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Alzheimer’s disease (AD) is the most common cause of dementia. Accurate

prediction and diagnosis of AD and its prodromal stage, i.e., mild cognitive

impairment (MCI), is essential for the possible delay and early treatment for the

disease. In this paper, we adopt the data from the China Longitudinal Aging

Study (CLAS), which was launched in 2011, and includes a joint e�ort of 15

institutions all over the country. Four thousand four hundred and eleven people

who are at least 60 years old participated in the project, where 3,514 people

completed the baseline survey. The survey collected data including demographic

information, daily lifestyle, medical history, and routine physical examination.

In particular, we employ ensemble learning and feature selection methods to

develop an explainable prediction model for AD and MCI. Five feature selection

methods and nine machine learning classifiers are applied for comparison to find

the most dominant features on AD/MCI prediction. The resulting model achieves

accuracy of 89.2%, sensitivity of 87.7%, and specificity of 90.7% for MCI prediction,

and accuracy of 99.2%, sensitivity of 99.7%, and specificity of 98.7% for AD

prediction. We further utilize the SHapley Additive exPlanations (SHAP) algorithm

to visualize the specific contribution of each feature to AD/MCI prediction at

both global and individual levels. Consequently, our model not only provides

the prediction outcome, but also helps to understand the relationship between

lifestyle/physical disease history and cognitive function, and enables clinicians

to make appropriate recommendations for the elderly. Therefore, our approach

provides a new perspective for the design of a computer-aided diagnosis system

for AD and MCI, and has potential high clinical application value.

KEYWORDS

Alzheimer’s disease, mild cognitive impairment, ensemble learning, feature selection,

explainable AI

1. Introduction

Alzheimer’s disease (AD) is the most common dementia in the elderly, which is a slow

and lengthy progressive neurodegenerative disorder and accounts for 60–80% of dementia

cases. The population of AD is projected to reach 106.8 million by 2050 (Brookmeyer et al.,

2007). Although numerous therapies have been investigated, there has been no successful

trial that can modify the course of the disease. On the other hand, according to the data from

epidemiologic studies and clinical trials, it has indicated that early intervention may delay

the AD progression (Brookmeyer et al., 1998; Norton et al., 2014; Ngandu et al., 2015). The
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prodromal stage of AD, termed as mild cognitive impairment

(MCI), can lead to cognitive decline and has a high risk to develop

AD. Thus, accurate prediction and diagnosis of AD and MCI are

very critical for the prevention and therapy of the disease.

Previous studies reported that some clinical and demographic

features are considered to have strong predictive abilities

(Livingston et al., 2017). However, none of them is strong

enough to differentiate AD/MCI among the community elderly

independently. It is more likely that clinical/demographic features

may have complex relationships and, as a whole, jointly predict AD

progression. Hence, the artificial intelligence (AI) approach may be

a suitable way to combine these data to solve the problem.

Recently, many researchers have applied AI techniques for

AD prediction. Zhang et al. (2019) propose a deep learning

approach based on two convolutional neural networks (CNN) and

multimodal medical images. Then correlation analysis is applied to

judge the consistency of the output of the two CNN. Salvatore et al.

(2015) extract features from MRI data using principal component

analysis, and apply amachine learning algorithm to predict whether

MCI patients will convert to AD.

Loddo et al. (2022) presents a deep learning approach for

Alzheimer’s disease diagnosis using brain images. It compares

different deep learning models and proposes a fully automated

deep-ensemble approach for dementia-level classification.

Discusses the challenges in detecting Alzheimer’s disease (AD)

in its early stages and reviews the current research on machine

learning techniques for its detection and classification, with a

focus on neuroimaging. The review suggests that deep learning

techniques hold promise for AD diagnosis, and new algorithms

have yet to be explored for AD diagnosis. These studies above apply

various machine learning and deep learning methods to predict

AD based on data from different modalities. But they only focus on

the models’ performance while neglecting the interpretation of the

output of these models.

The following studies not only design a new model, but also

analyze the output of the model. El-Sappagh et al. (2021) develop

a two-layer model with random forest (RF), and use the SHapley

Additive exPlanations (SHAP) framework to make overall and

individual explanations for the result of each layer. Additionally,

22 explainers are developed based on decision tree and fuzzy rule-

based systems to provide supplementary justifications for every RF

decision in each layer. Danso et al. (2021) develop a framework

that integrates transfer learning and ensemble learning algorithms

to develop explainable personalized risk prediction models for

dementia, SHAP is used to visualize the risk factors responsible for

the prediction.

In this paper, we adopt the data from China Longitudinal

Aging Study (CLAS; Haibo et al., 2013; Xiao, 2013; Xiao et al.,

2016), which is a community-based cohort study launched in 2011.

The project was conducted jointly by 15 institutions located in

eastern, middle, and western parts of China. A total of 4,411

people at least 60 years old participated in the project, where

3,514 people completed the baseline survey. The survey collected

data including demographic information, daily lifestyle, medical

history, and routine physical examination. In addition, a variety

of psychological and psychosocial measures were assessed by

psychologists. A normal diagnostic method was adopted to classify

the cognitive condition of all subjects, i.e., normal control (NC),

MCI, or AD.

Based on this data, we aim to propose a joint detection of

interpretablemachine learningmodels and predictive indicators for

predicting AD and MCI as follows:

1) we have processed the missing and default values in the data

through a unified arrangement and data cleaning steps as part

of data preprocessing. At the same time, we compared five

feature selection methods to reduce the dimensionality of the

data and the complexity of the model calculation. Finally, we

used nine classifiers of general interpretable machine learning

for classification comparison.

2) based on previous research, our dataset includes more

comprehensive information, including lifestyle, physical

diseases, and medical check-up results. To our knowledge, this

is the first work that aims to predict cognitive status using

large-scale and multi-faceted information, especially detailed

lifestyle and clinical information.

