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Sex moderates the association 
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Background: Decreasing white matter integrity in limbic pathways including the 
fornix and cingulum have been reported in Alzheimer’s disease (AD), although 
underlying mechanisms and potential sex differences remain understudied. 
We therefore sought to explore sex as a moderator of the effect of age on myelin 
water fraction (MWF), a measure of myelin content, in older adults without 
dementia (N  =  52).

Methods: Participants underwent neuropsychological evaluation and 3  T MRI at 
two research sites. Multicomponent driven equilibrium single pulse observation of 
T1 and T2 (mcDESPOT) quantified MWF in 3 a priori regions including the fornix, 
hippocampal cingulum (CgH), and cingulate cingulum (CgC). The California Verbal 
Learning Test-Second Edition assessed learning and delayed recall. Multiple linear 
regressions assessed for (1) interactions between age and sex on regional MWF 
and (2) associations of regional MWF and memory.

Results: (1) There was a significant age by sex interaction on MWF of the fornix 
(p  =  0.002) and CgC (p  =  0.005), but not the CgH (p  =  0.192); as age increased, 
MWF decreased in women but not men. (2) Fornix MWF was associated with both 
learning and recall (ps  <  0.01), but MWF of the two cingulum regions were not 
(p  >  0.05). Results were unchanged when adjusting for hippocampal volume.

Conclusion: The current work adds to the literature by illuminating sex differences 
in age-related myelin decline using a measure sensitive to myelin and may help 
facilitate detection of AD risk for women.
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Introduction

The investigation of white matter demyelination and degeneration 
in the brain has helped further elucidate the pathophysiological 
mechanism of both normal aging and neurodegenerative diseases 
such as Alzheimer’s disease (AD). Previously, many neuroimaging 
studies of AD have focused on gray matter atrophy thought to 
be  reflective of neurodegeneration more broadly, including beta 
amyloid (Aβ) and tau tangle accumulation. However, alterations in 
white matter network topology have been observed in preclinical AD 
(Fischer et  al., 2015), and age-related differences in white matter 
microstructure that predate gray matter atrophy have been 
demonstrated using multiple MRI methods (Arshad et  al., 2016; 
Bangen et al., 2021). Also, cognitive decline in normal aging and AD 
has been associated with changes in several widely distributed cerebral 
white matter tracts (Delano-Wood et al., 2012; Amlien and Fjell, 2014; 
Bangen et al., 2021).

Microstructural changes of limbic system regions such as the 
fornix and cingulum, which have been associated with memory 
function (Delano-Wood et  al., 2012; Van Der Holst et  al., 2013; 
Bangen et al., 2021) remain less understood. Compared to healthy 
controls, patients with AD show both macrostructural and 
microstructural white matter alterations across several regions, 
including the thalamus, thalamic radiation, cingulum, splenium of 
corpus callosum, and the fornix (Serra et al., 2010). Lower fornix 
myelin water fraction (MWF)—a measure of myelin content—has 
been associated with worse memory performance, even after adjusting 
for hippocampal volume (Metzler-Baddeley et al., 2019; Bangen et al., 
2021), and age has been shown to be associated with white matter 
decline in the fornix, but not the cingulum in healthy older adults 
(Stadlbauer et  al., 2008). A different group observed these same 
patterns in the fornix and in the inferior, but not superior cingulate 
bundle (Sullivan et al., 2010). Furthermore, damage to fornix white 
matter glia contributes to hippocampal gray matter damage in 
age-dependent limbic decline (Metzler-Baddeley et al., 2019).

