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Non-invasive methods of detecting early-stage Alzheimer’s disease (AD) can 
provide valuable insight into disease pathology, improving the diagnosis and 
treatment of AD. Nuclear Overhauser enhancement (NOE) MRI is a technique 
that provides image contrast sensitive to lipid and protein content in the brain. 
These macromolecules have been shown to be altered in Alzheimer’s pathology, 
with early disruptions in cell membrane integrity and signaling pathways leading 
to the buildup of amyloid-beta plaques and neurofibrillary tangles. We  used 
template-based analyzes of NOE MRI data and the characteristic Z-spectrum, 
with parameters optimized for increase specificity to NOE, to detect changes in 
lipids and proteins in an AD mouse model that recapitulates features of human AD. 
We find changes in NOE contrast in the hippocampus, hypothalamus, entorhinal 
cortex, and fimbria, with these changes likely attributed to disruptions in the 
phospholipid bilayer of cell membranes in both gray and white matter regions. 
This study suggests that NOE MRI may be a useful tool for monitoring early-stage 
changes in lipid-mediated metabolism in AD and other disorders with high spatial 
resolution.
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Introduction

Alzheimer’s disease (AD) is the leading cause of dementia in adults aged 65 and older, with 
an estimated 6.7 million people in America currently living with the disorder across all ages 
(Alzheimer’s disease, 2023). People with AD exhibit increased memory impairment as well as 
changes in non-memory domains, including executive function and language processing 
(Knopman et al., 2021). Despite the prevalence of AD and concerted efforts to understand its 
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etiology and symptoms, there remains a lack of robust techniques to 
detect early-stage (i.e., preclinical stage) AD and its progression 
(Chandra et al., 2019). Magnetic resonance imaging (MRI) is the most 
commonly used clinical tool to evaluate patients with brain disorders 
as the technique is noninvasive and provides excellent soft tissue 
contrast with high spatial resolution (Chandra et al., 2019). Clinical 
scans typically employ T1w and T2w contrasts that can distinguish 
between gray matter, white matter, and CSF. In particular, T1w-MRI 
can be  used to detect regional brain atrophy associated with 
neurodegeneration. Additional information about white matter tracts 
can be obtained using diffusion-weighted imaging (DWI) methods. 
Coupled with machine learning and deep learning, these methods 
have shown remarkable results in classifying healthy, AD, and mild-
cognitive impairment (MCI) patients.

Although strategies of diagnosing AD with MRI seem promising, 
structural MRI scans do not provide information about molecular 
changes in AD, while deep learning techniques are less sensitive to 
classifying early-stage Alzheimer’s and require substantial domain 
knowledge for interpretability and translation (Tanveer et al., 2020; 
Zhang et al., 2022). Positron emission tomography (PET) is another 
imaging tool that can provide information on metabolism, with 
decreased regional glucose metabolism as observed by FDG-PET 
providing clinical indications of AD pathology. In addition, molecular 
PET agents for amyloid and tau further serve to identify if patients 
with cognitive complaints are likely to have AD and to track and 
predict neurodegeneration, respectively. Despite its clinical utility and 
specificity, PET is limited largely by its spatial resolution (~4–5 mm) 
in addition to non-specific tissue uptake of certain radiotracers, 
complex quantitative analyzes, and the cumbersome synthesis and 
immense costs of multi-tracer studies (Marcus et  al., 2014; Bao 
et al., 2021).

Simple, yet informative, techniques for assessing metabolic, 
related to glucose and neurotransmitter metabolism, and 
macromolecular content, related to lipid and protein content, of brain 
tissue include chemical exchange saturation transfer (CEST) and 
nuclear Overhauser effect (NOE) MRI (Van Zijl and Yadav, 2011; 
Jones et al., 2013; Benyard et al., 2023). A typical CEST experiment 
involves the saturation of exchangeable metabolite protons at a 
resonance frequency offset from that of water protons. The frequency 
offset is determined by the chemical shifts of these exchangeable 
protons, which typically correspond to amine, amide, and hydroxyl 
groups of biomolecules. During the saturation period, labile protons 
exchange with water protons, thus attenuating the bulk water signal 
which can subsequently be  measured using conventional MRI 
sequences. Saturation transfer MRI has been used to determine 
regional changes in metabolite content of preclinical models of AD 
and human subjects. The primary CEST contrasts used to detect 
macromolecular and metabolic changes in AD include amide-proton 
transfer (APT)-CEST, GluCEST, glucoCEST, and CrCEST, which are 
sensitive to protein, glutamate, glucose, and creatine content, 
respectively. Studies employing these contrasts have found regional 
changes, primarily in the hippocampus, in AD pathology (Orzylowska 
and Oakden, 2021).