2. Materials and methods

This section describes the details of our proposed system. As

shown in Figure 1, it has four stages, which are data preprocessing,

feature engineering, classification, and explanation, respectively.

The framework also displays the methods adopted in these stages.

The detailed introduction of every stage can be found in the

following subsections.

2.1. Study participants and data collection

The population of our study is a community-based cohort

study, named CLAS. The Chinese Longitudinal Aging Study

(CLAS) was designed to provide information about the cognitive,

mental, and psychosocial health of older people in China (Xiao,

2013). This survey was a joint effort of 15 institutions located in

the eastern, middle, and western parts of China. The sample was

randomly selected from all permanent residents aged over 60 in the

2010 national census (Xiao, 2013).

As reported in the above protocol (Haibo et al., 2013; Xiao,

2013; Xiao et al., 2016). These clinical diagnoses were made

according to accepted criteria and with consideration of comorbid

conditions. MCI was classified using the Petersen criteria (Petersen

et al., 2001) and AD dementia were diagnosed according to the

DSM-IV criteria (American Psychiatric Association, 2000), both of

which were clinically diagnosis.

Out of the 3,514 participants who completed the survey, a total

of 2,658 people had cognitive condition results, which includes 98

individuals (3.69%) with AD, 556 individuals (20.92%) with MCI,

and 2,004 individuals with NC.

The dataset has 53 features, including demographic

information, daily lifestyle, medical history, and routine physical

examination. Tables 1, 2 shows the summary results of the standard

deviation, mean, and interquartile range (IQR) of every feature for

three classes.
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FIGURE 1

Overview of the structure of the proposed system.

2.2. Data preprocessing

2.2.1. Missing value
In the dataset, most features have missing values, yet the

missing rate is low (<7%). For the features with missing values,

we first treat a feature with missing value as a new tag, and the

remaining features and original tags form new input values. Then

we apply a random forest algorithm to predict the missing values

in the new tag (Liaw andWiener, 2002). All features are filled up in

turn following the steps above.

2.2.2. Data augmentation
In our dataset, the number of AD (98 samples) and

MCI (556 samples) are far less than that of NC (2,004

samples). The data imbalance may seriously degrade the
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TABLE 1 Statistics summary of the full data set for 2,658 patients (Part 1).

Alzheimer’s disease Mild cognitive impairment Normal control

Std Mean IQR Std Mean IQR Std Mean IQR

Gender (1=M, 2= F) 0.45 1.72 1.0–2.0 0.49 1.62 1.0–2.0 0.5 1.52 1.0–2.0

Age (year) 6.99 80.22 76.0–85.0 8.09 73.92 67.0–80.0 7.19 70.19 64.0–75.0

Education (year) 4.09 3.6 0.0–6.0 5.07 5.71 0.0–9.0 5.13 9.13 6.0–12.0

Retirement (1= yes, 2= no) 0.26 1.07 1.0–1.0 0.2 1.04 1.0–1.0 0.23 1.06 1.0–1.0

Professional nature (1=mental, 2= labor) 0.36 1.84 2.0–2.0 0.45 1.72 1.0–2.0 0.5 1.49 1.0–2.0

Long-term residence 0.64 1.3 1.0–1.0 0.63 1.3 1.0–1.0 0.59 1.23 1.0–1.0

Duration of smoking (year) 17.93 7.83 0.0–0.0 16.9 8.47 0.0–0.0 17.37 9.92 0.0–15.0

Duration of drinking (year) 12.63 5.03 0.0–0.0 15.85 6.91 0.0–0.0 15.35 7.08 0.0–0.0

Duration of tea (year) 16.58 8.02 0.0–3.0 17.88 10.38 0.0–16.75 19.34 15.25 0.0–30.0

Duration of sports (year) 13.47 7.27 0.0–10.0 13.35 11.13 0.0–20.0 14.46 13.36 1.0–20.0

Duration of reading(year) 7.88 1.54 0.0–0.0 12.96 4.11 0.0–0.0 18.96 10.6 0.0–15.0

Duration of music(year) 7.9 1.3 0.0–0.0 12.64 3.93 0.0–0.0 16.59 7.48 0.0–0.0

Duration of painting and calligraphy (year) 0.0 0.0 0.0–0.0 4.94 0.57 0.0–0.0 6.91 1.29 0.0–0.0

Duration of chess and card (year) 8.78 2.12 0.0–0.0 9.7 3.17 0.0–0.0 10.2 3.34 0.0–0.0

Duration of surf on internet (year) 0.0 0.0 0.0–0.0 1.24 0.17 0.0–0.0 3.17 0.83 0.0–0.0

Duration of photography (year) 0.0 0.0 0.0–0.0 2.6 0.27 0.0–0.0 6.32 1.31 0.0–0.0

Duration of fishing (year) 0.0 0.0 0.0–0.0 4.2 0.48 0.0–0.0 3.67 0.45 0.0–0.0

Duration of Tai Chi (year) 1.34 0.22 0.0–0.0 4.84 0.9 0.0–0.0 4.87 1.24 0.0–0.0

Eating habits (1= veggie, 2=meat, 3=mix) 0.94 2.29 1.0–3.0 0.93 2.3 1.0–3.0 0.87 2.44 1.0–3.0

Duration of eating fish (year) 29.62 42.43 10.0–70.0 25.78 39.09 16.0–60.0 24.67 39.66 20.0–60.0

Hours of sleep (18–44 years old) 1.25 7.34 7.0–8.0 1.36 7.22 6.18–8.0 1.26 7.29 6.48–8.0

Frequency of nap (18–44 years old) 1.32 0.57 0.0–0.0 1.54 0.89 0.0–1.0 1.53 0.88 0.0–1.0

Hours of sleep (45–60 years old) 1.23 7.07 6.5–8.0 1.31 6.82 6.0–8.0 1.38 6.83 6.0–8.0

Frequency of nap(45–60 years old) 1.53 0.9 0.0–1.0 1.65 1.11 0.0–2.0 1.62 1.05 0.0–2.0

Hours of sleep (>60 years old) 1.95 6.68 5.0–8.0 1.62 6.44 5.13–8.0 1.39 6.44 5.47–7.06

Frequency of nap (>60 years old) 1.83 2.14 0.0–4.0 1.82 2.17 0.0–4.0 1.86 2.06 0.0–4.0

performance of the machine learning algorithm. For example,

overfitting may occur due to the imbalanced training

data. We use the adaptive synthetic sampling approach

(ADASYN) to handle the issue (He et al., 2008). ADASYN

can adaptively generate samples for the minority class based on

its distribution.