Most studies have used diffusion tensor imaging (DTI) to examine 
microstructural white matter changes. However, this methodology is 
not specific to myelin and may be  associated with a variety of 
neuropathological metrics such as axonal size, density, and 
configuration (Beaulieu, 2002). Critically, DTI and myelin water 
fraction parameters may each offer unique data, and there is therefore 
increased focus on studying myelin more specifically since its repair 
and loss has direct implications for the development of white matter 
abnormalities and associations with Aβ toxicity (Bartzokis, 2011; 
McAleese et  al., 2017). A mutation in oligodendrocytes, which 
generate myelin, has been associated with white matter damage in AD 
(Pak et al., 2003), and age-related changes in white matter were also 
found to be more strongly associated with myelin sheath degeneration 
than axonal degeneration (Inano et al., 2011). Myelin water fraction 
has also been shown to be sensitive to age-related changes in white 
matter, and it increases specificity of measuring myelin content (Faizy 
et al., 2020).

Although women are at higher risk of developing AD, findings 
from studies investigating the effect of sex on white matter integrity 
have been mixed. Some researchers have found minimal or no sex 
effects in the relationship between age and white matter metrics (Salat 
et al., 2009; Inano et al., 2011; Faizy et al., 2018). Others have observed 
differences in the corpus callosum and left-hemisphere regions, where 

men show greater myelin content than women (Westerhausen, 2003; 
Liu et  al., 2010; Canales-Rodríguez et  al., 2021). Sullivan and 
colleagues noted that men and women showed similar age-related 
increases in fornix fiber diffusivity, but men showed a significant 
decline in corpus callosum genu fractional anisotropy compared to 
women (Sullivan et al., 2010). Most of these studies included young 
and middle-aged adults. Further research is needed to understand the 
effect sex may play in the relationship between age and myelin content, 
particularly in older adults and those at risk for AD.

Decreasing white matter integrity in limbic pathways including 
the fornix and cingulum have been reported in AD, although 
underlying mechanisms and potential sex differences remain 
understudied. Given this, we examined sex as a moderator of the effect 
of age on MWF, a measure of myelin content, in older adults.

Materials and methods

Participants

Fifty-two older adults without dementia were recruited from 
ongoing aging studies at the University of California, San Diego 
(UCSD) and University of Illinois Chicago (UIC). Participants were 
excluded if they had a history of dementia, clinical stroke, neurologic 
disease (e.g., Parkinson’s disease, multiple sclerosis), head injury with 
residual cognitive sequelae, or major psychiatric disorder.

Participants underwent clinical interview, brachial artery blood 
pressure measurement, neuropsychological assessment, and MR 
exams. Participants at UIC also underwent fasting blood draws. 
Arterial stiffening was indexed by pulse pressure, which was quantified 
as systolic minus diastolic pressure. Participants were classified as 
having diabetes based on self-report, hemoglobin A1c values ≥6.5%, 
and/or use of an anti-diabetic medication. Self-reported medical 
history was used to obtain current cigarette smoking, history of 
cardiovascular disease, history of atrial fibrillation, and current 
antihypertensive medication use in order to calculate Framingham 
Stroke Risk Profile (FSRP) score, an index of stroke risk. The updated 
FSRP provides sex-corrected scores based on age, systolic blood 
pressure, diabetes, cigarette smoking, cardiovascular disease, atrial 
fibrillation, and antihypertensive medication use (Dufouil et al., 2017). 
The study protocol was approved by Institutional Review Board at 
each institution, and all participants provided informed consent.

Neuropsychological scores

Episodic memory was assessed by the California Verbal Learning 
Test – Second Edition (CVLT-II) (Delis et al., 2000). Two metrics were 
assessed: (1) learning – total learning trials 1–5 and (2) delayed recall 
– long delay free recall. Standardized scores were adjusted for age and 
sex (Delis et al., 2001).