NOE is another saturation transfer method involving saturation 
of non-exchangeable species which are typically the methyl and 
methylene protons of lipids and proteins. The saturated protons 
transfer energy to nearby exchangeable protons, termed a “relayed 
NOE (rNOE)” effect, which then subsequently exchange with water 

and attenuate the bulk water signal. NOE has been used to measure 
changes in lipid and protein content with one recent study assessing 
changes in NOE contrast in a mouse model of AD. That study used 
ultra-short echo time (UTE) imaging following a saturation module 
to reduce effects of direct saturation and magnetization transfer on the 
observed NOE contrast while increasing sensitivity to short T2 species 
corresponding to proteins (Orzylowska and Oakden, 2021). However, 
NOE contrast is observed primarily through exchange effects with 
bulk water, which does not necessitate the need for a UTE readout and 
the NOE-UTE magnetization asymmetry ratio (MTRasym) contrast 
observed in that study more closely resembles that of typical MT 
measures, which show sensitivity to myelin macromolecular content 
in the brain.

The current study uses a standard spoiled gradient-echo (GRE) 
readout with saturation parameters sensitive to NOE contrast to 
acquire images from offsets ranging from-100 to +100 ppm, generating 
a well-characterized Z-spectrum that provides information on 
multiple metabolites and macromolecules. MTRasym analysis and 
Lorentzian fitting, along with an atlas-based analysis, are used to 
characterize changes in these metabolites in the APPNL-F knock-in 
mouse model of Alzheimer’s disease.

Methods

Animal preparation

The study was performed using 6- to 8-month-old C57BL/6 J 
(wild-type (WT), n = 5) mice and APPNL-F knock-in (AD, n = 5) mice 
using a protocol approved by the IAUCAC committee of the University 
of Pennsylvania. Prior to the MRI experiments, the mouse was 
anesthetized using 1.5% isoflurane and its head was placed in a conical 
head restrainer. A respiratory pillow pad and rectal probe were used 
to monitor the breathing rate and body temperature, respectively, of 
the mouse throughout the MRI experiments. The conical restrainer 
was placed in a 20 mm diameter 1H transceiver volume head coil 
(m2m Imaging) and MRI experiments were performed on a 9.4 T 
horizontal magnet interfaced with an Avance III HD console (Bruker 
BioSpin, Germany).

MRI experiments

Anatomical image acquisition
A localizer was acquired first, followed by a T1-weighted FLASH 

(TE/TR = 4/498 ms, four averages, 16 slices) and T2-weighted RARE 
(TE1/TE2 = 33/121 ms, TR = 3,082 ms, two averages, 16 slices, rare 
factor = 6). A 1 mm thick slice located 3.3 mm anterior to lambda was 
selected as our slice of interest, and localized shimming and post-
processing registration/segmentation was performed on this slice.

Steady-state NOE MRI acquisition
For NOE MRI acquisitions, a water saturation shift referencing 

(WASSR) image (TE/TR = 4/410 ms, 22 frequency offsets from 0 to 
1 ppm with a step-size (ss) of 0.1, B1 = 0.1μT, one average) was acquired 
for correcting B0 inhomogeneities (Kim et al., 2009). A full Z-spectrum 
was acquired for the saturated images with 174 offsets variably spaced 
as follows: 0-6 ppm (ss = 0.1), 6-10 ppm (ss = 0.5), 10-20 ppm 

https://doi.org/10.3389/fnagi.2023.1266859
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Swain et al. 10.3389/fnagi.2023.1266859

Frontiers in Aging Neuroscience 03 frontiersin.org

(ss = 1 ppm), and 20-100 ppm (ss = 10 ppm). The acquisition 
parameters included: TE/TR = 4/3010 ms, B1 = 1.0 μT, saturation 
duration (Tsat) = 3.0 s, and two averages. An unsaturated image (with 
the same parameters as the saturated images, except offsets of 
±300 ppm) was additionally acquired. The FOV was 20 mm x 20 mm 
with an image matrix size of 128 × 128, resulting in an in-plane 
resolution of 0.156 mm x 0.156 mm for all images.

