datta et  al., 2007). Lastly, there was a 
significant positive correlation between the frontal and the ACC in 
both groups. This indicates that the higher the accuracy, the greater 
the executive function performance.

The ERP and behavioral measures capable of discriminating MCI 
independently from neuropsychological screening tests such as the 
MMSE will be good replacements or complements for the MMSE, 
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owing to certain constraints of screening tools like the MMSE which 
include limitations stemming from language or educational 
differences, the potential for a learning effect, and reduced sensitivity 
in the early stages of cognitive decline (Scazufca et al., 2009; Carnero-
Pardo, 2014). These studies (Chapman et al., 2007, 2011; Cecchi et al., 
2015; Stuckenschneider et al., 2020; Doan et al., 2021; Ganapathi et al., 
2022) developed diagnostic systems based on EEG/ERP 
measurements, so some of the relevant features identified in our work 
can be used to improve MCI or early AD screening models.

This study had several limitations. First, the generalizability of our 
findings may be  limited, as we  examined ERP measures only in 
ethnically Korean participants. Second, the MCI participants were not 
categorized into amnestic or non-amnestic phenotypes because of 
their smaller number compared to the healthy participants. This 
heterogeneity of patients with MCI may have contributed to 
discrepancies in the results (Petersen, 2004; Delano-Wood et  al., 
2009). Third, we deployed a rigorous exclusion criterion by eliminating 
participants who did not have a P300 ERP component onset or late 
zero-crossing points. This methodological drawback resulted in the 
exclusion of a significant number of participants. Fourth, because our 
results were based on a single EEG recording, there’s a potential for 
the cognitive function of patients with MCI to evolve over time, which 
could involve either a return to normal function or progression to 
other conditions. Thus, further investigation into the longitudinal 
changes of ERP measures is desirable to validate our results. It is also 
necessary to conduct prospective studies aimed at establishing the 
clinical implications and significance of the ERP measures utilized in 
the current study.

In conclusion, our study aimed to demonstrate the potential 
of prefrontal ERP measures from a portable EEG device for 
distinguishing patients with MCI from CN individuals. 
We provided a comprehensive description of these ERP measures 
and examined their relationships with neuropsychological tests 
commonly used in MCI screening. Our findings showed that 
patients with MCI demonstrated slower information processing 
abilities, initiated information processing earlier and exhibited 
poor task execution than CN. Logistic regression analysis for 
MCI prediction showed that some ERP and behavioral measures 
remained statistically significant even after adjusting for 
demographic characteristics and neuropsychological test scores, 
providing further evidence that ERP and behavioral measures 
could serve as valuable complements to neuropsychological tests 
for screening mild cognitive deficits. In future studies, there are 
possible areas to explore. First, it is important to validate our 
findings by broadening the study to encompass a more diverse 
ethnic population. Furthermore, there is need to establish links 
between the identified ERP measures and neurodegeneration 
biomarkers, as well as functional or structural neuroimaging 
data. Moreover, in the pursuit of enhancing predictive models for 
MCI, inclusion of these ERP measures, either independently or 
in combination with other non-invasive techniques like 
eye-tracking measurements could be considered.
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