MR image acquisition and analysis

MRI data were acquired on one of two GE 3 T scanners (one at 
UCSD, the other at UIC). Harmonized MRI acquisition across both 
scanner sites and analysis methods for this study have been previously 
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described (Bangen et  al., 2021). T1-weighted high-resolution 
anatomical scans were collected at UCSD using a Fast Spoiled 
Gradient Recall acquisition (172 1 mm × 0.977 mm × 0.977 mm 
contiguous sagittal slices, field of view [FOV] = 25 cm, repetition time 
[TR] = 8 ms, echo time [TE] = 3.1 ms, flip angle = 12, inversion time 
[T1] = 600 ms, 256 × 192 matrix, Bandwidth = 31.25 kHz, frequency 
direction = S-I, NEX = 1). T1-weighted high-resolution anatomical 
scans were collected at UIC using Brain Volume (BRAVO) imaging 
sequence (120 interleaved axial slices, FOV = 22 mm2; TR/
TE = 1,200 ms/5.3 ms). The T1-weighted scans collected at UCSD had 
dimensions of 1.0 mm x 0.977 mm x 0.977 mm. The T1-weighted scans 
collected at UIC had dimensions of 1.5 mm x 0.43 mm x 0.43 mm. 
T1-weighted images at both sites were processed with FreeSurfer 6.0 
(Dale et  al., 1999; Fischl et  al., 2002). Volumetric data, including 
hippocampal volume, was derived using FreeSurfer 6.0 and visually 
inspected. Normalized hippocampal volume was calculated by 
dividing by total intracranial volume.

For the mcDESPOT sequence, a series of spoiled gradient recalled 
echo were acquired (SPGR; TR = 5.3 ms, TE = Min Full, flip angle = 18, 
FOV =24.0) and T2/T1-weighted balanced steady-state free precession 
(SSFP) data over a range of flip angles (Deoni, 2011). To correct for B1 
inhomogeneities, we collected an inversion-recovery prepared SPGR 
(IR-SPGR) scan (TR = 5.3 ms, TE = Min Full, flip angle = 60, field of 
view = 24.0) and SSFP phase 0 (TE = Min Full, flip angle = 60, 
FOV = 24.0) with two phase-cycling patterns to correct for main 
magnetic field (B0) off-resonance effects. Following acquisition, the 
SPGR and SSFP images comprising each participant’s dataset were 
linearly coregistered to account for subtle intrasession head movement 
(Jenkinson et al., 2002). We obtained MWF maps (Figure 1) by fitting 
SPGR and bSSFP data to a three-pool model that included two 
exchanging water pools (myelin water and water both inside and 
outside the axon) as well as a third non-exchanging free water pool 
(Deoni et al., 2012). MWF map voxel dimensions were approximately 
1.7 mm3 isotropic.

Post-processing of mcDESPOT data was completed using the 
Oxford Centre for Functional Magnetic Resonance Imaging of the 
Brain (FMRIB) Software Library (FSL) (Smith et  al., 2004). 
T1-weighted images were downsampled to the 2mm3 resolution of the 
MNI152 template. Brain Extraction Tool (BET) was used to remove 
non-brain voxels from images. We then used FMRIB’s Linear Image 

Registration Tool (FLIRT) (Jenkinson et  al., 2002) and FMRIB’s 
Nonlinear Image Registration Tool (FNIRT) to linearly and then 
non-linearly register T1-weighted images and mcDESPOT myelin 
volume fraction images to the MNI152 T1 2mm resolution brain 
template. FSL’s Automated Segmentation Tool (FAST) was applied to 
segment T1-weighted images into white matter, gray matter, and 
cerebrospinal fluid components. The resulting FNIRT transforms were 
then applied to the myelin volume fraction masks. We multiplied 
segmented white matter masks by ROI masks to ensure inclusion of 
exclusively white matter voxels prior to extracting regional MWF 
values. The ROIs applied to the mcDESPOT data were selected using 
the ICBM-DTI-81 stereotaxic white matter parcellation map and 
included the fornix, cingulate cingulum (CgC), and hippocampal 
cingulum (CgH). Visual inspection of each participant’s T1-weighted 
image, MWF map, and the MNI152 template showed good alignment.

Statistical analyses

Prior to analyses, data were examined for violations of 
assumptions of the statistical procedures employed including posterior 
predictive check, linearity, homogeneity of variance, influential 
observations, collinearity, and normality of residuals. There were no 
outliers greater or less than three standard deviations away from the 
mean in any of the independent and dependent variables.