NOEMTR analysis
NOEMTR images were calculated using the following equation:
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where S-3.5ppm and S-300ppm represent the magnitude signal of an 
image voxel at offsets of-3.5 ppm and-300 ppm, respectively. NOEMTR 
was calculated after correcting for B0 inhomogeneities and compared 
to NOEMTR calculated without correcting for B0 inhomogeneities.

Lorentzian fitting of Z-spectrum
In addition to NOEMTR, the Z-spectrum of each voxel was fit using 

multi-pool Lorentzian fitting with five pools of interest corresponding 
to direct saturation (DS), magnetization transfer (MT), amines, 
amides, and relayed NOE. Multi-pool fitting is accomplished by 
characterizing the Z-spectrum as a sum of Lorentzian functions, as 
defined by the following equation:
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where ɷn, αn, and σn represent the frequency offset, amplitude, and 
full width at half-maximum of each pool. The initial parameter 
estimates used for each pool were based on prior estimates in Zaiss 
et al. (2011). Before fitting, Z-spectra were denoised by organizing the 
Z-spectrum from each voxel into a Casorati matrix and performing 
singular value decomposition (SVD). The threshold for choosing the 
n singular values was determined by the median criterion and the 
denoised Casorati matrix was finally reshaped to recover the images 
at each offset (Breitling et al., 2019). To decrease the computational 
time of fitting each pixel, the fitting was parallelized. Maps of each 
contrast were generated using the amplitude of the Lorentzian fit to 
each pool.

Post-processing/ROI selection
All image processing steps were performed in MATLAB 2022a 

(MathWorks, CA). For post-processing, automated skull-stripping was 
performed on the T2w images using a fuzzy c-means clustering with 
three different clusters. For automated registration, a C57BL/6 J mouse 
brain atlas from Dorr et al. (2008) was used as a template. The template 
consisted of a three-dimensional T2w RARE image and corresponding 
brain segmentations for the entire mouse brain. Since our acquisitions 
were single-slice experiments, the corresponding brain slice was 
determined by comparing the sagittal slice of the localizer to the middle 
sagittal slice of the atlas. Using the brain lambda as the fiducial marker, 
the atlas slice was determined to be-3.4 mm away from the center of 
lambda. The T2w image from each acquisition was intensity matched to 

the atlas image using a histogram-based normalization. The atlas and 
fixed images were then heavily blurred by a Gaussian filter and 
subsequently registered using an affine transformation. This process was 
repeated for a sequence of 10 iterations, with the σ of the Gaussian 
kernel reduced to allow for registration of finer features. The final 
transformation was a non-linear registration using the Demons 
algorithm (Vercauteren et al., 2009). The corresponding segmentations 
from the atlas were registered by applying the transforms determined 
from the anatomical image registration, albeit using nearest-neighbor 
interpolation of pixels to prevent creation of non-integer labels following 
the transformations. Registration and segmentation accuracy were 
evaluated by the user. Figure 1 shows a schematic of the pipeline used 
to register and segment the mouse brain, along with a representative 
example of the registered atlas and labels for the corresponding mouse 
brain slice. The gray and white matter regions of interest that were 
evaluated were as follows: gray–cerebral cortex, entorhinal cortex, 
hippocampus, thalamus, hypothalamus and white–corpus callosum, 
cerebral peduncle, fimbria. The mean pixel values of each region of 
interest (ROI) for NOEMTR (B0-corrected and-uncorrected) and the four 
pools of interest–rNOE, amine, APT, and MT–from Z-spectrum fitting 
were calculated.

Statistical analysis

A linear mixed effects model was used in which the fixed effect 
was disease type (whether the mouse was a wild-type or AD model) 
and the random effect was the ROI to determine if there was a 
significant difference between wild-type and AD mice. To determine 
if disease type had a different effect for each ROI, the intra-class 
correlation coefficient was calculated. Ordinary least squares (OLS) 
regression models were fit to each ROI to determine which ROIs were 
significantly affected by disease type. The alpha value was set to 0.05 
for all measures.