2.2.3. Data normalization
In the dataset, every feature has a different value range. This

may lead to unreasonable results, since the feature with larger

values will have higher weights on the learned model. Thus, it is

necessary to use data normalization tomitigate this effect. Max-min

normalization is applied to each feature, which can be expressed by

X′
=

X̄

maxX̄ −minX̄
, (1)

where X̄ is the standard deviation of X, given by

X̄ =
X −minX

maxX −minX
. (2)

2.3. Feature selection

There are a total of 53 features in the dataset, including

demographics, daily lifestyle, medical history, and routine physical

examination as shown in Tables 1, 2. Dimensionality reduction is

a fundamental requirement for achieving simplicity and assessing

the complexity of the model. The curse of dimensionality can

adversely impact the model in terms of runtime and exhaustion of

storage resources, particularly for non-scalable classifiers. For these

reasons, we need to use the feature selection methods.

Feature selection is the preprocessing step before applying the

classifier, which aims to eliminate unrelated and redundant features
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TABLE 2 Statistics summary of the full data set for 2,658 patients (Part 2).

Alzheimer’s disease Mild cognitive impairment Normal control

Std Mean IQR Std Mean IQR Std Mean IQR

Duration of memory decline (year) 4.59 5.25 2.0–7.0 4.02 4.26 2.0–5.0 3.58 2.78 0.0–4.0

Duration of depression (year) 1.17 0.35 0.0–0.0 1.84 0.41 0.0–0.0 1.19 0.16 0.0–0.0

Duration of anxiety (year) 1.0 0.28 0.0–0.0 1.79 0.38 0.0–0.0 1.49 0.17 0.0–0.0

Duration of hypochondria (year) 0.95 0.09 0.0–0.0 0.24 0.01 0.0–0.0 0.75 0.05 0.0–0.0

Duration of physical discomfort (year) 0.92 0.22 0.0–0.0 4.39 0.93 0.0–0.0 2.11 0.31 0.0–0.0

Duration of disability in work and study (year) 4.6 3.96 0.0–5.5 4.31 2.55 0.0–3.16 2.87 1.1 0.0–0.0

Duration of daily life function decline (year) 3.65 3.13 0.0–5.0 2.74 0.88 0.0–0.0 1.4 0.25 0.0– 0.0

Duration of sleep disorder (year) 5.22 1.88 0.0–0.25 6.66 2.12 0.0–0.0 5.77 1.52 0.0–0.0

Duration of abnormal diet (year) 4.38 0.8 0.0–0.0 0.81 0.12 0.0–0.0 1.11 0.09 0.0–0.0

Duration of hypertension (year) 11.03 7.78 0.0–13.0 9.91 6.34 0.0–10.0 9.91 6.16 0.0–10.0

Duration of angina pectoris (year) 1.08 0.16 0.0–0.0 3.77 0.77 0.0–0.0 3.85 0.83 0.0–0.0

Frequency of myocardial infraction (year) 0.21 0.03 0.0–0.0 0.14 0.01 0.0–0.0 0.33 0.05 0.0–0.0

Duration of atrial fibrillation (year) 4.65 0.88 0.0–0.0 1.78 0.15 0.0–0.0 2.3 0.25 0.0–0.0

Duration of diabetes (year) 5.83 3.51 0.0–6.61 5.12 2.8 0.0–4.99 4.52 1.91 0.0–0.0

Duration of hyperlipemia (year) 4.51 2.41 0.0–4.0 4.09 1.99 0.0–3.0 4.77 2.18 0.0–2.0

Surgical history (1= yes, 2= no) 0.48 1.64 1.0–2.0 0.49 1.59 1.0–2.0 0.49 1.59 1.0–2.0

Past brain trauma (1= yes, 2= no) 0.28 1.95 2.0–2.0 0.24 1.94 2.0–2.0 0.23 1.95 2.0–2.0

Family history of dementia (1= yes, 2= no, 3=

unknown)

0.27 2.06 2.0–2.0 0.18 2.0 2.0–2.0 0.2 1.98 2.0–2.0

Family history of depression (1= yes, 2= no, 3=

unknown)

0.23 2.06 2.0–2.0 0.16 2.01 2.0–2.0 0.11 2.0 2.0–2.0

Family history of physical disease (1= yes, 2= no,

3= unknown)

0.5 1.99 2.0–2.0 0.44 1.88 2.0–2.0 0.4 1.84 2.0–2.0

Systolic blood pressure 18.68 128.18 120.0–136.0 16.11 129.69 120.0–140.0 14.83 128.9 120.0– 140.0

Diastolic blood pressure 9.36 75.66 70.0–80.0 8.98 76.7 70.0–80.0 8.55 77.77 70.0–80.0

Heart rate 7.38 74.75 70.0–80.0 8.59 73.56 68.0–80.0 7.76 73.59 68.0–80.0

Dominate hand (1= left, 2= right) 0.1 1.99 2.0–2.0 0.2 1.96 2.0–2.0 0.17 1.97 2.0–2.0

Weight (kg) 9.99 55.78 48.0–62.0 10.4 59.76 52.94–65.88 10.26 62.96 55.0–70.0

Height (cm) 7.68 159.49 154.0–165.0 8.26 161.21 155.0–168.0 7.9 162.08 156.0–168.0

Positive indication of internal medicine (1= yes, 2

= no)

0.3 1.9 2.0–2.0 0.33 1.88 2.0–2.0 0.26 1.92 2.0–2.0

while preserving the key information of the original dataset by

selecting the representative features.