First, we  used linear regression models to examine two-way 
interactions between age and sex on MWF of 3 a priori regions 
(fornix, CgC, and CgH) as the dependent variable (Table 1). Each 
region was examined in a separate model. These models included 
covariates of site and pulse pressure, main effects of age and sex, and 
the two-way interaction of age and sex. To interpret significant 
interactions, we then stratified by sex and ran linear regression models 
examining the associations between age and regional MWF (adjusting 
for site and pulse pressure) separately for women and men.

Second, we examined associations between MWF in the a priori 
regions of interest and each memory measure (i.e., learning and recall) 
as dependent variables in separate models adjusting for collection site, 
pulse pressure, age, and sex. We first ran the models across the entire 
sample, and then these models were stratified by sex for 
further interpretation.

For all models, we ran secondary analyses additionally adjusting 
for normalized hippocampal volume. We also ran all primary analyses 
not adjusting for pulse pressure, and the results remained the same. 
The only result that changed was that, additionally adjusting for 
normalized hippocampal volume, there was a significant association 
between age and MWF on fornix in men. All analyses were conducted 
using R Statistical Software (R Core Team, 2023) with significance set 
at p < 0.05.

Results

Participant characteristics

Characteristics of each group can be viewed in Table 1. The men 
and women did not differ by average age, education, collection site, or 
race, p > 0.05. There were also no significant differences in sex 
distribution, age, fornix MWF, or CgH MWF between the collection 

FIGURE 1

Sample MWF map.
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sites, p > 0.05. T-tests showed a significant difference between CgC 
MWF between the collection sites (UIC M = 0.11, UCSD M = 0.09, 
p = 0.027).

Two-way interactions between age and sex 
on myelin water fraction

Adjusting for collection site and pulse pressure as well as the main 
effects of age and sex, there was a significant interaction between age 
and sex on fornix MWF (t = −2.99, p = 0.005, β = −4.93; Figure 2A; 
Table  2) as well as on CgC MWF (t = −3.32, p = 0.002, β  = −4.80; 
Figure 2B). The interaction between age and sex on CgH MWF was 
not significant (t = −1.33, p = 0.192, β = 0.08).

To interpret the significant interactions, analyses stratified by sex 
revealed that women (fornix t = −3.40, p = 0.002, β  = −0.51; CgC 
t = −4.71, p < 0.001, β = −0.59), but not men (fornix t = 0.94, p = 0.423, 
β  = 0.21; CgC t = 1.47, p = 0.160, β  = 0.37), showed significant 
age-associated declines in MWF.

In a secondary analysis, all results were unchanged after 
additionally adjusting for normalized hippocampal volume. That is, 
there was a significant interaction between age and sex on fornix 
MWF (t = −3.12, p = 0.003, β  = 0.43) as well as on CgC MWF 
(t = −3.25, p = 0.002, β = 0.34). The interaction between age and sex on 
CgH MWF remained non-significant (t = −1.19, p = 0.239, β = 0.14). 
In interpreting the significant interactions through regression models 
stratified by sex, the relationships between age and MWF remained 
significant in women (fornix t = −2.73, p = 0.011, β  = −0.40; CgC 
t = −4.13, p < 0.001, β = −0.55) but not men (fornix t = 1.96, p = 0.069, 
β = 0.40; CgC t = 2.01, p = 0.063, β = 0.49).

Associations between regional MWF and 
memory

Across all participants, adjusting for age, sex, pulse pressure, and 
collection site, fornix MWF was associated with measures of learning 
(t = 3.41, p = 0.001, β = 0.47) and recall (t = 2.88, p = 0.006, β = 0.43). 
Stratifying by sex, associations between fornix MWF and learning 
were significant in both men (t = 2.51, p = 0.024, β = 0.60) and women 
(t = 2.78, p = 0.010, β = 0.60), and the association between fornix MWF 
and recall was significant in women (t = 2.93, p = 0.007, β = 0.64), but 
not men (t = 1.80, p = 0.093, β = 0.51). MWF of the two cingulum 
regions were not associated with either learning or recall (p’s > 0.05).