Results

A representative Z-spectrum and its corresponding fit are shown 
for the average pixels from the whole brain of a WT mouse (Figure 2). 
Five Lorentzian line shapes are seen corresponding to the five pools of 
interest. At-3.5 ppm, corresponding to the selected frequency offset 
for NOE there is a 58% contribution from combined DS + MT 
(52% + 6%) effects and a 40% contribution from NOE effects. The 
remaining 2% results from the tails of the peaks corresponding to 
amine and amide.

Figure 3A shows the mean Z-spectrum from the hippocampus of 
a WT and AD mouse. As shown in the inset, there is a substantial 
decrease in rNOE contrast, derived from multi-pool fitting, between 
WT and AD mice in the hippocampus. The MTRasym curve for 
NOEMTR from the hippocampus of a WT and AD mouse (Figure 3B) 
shows that both rNOE and NOEMTR decrease in the hippocampal 
region for AD mice. Figure 4 shows representative global maps from 
WT and AD mice for all pools of interest in addition to NOEMTR, with 
a visually apparent reduction in all contrasts following AD pathology, 
particularly in the cerebral cortex, hippocampus, and thalamic regions.

The mean NOEMTR values for a subset of gray matter regions that 
showed statistically significant changes are plotted in Figure 5, along 
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with representative segmented maps from WT and AD mice for the 
corresponding regions. For the hippocampus and entorhinal cortex, 
the decreases in mean NOEMTR of the regions between WT and AD 

are as follows: hippocampus – 40.1 ± 1.3 v. 37.1 ± 1.4% and entorhinal 
cortex – 37.0 ± 1.9 v. 34.8 ± 1.1%. Based on the linear mixed effects 
model, the reduction in the hippocampus (~3%) showed strong 
statistical significance (p < 0.01) while the reduction in the entorhinal 
cortex (~2.2%) showed statistical significance, but to a lesser degree 
(p < 0.05). The mean rNOE value, determined by Lorentzian fitting, 
also showed a significant decrease (p < 0.05) in the hippocampus 
(15.4 ± 0.8 v. 12.9 ± 1.6%) as is visually apparent in the representative 
NOE maps of WT and AD mice. Although the hippocampus was the 
only region with a statistically significant change, the mean rNOE 
values for all regions decreased in AD mice. Figure 6 shows mean 
NOEMTR values and corresponding segmented regions for the 
hypothalamus and fimbria. The hypothalamus shows a decrease from 
40.8 ± 0.8 to 39.6 ± 0.6% (p < 0.05), and the fimbria shows a strong 
statistically significant decrease from 40.7 ± 0.8 to 37.3 ± 1.8% 
(p < 0.01). Furthermore, although the scope of this work focuses on 
NOE metrics, the amine and amide pools (figure not shown) 
presented statistically significant changes in the hippocampus between 
WT and AD mice, with a decrease of 8.0 ± 0.5% v. 7.4 ± 0.2% and 
10.2 ± 1.0% v. 8.8 ± 0.3%, respectively (p < 0.05 for both pools).

Figure 7 shows the same representative NOEMTR maps from a WT 
and AD mouse as in Figure 4, along with representative NOEMTR 
maps that have not undergone B0 correction but have undergone 
denoising with a Gaussian filter. Visually, the B0 corrected and 
denoised B0 uncorrected images look similar, with changes in 
contrast most apparent in the thalamus as B0 correction seems to 
produce more homogeneous pixels in this region. Following 
quantitative ROI analysis for the uncorrected images, the thalamus 
shows a drop in NOEMTR contrast in AD with strong statistical 
significance (p < 0.01). The hippocampus and hypothalamus also 
show statistically significant drops in AD, similar to the B0 corrected 

FIGURE 1

Pipeline of registration and segmentation of a mouse brain. The slice of interest is selected from the atlas, re-gridded to match the size of the fixed 
image, and intensity normalized to the intensity of the fixed image. Gaussian blurring is used to find a coarse affine transformation of the atlas to the 
fixed image, followed by subsequent iterations in which blurring is reduced to achieve finer transformations. The last transformation involves non-
linear registration of the atlas to the fixed image. All transformations are applied to the segmentation with nearest-neighbor interpolation. 
Representative registered atlas and labels are shown.

FIGURE 2

Representative fitted Z-spectrum (blue curve) from the whole brain of a 
WT mouse. The blue scatter points represent mean normalized intensity 
values at each offset. The five fitted metabolite pools are as follows: DS 
(green), MT (yellow), amide (red), amine (purple), NOE (black).
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NOEMTR maps (p < 0.01 and p < 0.05, respectively). However, only the 
B0 corrected NOEMTR maps show a significant change in the 
entorhinal cortex.