Five feature selection methods are tested in our experiment,

which are ReliefF (Kononenko, 1994), Gini index (Gini, 1971),

Information gain (IG; Alhaj et al., 2016), Least absolute shrinkage

and selection operator (LASSO; Tibshirani, 1996), Sparse group

LASSO (SGL; Friedman et al., 2010).

2.4. Machine learning algorithm

Several machine learning models are compared to select the

best classifier for AD/MCI prediction, which include three basic

classifiers and six ensemble classifiers.

Three basic classifiers are K-Nearest Neighbors (KNN; Altman,

1992), Decision Tree (DT; Loh, 2011), and Support VectorMachine

(SVM; Cortes and Vapnik, 1995), respectively.

Ensemble learning is an integrated approach that can combine

multiple base learners to achieve better performance, where many

machine learning algorithms can be applied as the base learners,

such as DT, neural network, etc. The base learners can be generated

by two styles, i.e., the parallel style and the sequential style.

Then all base learners will be combined to form a better learner,

where the most common combination schemes are the majority

for voting and weighted averaging for regression. To find out

the best classifier, six ensemble learning methods are applied for

comparison, which are Adaptive Boosting (AdaBoost; Freund and

Schapire, 1996), eXtreme Gradient Boosting (XGBoost; Chen and

Guestrin, 2016), Light Gradient Boosting Machine (LightGBM;
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Ke et al., 2017), Bootstrap Aggregation (Bagging; Breiman, 1996),

Random Forest (RF; Breiman, 1996), and Extra Tree (ET; Geurts

et al., 2006), respectively.

2.5. Model explainer

SHapley Additive exPlanation (SHAP) is a game-theoretic

approach to explain the output of any machine learning model,

which is proposed by Lundberg and Lee (2017). The goal of SHAP is

to explain the prediction of a sample xi by computing the influence

score of each feature to the prediction. The prediction yi can be

expressed as follows:

yi = ybase + f (xi1)+ f (xi2)+ · · · + f (xin), (3)

where ybase is the average of predictions of all samples, and f (xij)

is the SHAP value of xij which is the contribution of j-th feature

to the prediction of xi. When f (xij) > 0, the j-th feature can

boost the prediction, otherwise, it has a negative effect. Compared

with traditionalmeasurement of feature importance, the strength of

SHAP is that it can reflect the specific contribution of each feature

to the model’s output.

2.6. Performance metrics

To evaluate the model’s performance, we use five performance

criteria : Accuracy, Sensitivity, Specificity, G-mean, andAreaUnder

Curve (AUC). Accuracy is the ratio between the correctly classified

samples and all samples, which is defined as

Accuracy =
TP + TN

TP + FP + FN + TN
, (4)

where TP represents the true positive, TN represents the true

negative, FP represents the false positive, and FN represents the

false negative. Since the data imbalance exists among different

classes, accuracy is not enough for evaluating performance. It may

cause misleading if the model only predicts the majority class

correctly while neglecting the minority class. It is necessary to use

more metrics to evaluate the performance of each class. Sensitivity

is a measure of how well a model can predict for positive samples,

and specificity is a metric of how well a model can predict for

negative samples. The definition of the above metrics are shown

as follows:

Sensitivity =
TP

TP + FN
, (5)

Specificity =
TN

TN + FP
. (6)

G-mean is a reliable metric in the situation of overfitting the

negative class and underfitting the positive class. As shown in

Equation (7), it combines the sensitivity and specificity into a single

score to balance both concerns. A model has a high G-mean,

meaning that a classifier is not biased toward any of the classes

(Kotsiantis et al., 2006).

G−mean =
√

Sensitivity× Specificity. (7)

AUC is another helpful metric to evaluate how effective the

classifier is in separating different classes. The receiver operating

characteristic curve (ROC) plots the Sensitivity against the 1 −

Specificity at various threshold settings, where the area of 1

indicates the model is excellent, and the area of 0.5 denotes it is

a worthless model.

3. Experiments and results

In this section, we commence by revisiting hyperparameter

optimization techniques and other pertinent works, followed by a

detailed exposition of our specific experimental setup.

3.1. Hyperparameter optimization

In facing a plethora of algorithms mentioned within, each

bearing distinct types of hyperparameters, the impact on model

performance may manifest in varying manners. Take the Random

Forest algorithm as an instance, wherein the number of estimators

and the depth of trees serve as hyperparameters, casting a

profound influence upon the model’s performance. Currently,

hyperparameter tuning can predominantly be categorized into the

following methods: Grid Search: A classic technique diligently

employed by examining all plausible parameter combinations. Grid

Search contemplates the entire parameter space, partitioning it

into a grid-like structure, where each point within the grid is

evaluated as a hyperparameter (Bergstra and Bengio, 2012; Shekhar

et al., 2021). This near-exhaustive optimization approach is apt

for low-dimensional hyperparameter spaces, albeit our classifier

algorithms necessitate multi-dimensional space optimization.

Random Search: Randomized selection of hyperparameters marks

the hallmark of this method, offering simplicity in implementation,

yet challenging the adjustment of model hyperparameters based

on commonality (Bergstra and Bengio, 2012). Bayesian Hyper-

parameter Optimization: Adopting a Bayesian rules, this method

fine-tunes the evaluation function through posterior distribution,

markedly reducing the search process within the parameter space

(Dewancker et al., 2016). In our experimental setup, we employed

the HyperOpt library (Bergstra et al., 2013) for hyperparameter

optimization. HyperOpt operates on the paradigm of Sequential

Model-Based Optimization (SMBO; Hutter et al., 2011), with the

Tree of Parzen Estimators (TPE) orchestrating the search within

the current space.