In a secondary analysis additionally adjusting for normalized 
hippocampal volume, significant associations remained between 
MWF and both learning (t = 2.30, p = 0.027, β  = 0.36) and recall 
(t = 2.06, p = 0.046, β  = 0.36). Stratifying by sex, the associations 
between fornix MWF and both learning and recall remained 
significant in women (learning t = 2.30, p = 0.031, β  = 0.55; recall 
t = 2.71, p = 0.012, β = 0.66), but not in men (learning t = 0.94, p = 0.364, 
β = 0.28; recall t = 0.50, p = 0.624, β = 0.18).

Discussion

Our results demonstrate that sex moderates the associations 
between age and MWF in both the fornix and the CgC, but not the T
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CgH. Specifically, the significant interactions showed that for women, 
but not men, as age increased, MWF decreased. We also examined 
associations between MWF in each of the three regions and both 
learning and delayed recall. Results showed that fornix MWF was 
associated with learning regardless of sex and was associated with 
delayed recall only in women. MWF of the two cingulum regions were 
not associated with either cognitive measure regardless of sex.

Our findings suggest that, in older adults, the association between 
age and MWF of both the fornix and CgC is dependent on sex, even 

after adjusting for several relevant risk factors. Notably, these 
interactions showed that for women, as age increased, fornix and CgC 
MWF decreased, but for men, the relationship between age and MWF 
was not significant. Age-related white matter decline in the fornix and 
CgC have been observed in previous studies (Stadlbauer et al., 2008; 
Bastin et al., 2010; Fletcher et al., 2013), but few have stratified by sex 
and even fewer have investigated MWF using multicomponent 
relaxometry techniques. Thus, while some (Bastin et al., 2010) but not 
all (Kodiweera et al., 2016) studies have reported sex differences in 

FIGURE 2

(A) A significant interaction between age and sex on fornix MWF. (B) A significant interaction between age and sex on CgC MWF.

TABLE 2 Participant characteristics.

Men (N  =  20) Women (N  =  32) Between-group differences

Demographics

Age 71.6 ± 5.73 72.4 ± 6.24 t = −0.48, p = 0.64, d = 0.13

Education 17.40 ± 2.19 16.56 ± 2.03 t = 1.38, p = 0.18, d = 0.40

Collection Site 35% UIC; 65% UCSD 22% UIC; 78% UCSD X2 = 0.51, p = 0.47, V = 0.03

Race 80% White, 15% Black, 5% Asian 81% White, 13% Black, 6% Asian X2 = 0.09, p = 0.96, V < 0.00

Vascular Health

Pulse Pressure 56.73 ± 11.05 54.11 ± 15.77 t = 0.70, p = 0.49, d = 0.19

Diabetes 15% with diabetes, 85% without diabetes 13% with diabetes, 87% without diabetes X2 = 0.07, p = 0.80, V = 0.04

Current Smoking 15% smokers, 85% nonsmokers 3% smoker, 97% nonsmokers X2 = 2.44, p = 0.12, V = 0.22