The parameter search space across different classifiers is

delineated in Table 3, showcasing the breadth and scope entailed

in tuning the hyperparameters to adeptly tailor the model to

our dataset.
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TABLE 3 Hyperparameter space explored for each model.

Model Hyperparameter Range Sampling

KNN Num neighbors {1...100} Choice

SVM Kernel rbf –

C [1, 1500] Uniform

gamma [0, 1] Uniform

XGBoost Num estimators {1...1,000} Choice

Learning rate [0, 1] Uniform

Max depth {1...25} Choice

gamma [0, 0.5] Uniform

Column subsampling [0.5, 1] Uniform

Min child weight {1...5} Choice

LightGBM Num estimators {1...1,000} Choice

Learning rate [0, 1] Uniform

Max depth {1...25} Choice

Reg alpha [0, 5] Uniform

Reg lambda [0, 5] Uniform

Subsample [0.5, 1] Uniform

ET Num estimators {1...1,000} Choice

Max depth {1...25} Choice

Criterion {gini, entropy} Choice

Max features {sqrt, log2, 0.2, 0.5, 0.8} Choice

Min samples split {2...40} Choice

Min samples leaf {1...40} Choice

Max leaf nodes {2...40} Choice

Bagging Num estimators {1...1,000} Choice

Max depth {1...25} Choice

Criterion {gini, entropy} Choice

Min samples split {2...40} Choice

Min samples leaf {1...40} Choice

Max leaf nodes {2...40} Choice

Adaboost Num estimators {1...1,000} Choice

Learning rate [0, 1] Uniform

Max depth {1...25} Choice

Criterion {gini, entropy} Choice

Min samples split {2...40} Choice

Min samples leaf {1...40} Choice

Max leaf nodes {2...40} Choice

DT Max depth {1...25} Choice

Criterion {gini, entropy} Choice

RF Num estimators {1...1,000} Choice

Max depth {1...25} Choice

Criterion {gini, entropy} Choice

Max features {sqrt, log2, 0.2, 0.5, 0.8} Choice

Min samples split {2...40} Choice

Min samples leaf {1...40} Choice

Max leaf nodes {2...40} Choice

3.2. System setup and implementation

We developed our framework using the Python 3.6

environment. Essential libraries employed in our study included

scipy, matplotlib, pandas, sklearn, Hyperopt, and numpy. The

computational experiments were conducted on a laptop equipped

with an Intel Core i5-10310U CPU and 16 GB of RAM. The

simulations demanded∼10 h to produce the outcomes.

The experiments are carried out based on the K-fold cross-

validation technique with K=10. The dataset is divided into K

subsets, where each subset is treated as a testing set in turn, while

the rest of the data is used to train the model. Then the final

result is the average of these K results. This method guarantees

the training and testing processes are both applied to the whole

dataset. During the generation of each fold, stratified sampling is

also applied to ensure that the proportion of samples of each class

in the training and testing sets is the same as that in the original

dataset, which is important to have more representative samples

and reduce sampling errors.

3.3. Performance analysis of all classifiers
with oversampling

In order to select the optimal classifier for the classification

task, we apply nine classifiers for comparison. As the disparity

of the sample number between different classes is too large, we

conduct the experiments repeatedly using different oversampling

ratios. Every classifier’s final results are obtained with the optimal

oversampling ratio.

Furthermore, we also compare the results of the classifiers on

the original data and the oversampling data.In the experiment,

since the number of MCI and NC are 556 and 2,004, respectively,

we use ADASYN to oversample for MCI at different ratios, starting

from 100 to 300%, and the experiment is repeated three times

for each classifier. Table 4 shows the results of all classifiers on

original data and oversampling data with 10-fold cross validation.

Compared with the results obtained from the original data, the

specificity of all classifiers from the oversampling data decrease,

which means the prediction ability of all classifiers for NC declines.

On the contrary, the sensitivity of all models increases significantly,

which indicates that the prediction ability of MCI has been greatly

improved by using the oversampling method. Moreover, according

to the increment in accuracy, G-mean, and AUC among most of

the classifiers, more samples generated by oversampling technique

make the whole performance improve. Although SVM achieves

the best with respect to the accuracy and the G-mean, its overall

performance is not as good as AdaBoost after applying the feature

selection methods, which will be discussed in the next subsection.

Table 5 shows the classification results of AD and NC with

10-fold cross validation. Since the number of AD is only 98, the

oversampling ratio is from 100 to 2000%. In the experiment, except

for the specificity, the other four metrics of all classifiers have

been greatly improved by applying oversampling, especially the

sensitivity. The AdaBoost achieves accuracy of 0.996, sensitivity

of 0.999, specificity of 0.993, G-mean of 0.996, and AUC of 1.

Although the sensitivity of AdaBoost is slightly worse than that
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TABLE 4 Performance under di�erent classifiers for MCI/NC prediction (OR, Original data; OS, Oversampling data).

Model Accuracy Sensitivity Specificity G-mean AUC

OR OS OR OS OR OS OR OS OR OS

KNN 0.784 0.849 0.005 0.971 1 0.724 0.04 0.838 0.6721 0.8474

DT 0.786 0.776 0.284 0.752 0.925 0.796 0.506 0.774 0.7205 0.8501

SVM 0.789 0.914 0.09 0.965 0.983 0.862 0.294 0.912 0.7339 0.9704

AdaBoost 0.807 0.911 0.298 0.899 0.948 0.922 0.525 0.91 0.756 0.9715

XGBoost 0.811 0.901 0.347 0.886 0.94 0.917 0.567 0.901 0.7754 0.9632

LGBM 0.8 0.901 0.336 0.892 0.929 0.909 0.554 0.901 0.7687 0.9635

Bagging 0.805 0.81 0.21 0.822 0.971 0.799 0.45 0.811 0.7856 0.8871

RF 0.801 0.832 0.205 0.856 0.967 0.806 0.441 0.831 0.7738 0.9116

ET 0.803 0.803 0.16 0.83 0.981 0.776 0.391 0.802 0.765 0.8808

TABLE 5 Performance under di�erent classifiers for AD/NC prediction (OR, Original data; OS, Oversampling data).

Model Accuracy Sensitivity Specificity G-mean AUC

OR OS OR OS OR OS OR OS OR OS

KNN 0.953 0.952 0 0.998 1 0.927 0.0 0.962 0.794 0.963

DT 0.961 0.953 0.337 0.958 0.991 0.949 0.568 0.954 0.854 0.974

SVM 0.953 0.993 0.112 1 0.995 0.986 0.272 0.993 0.863 1.0

AdaBoost 0.958 0.996 0.152 0.999 0.998 0.993 0.322 0.996 0.901 1.0

XGBoost 0.972 0.99 0.501 0.992 0.995 0.989 0.701 0.99 0.944 0.999

LGBM 0.97 0.987 0.527 0.993 0.992 0.982 0.712 0.987 0.943 0.999

Bagging 0.959 0.974 0.247 0.984 0.994 0.963 0.443 0.973 0.909 0.994

RF 0.965 0.97 0.346 0.97 0.995 0.971 0.573 0.97 0.952 0.996

ET 0.961 0.968 0.236 0.99 0.997 0.948 0.47 0.969 0.945 0.994

of SVM, its other metrics are the best among all classifiers. In

summary, we select AdaBoost as the classifier.

3.4. Performance analysis of feature
selection methods under AdaBoost and
oversampling

The aim of this experiment is to use the feature selection

method to decrease the dimension of the dataset and computational

complexity. Five feature selection methods are applied in the

experiment, which are Gini index, IG, reliefF, LASSO, and SGL.

They are used to reduce the dimension from 53 to 15 for the

oversampling dataset, which is selected from the prior experiments

with an optimal oversampling ratio when AdaBoost achieves the

best performance. Then we train the AdaBoost model on these

datasets. Tables 6, 7 show the results for different classification

tasks with 10-fold cross validation under different feature selection

methods. In the classification task of MCI/NC, reliefF achieves the

best performance with respect to accuracy, sensitivity, G-mean, and

AUC, which are 0.892, 0.877, 0.892, and 0.957, respectively. It also

achieves the optimal values for the four metrics in the AD/NC

classification task, where accuracy is 0.992, sensitivity is 0.997, G-

mean is 0.992 and AUC is 1. Therefore, the reliefF is selected as the

final feature selection method.

We also compare Adaboost with SVM to classify MCI/NC on

the dataset processed by reliefF. The results indicate that Adaboost

indeed outperforms SVM, as shown in Table 8.

The runtime of the experiment with feature selection is 111.6

seconds in this experiment, which is much smaller than that

without feature selection, 393.3 seconds. Although the performance

of classifiers slightly reduces after feature selection, it decreases the

computational complexity of the model and screens out the most

important features, which lays the foundation for further analysis

of these features.

3.5. Model explainability

The learned model is further analyzed by using the SHAP. The

15 features selected by reliefF in the MCI/NC classification task

are Education, Sleeping time (elder), Heart rate, Height, Memory

decline, Age, Eat fish, Diastolic blood pressure, Sport, Systolic blood

pressure, Tea, Hypertension, Frequency of nap (elder), Smoke and

Family history of physical disease. Regarding the classification of
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TABLE 6 Performance for di�erent feature selection methods for MCI/NC classification using ADASYN and AdaBoost.

Feature selection method Accuracy Sensitivity Specificity G-mean AUC

Gini 0.872 0.86 0.884 0.872 0.941

IG 0.888 0.866 0.912 0.888 0.956

ReliefF 0.892 0.877 0.907 0.892 0.957

LASSO 0.85 0.809 0.892 0.849 0.92

SGL 0.86 0.838 0.882 0.859 0.93

TABLE 7 Performance for di�erent feature selection methods for AD/NC classification using ADASYN and AdaBoost.

Feature selection method Accuracy Sensitivity Specificity G-mean AUC

Gini 0.985 0.991 0.979 0.985 0.999

IG 0.992 0.995 0.988 0.992 1.0

ReliefF 0.992 0.997 0.987 0.992 1.0

LASSO 0.984 0.989 0.979 0.984 0.999

SGL 0.973 0.975 0.972 0.973 0.997

TABLE 8 The performance comparison between AdaBoost and SVM in MCI/NC classification task using ADASYN and ReliefF.

Model Accuracy Sensitivity Specificity G-mean AUC

AdaBoost 0.892 0.877 0.907 0.892 0.957

SVM 0.852 0.934 0.758 0.847 0.889

FIGURE 2

SHAP summary plots for MCI and AD prediction. (A) MCI. (B) AD.

AD/NC, the corresponding features are Daily life function decline,

Age, Sport, Diastolic blood pressure, Education, Frequency of nap

(elder), Sleeping time (elder), Eat fish, Frequency of nap (middle-

aged), Hypertension, Eating habits, Surgical history, Family history

of physical disease and Professional nature. Figure 2 shows the

SHAP summary plots for MCI/AD. The y-axis of the plot is the

feature value, where the features are sorted by the mean of the

absolute value of SHAP values in all samples. The x-axis is the

SHAP value, which represents the contribution of the feature to

the output. Each dot represents the impact on a particular class

of a particular feature for a given sample. The color represents the

feature value (red= high, blue= low).
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FIGURE 3

SHAP dependency plots for MCI class. (A) Education, (B) age, (C) eat fish, (D) sleeping time (elder), (E) tea, (F) systolic blood pressure, (G) diastolic

blood pressure.