FSRP 7.56 ± 3.34 8.21 ± 6.26 t = −0.49, p = 0.63, d = 0.12

Memory

List Learning 57.85 ± 12.78 58.81 ± 13.13 t = −0.26, p = 0.80, d = 0.07

Delayed Recall 0.32 ± 1.41 0.39 ± 1.03 t = −0.19, p = 0.85, d = 0.06

“Age” and “Education” are presented in years. “Pulse pressure” was quantified as systolic minus diastolic blood pressure and is presented in units of millimeters of mercury (mmHg). Two-
sample t-tests were used for evaluating differences in continuous variables between men and women. Chi-square tests were used to evaluate differences in categorical variables between men 
and women. “V” indicates Cramer’s V. “d” indicates Cohen’s d. “UIC” indicates University of Illinois Chicago, and “UCSD” indicates University of California, San Diego. “FSRP” indicates 
Framingham Stroke Risk Profile 10-year stroke probability as a percent. California Verbal Learning Test – Second Edition (CVLT-II) List Learning standardized scores are T-scores, and CVLT-
II Delayed Recall standardized scores are z-scores.
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DTI-derived white matter alterations, ours is the first to examine this 
relationship as it relates to myelin integrity. Furthermore, although 
previous work has shown age-related alterations in the fornix (Bastin 
et al., 2010), ours is the first to carefully consider sex in tandem with 
age. Interactions between age and sex were not significant when 
examining the CgH suggesting that the fornix and CgC may be a more 
sensitive marker of age-related demyelination and other 
neurodegenerative changes in the brain (Gazes et al., 2019; Metzler-
Baddeley et al., 2019). Taken together, our results suggest that women 
exhibit more age-related demyelination in brain regions critical for 
learning and memory than their male counterparts.

Results also showed significant associations between learning and 
fornix MWF for women and between recall and fornix MWF across 
both groups, and these relationships remained significant in women, 
but not men, even after adjusting for hippocampal volume. However, 
the associations between CgC or CgH MWF and learning/recall were 
not significant. These results are in line with research showing that 
fornix, but not hippocampal, integrity is associated with performance 
on a memory test (Gazes et al., 2019). Furthermore, volume of the 
fornix has been shown to be a stronger predictor of cognitive decline 
among the cognitively normal than hippocampal volume (Fletcher 
et al., 2013). Also, although decreased cingulum white matter integrity 
has been observed in individuals with amnestic mild cognitive 
impairment or AD (Gozdas et al., 2020; Luo et al., 2020; Wong et al., 
2020), our sample of older adults without dementia may be too early 
in the aging or disease process to detect these changes. Future work 
using MWF should examine these associations in older adults with 
AD, as well as middle-aged adults, to further elucidate the timeline of 
its effect on cognition across the AD spectrum.

There are several limitations to our study worth noting. First, our 
study is preliminary given its small sample size and cross-sectional 
design. Longitudinal studies with larger samples are needed to further 
clarify the role that sex plays in limbic system myelin integrity across 
the aging spectrum. Our sample was also mostly comprised of White 
and relatively highly educated individuals. The relationships between 
age, sex, and myelin content may be different in a more diverse sample 
or one with greater variability in education or socioeconomic status. 
Additionally, although defined as such in this study, sex is not 
necessarily a binary construct, and we  did not evaluate intersex. 
We  also did not have body mass index or cholesterol data for all 
participants, and these are factors that can impact white matter 
integrity. Our analyses were also limited to one shared memory 
measure between the two collection sites. Finally, the myelin-related 
signal can be influenced by physiological factors such as white matter 
injury and inflammation as well as data acquisition factors such as flip 
angle errors, which may reduce the precision of individual MWF 
estimates. In the present study, we visually inspected all data to ensure 
adequate quality data. Future large-scale studies should employ 
multiple measures of learning and memory in order to more 
comprehensively evaluate both verbal and visual memory measures 
as they relate to myelin metrics in at-risk older adults.

Conclusion

Results of our study suggest that the relationship between age and 
myelin content of limbic fiber pathways depends on sex, with women 
showing age-related decreases that are associated with poorer memory 
performance. We also found significant associations between learning/

recall and fornix MWF in women. The current work adds to the 
literature by illuminating the role that sex plays in age-related myelin 
decline using a more sensitive measure of myelin content. 
Understanding sex differences in MWF may also facilitate earlier 
detection of AD risk for women. Future work will expand on these 
findings in a larger, longitudinal sample, such as whether baseline 
fornix MWF is differentially associated with memory decline in men 
versus women. Future analyses may also examine whether age 
interacts with sex to affect change in myelin content of the limbic 
fiber pathways.
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