We notice that Education is the most important feature for the

MCI class, where high value of Education has a negative impact

on predicting MCI class, meaning that Education is a factor that

decreasesMCI risk. Some features [e.g., Sleeping time (elder), Heart

rate, Height, etc.] are globally less critical than Education, but they

have more impacts in some cases. For instance, the largest SHAP

value for Sleeping time (elder) is 0.0497, which is greater than the

maximum SHAP value of Education, 0.0275. Similarly, for AD,

the top feature is the Daily life function decline. The feature Age

is less critical, however, when its value is very small, it has more

negative impact than the Daily life function decline on the model

for predicting AD. In addition, there are nine features that are

identical for MCI and AD, but the importance of these features in

MCI class is not as high as theirs in AD class.

We also analyze the impact of a single feature on the prediction.

The Figure 3 shows the SHAP dependency plots for MCI class,

where the x-axis represents the value distribution of each feature

in all samples, and the y-axis represents the SHAP value. As seen in

Figures 3A, C, D, E, G, with the increasing values of these features,

the overall trend of the SHAP values is downward, indicating these

features have negative effects on predicting MCI class. On the

contrary, as the value of Age and Systolic blood pressure increase,

their SHAP values also increase as shown in Figures 3B, F.

In the initial assessment targeting the prediction of Mild

Cognitive Impairment (MCI) and Alzheimer’s Disease (AD), as

portrayed in Figures 4A, B respectively, the features manifesting

the most substantial influence were “Memory Decline” and “Daily

Life Function Decline.” This observation harmonizes with the

discernments encountered in clinical diagnostic realms. Aiming

for a more meticulous evaluation of our model’s stability,

we pivoted our attention toward the interplay of daily life

features with MCI and AD prognostics. Specifically, we excised

crucial features conventionally harnessed for clinical recognition:

“Memory Decline,” “Daily Life Function Decline,” and “Disability

in Work and Study.” The subsequent SHAP plots, delineated in

Figure 5, vindicate that notwithstanding the exclusion, daily life

features retain a pivotal role in rendering credible predictive values

in our model’s framework. This meticulous endeavor not only
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FIGURE 4

SHAP force plots for (A) MCI and (B) AD instances.

FIGURE 5

SHAP force plots for (A) MCI and (B) AD instances focusing on lifestyle features.

underscores the robustness of our model but also illumines the

nuanced daily life attributes that contribute significantly to the

predictive landscape of MCI and AD.

Figure 6 displays the SHAP dependency plots for AD class.

We notice that the SHAP values of the Daily life function decline

and Age increase as their feature values increase. In addition, the

downward trend is observed in Figures 6C–E, which is the same

as their trend for MCI. We also discover that the Eating habits

(1 = Vegetarian-based diet, 2 = Meat-based diet, 3 = Meat, and

vegetables) have a negative impact on classifier when its value is

1 or 3, which indicates that eating vegetables is helpful to prevent

AD. Meanwhile, as shown in Figure 6G, the SHAP value is below

0 if the value of the Frequency of nap (elder) is 4 (0 = None, 1 =

Sometimes, 2 = 1–3 days a week, 3 = 4–6 days a week, 4 = Every

day), which means regular naps may help to reduce the risk of AD.

SHAP can also conduct an analysis of a single sample. Figure 4

shows the contribution of each feature value to the classifier’s

judgement of MCI and AD instances. Each feature value is a force

that either increases or decreases the prediction. As shown in

Figure 4A, the sample is classified as MCI with a probability of

62%. The top four features are Memory decline, Diastolic blood

pressure, Eat fish, and Education. And these values of features

increase the probability that the classifier will judge the sample as

MCI. Figure 4B shows the same thing for AD class. The model
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FIGURE 6

SHAP dependency plots for AD class. (A) Daily life function decline, (B) age, (C) eat fish, (D) education, (E) diastolic blood pressure, (F) eating habits,

(G) Frequency of nap (elder).

is 81% confident that the sample is AD. The Daily life function

decline, Diastolic blood pressure, Education, and Sleeping time

(elder) play important roles to push the prediction decision toward

AD class.

4. Discussion

This study develops an explainable machine-learning

framework to predict AD/MCI based on clinical data obtained

from CLAS. The performance of the framework has been improved

by oversampling. We also apply multiple classification methods

and feature selection methods for comparison, so that the best

methods for prediction are selected. The resulting model achieves

accuracy of 89.2%, sensitivity of 87.7%, specificity of 90.7%,

G-mean of 89.2%, and AUC of 0.957 for MCI/NC prediction, while

it achieves accuracy of 99.2%, sensitivity of 99.7%, specificity of

98.7%, G-mean of 99.2%, and AUC of 1 for AD/NC prediction.

Then we make a detailed analysis by visualizing the specific

contributions of the features to the classifier’s output. To the best of

our knowledge, this is the first attempt to employ ensemble learning

with feature selection to develop models for AD prediction based

on the large-size lifestyle and medical information. The strengths

of this study include an unprecedentedly large-size dataset, an

advanced machine learning-based algorithm that jointly considers

the associations among the clinical and lifestyle features toward an

effective feature set, as well as an explainable prediction model.

Our results are compatible with previous intuitions and

scientific knowledge. Tables 9, 10 summarize the existing studies

about the relationship between some features and AD/MCI. In

the two tables, 13 features and 10 features are shown to be

associated with MCI and AD, respectively, which overlaps with

our selected features. This validates that our feature selection

method is fairly reasonable. Hebert et al. (1995) and Petersen et al.

(2018) discover that the risk of MCI and AD increases with the

increasing age. High education may reduce the risk of MCI and

AD claimed by Sattler et al. (2012). Marshall et al. (2012) believe

that daily life function decline aggravates the severity of dementia.
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TABLE 9 Current studies on the relationship between selected features and MCI.

References Related feature Result and conclusion

Petersen et al. (2018) Age MCI prevalence increases with age.

Sattler et al. (2012) Education High education decreased the risk of MCI and AD.

Pereira et al. (2016) Height Moderators of adult height during childhood may have irreversible effects on cognitive function in adulthood, and

height should be used in models that predict cognitive performance.

Brachem et al. (2020) Sleeping time (elder) Poor sleep quality, difficulties initiating sleep, and short time in bed increase MCI risk.

Collie et al. (2001) Memory decline If an older individual has the symptom of memory decline, which means it is the early stages of an underlying

cognitive impairment.

Sinn et al. (2012) Eat fish Increased intakes of DHA and EPA is beneficial for mental health in older people with MCI. Increasing n-3 PUFA

intakes may alleviate depressive symptoms and the risk of progressing to dementia.

Ou et al. (2020) Diastolic blood pressure

Systolic blood pressure

Hypertension

Blood pressure (BP) exposure in late-life, high systolic BP, low diastolic BP, and excessive BP variability are all

associated with an increased risk of dementia.

Falck et al. (2017) Sport Participants with probable MCI has lower physical activity (PA) and higher sedentary behavior than participants

without MCI.

Kakutani et al. (2019) Tea Green tea intake might decrease the risk for AD and MCI.

Cai et al. (2021) Frequency of nap (elder) The results show that afternoon napping is good for cognitive function in the Chinese aging population.

Anstey et al. (2007),

Sabia et al. (2012)

Smoke The results indicate that elderly smokers have increased risks of dementia and cognitive decline.

TABLE 10 Current studies on the relationship between selected features and AD.

References Related feature Result and conclusion

Hebert et al. (1995) Age The estimated annual incidence of AD increases with age.

Marshall et al. (2012) Daily life function decline Different levels of the activities of daily living (ADL) impairment can be detected at different stages of AD.

Sattler et al. (2012) Education High education decreases the risk of MCI and AD.

Barberger-Gateau et al.

(2007)

Eat fish

Eating habits

Frequent consumption of fruits and vegetables, fish, and omega-3 rich oils may decrease the risk of dementia and

Alzheimer’s disease.

Ou et al. (2020) Diastolic blood pressure

Hypertension

Blood pressure (BP) exposure in late-life, high systolic BP, low diastolic BP and excessive BP variability are all

associated with an increased risk of dementia.

Farina et al. (2014) Sport Exercise generally had a positive effect on rate of cognitive decline in AD.

Shi et al. (2018) Sleeping time (elder) These results elucidate that sleep disturbance can enhance the risk of developing dementia. Insomnia may

increase the risk of incident AD, and sleep disordered breathing (SDB) is a risk factor for all-cause dementia, AD,

and vascular dementia.

Cross et al. (2015) Frequency of nap (elder) This study highlights that nap is associated with underlying neurobiological changes such as depression and

cognition. Thus it is necessary for older individuals to monitor the nap routinely to elucidate their relationship

with psychological and cognitive outcomes.

The trends of the Diastolic blood pressure and Systolic blood

pressure in Figures 3F, G, 6E also verify the conclusion in Ou et al.

(2020).

Regarding the lifestyle, eating fish is beneficial for preventing

MCI and AD, discussed by Barberger-Gateau et al. (2007) and

Sinn et al. (2012). Barberger-Gateau et al. (2007) also find that

frequent consumption of vegetables may decrease the risk of

AD. Tea intake may reduce the risk for dementia discussed

by Kakutani et al. (2019). Shi et al. (2018) and Brachem

et al. (2020) find that the poor sleep quality can enhance the

risk of MCI and AD. Cross et al. (2015) discover that the

relationship between nap and the risk of dementia exists. The

conclusions of these papers above are reflected accordingly in

Figures 3, 6, which indicates that our model is fairly reasonable.

In addition to these supportive research, our results further

demonstrate that AD is a complicated disease that is affected

by multiple factors, including daily lifestyle and physical disease.

With an advanced feature selection and a unified framework of

machine learning, we are able to detect the combination of such

contributive features.

5. Conclusion

We develop an explainable machine-learning based model with

oversampling and feature selection methods. The oversampling

method is used to generate new samples for the minority class

to solve the data imbalance issue. The feature selection method

is applied to reduce the data dimension, so as to lower the

computational complexity of the model, and to find out the
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most important features. We adopt the ensemble learning method

to implement the prediction. Our model not only realizes the

prediction, but also provides the specific contribution of each

feature to the prediction classifiers by building an explainer.

Experimental results demonstrate that the model achieves excellent

performance, which coincides with other prior research. In sum,

our model not only provides the prediction outcome, but also

helps to understand the relationship between lifestyle/physical

disease and cognitive function, and enables clinicians to make

appropriate recommendations for the elderly. Therefore, our

approach provides a new perspective for the design of a computer-

aided diagnosis system for AD, and has potential high clinical

application value.

6. Future work

The study has several limitations. Firstly, the cross-sectional

study is not able to examine causal relationships between

life style and individual cognitive decline. Follow-ups are

needed to make the final outcome for these population.

Furthermore, we did not include FDG-PET, Aβmarkers, and

APOE genotype in this work, so the true extent of AD pathology

remains unknown.Additionally, the exploration of multimodal

data encompassing neuropsychological tests, structural, and

functional neuroimaging data, genetic information, and other

relevant biological indicators will be undertaken in future research

to provide a multifaceted understanding of the pathophysiology

of MCI and AD. The analysis of multimodal data through

advanced machine learning and artificial intelligence techniques

will be employed to unveil hidden patterns and relationships,

aiding in the better understanding of cognitive decline risk factors

and pathophysiological mechanisms. Moreover, these technologies

will be harnessed to develop predictive models for the early

identification of MCI and AD risks.
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