Discussion

In this study, we  investigated changes in NOEMTR and rNOE 
between wild-type and APPNL-F knock-in mouse models of Alzheimer’s 
disease. We evaluated these metrics using MTRasym analysis and multi-
pool Lorentzian fitting for different regions of interest. We found a 
statistically significant decrease in NOEMTR in the hippocampus, 
hypothalamus, entorhinal cortex, and fimbria of AD mice. In addition, 
we  found a statistically significant decrease in rNOE in the 
hippocampus of AD mice. The observed signal changes are likely 
attributed to changes in macromolecular content during early-stage 
AD pathology.

Since exchange with bulk water mediates the signal in NOE 
MRI, the formation of Aβ oligomers and plaques may be a likely 
cause of the signal reduction that we observe in the AD mouse 
models. However, cross-relaxation from the fatty acid chains of 
lipid moieties must also be considered. More recently Zhao et al. 
(2023), proposed that the majority of relayed NOE signal observed 
at-3.5 ppm arises from the methylene (-CH2) and methyl (-CH3) 
protons of lipid side chains in phospholipid membranes. 
Consequently, the changes in NOEMTR and rNOE observed in this 
study may arise primarily from lipid changes, as opposed to 
protein contributions from Aβ deposition. Furthermore, the 
decrease in signal is higher for rNOE than APT which suggests 
that rNOE and APT signals are not necessarily correlated and arise 

from different macromolecular structures (i.e., lipids v. proteins, 
respectively).

The changes in lipid metabolism are complex in AD, with aberrant 
lipid metabolism proposed to not only initiate, but result from, the 
buildup of Aβ plaques (Kang and Rivest, 2012; Kao et al., 2020). Lipid 
profiling techniques, such as matrix-assisted laser desorption/
ionization-time of flight (MALDI-TOF) and liquid chromatography-
mass spectrometry (LC–MS), are typically used to characterize lipids 
with tremendous specificity (Kofeler et  al., 2012). Although these 
techniques provide exhaustive characterization of lipids, changes in 
lipid composition across different regions of the brain and their effects 
on cognitive function vary greatly in AD. In the hippocampal region, 
clinical studies have shown decreased levels of docosahexaenoic acid 
(DHA), a fatty acid that provides structural integrity to neuronal cells. 
In addition, experimental reduction of DHA in primate and rodent 
models has shown deterioration in cognitive and behavioral 
scores (Cunnane et  al., 2013). Fourier transformed infrared 
microspectroscopy (FTIR) shows increased oxidized lipid 
concentration surrounding the cores of Aβ plaques (Benseny-Cases 
et  al., 2014; Sanchez-Molina et  al., 2020). A well-observed 
phenomenon following the cleavage of APP to Aβ monomers and 
oligomers is the disruption of neuronal cell membranes. Mrdenovic 
et al. have shown that Aβ plaques and soluble Aβ oligomers interact 
with the hydrophobic cell membrane core, causing changes in the 
orientation of the phospholipid side chains and reducing their 
mobility (Mrdenovic et al., 2020). In addition, Aβ monomers cause 
dehydration of the phospholipid heads, reducing regions of exchange 
with surrounding water. Aβ has also been shown to affect cholesterol 
integrity and content in cell membranes, further affecting membrane 
structure and mobility.

FIGURE 3

(A) Z-spectra from the hippocampus of WT and AD mice. The points represent mean normalized intensity values for each group for offsets of −5 to 
5  ppm, with error bars representing the standard deviation for each offset. The inset shows the fitted NOE amplitudes derived from the multi-pool 
fitting, with the WT group showing a higher amplitude than the AD group. The shaded regions in the inset represents the standard deviations of the fits 
in each group. (B) The MTRasym spectra from the hippocampus of WT and AD mice. As shown, −2 to −3.5  ppm shows a flat profile, likely reflecting the 
broad line shape of macromolecules that undergo cross-relaxation. The shift of-3.5  ppm is chosen for NOE metrics as this corresponds to 
macromolecular shifts observed in high-resolution 1H NMR at 3.5  ppm upfield of water.

https://doi.org/10.3389/fnagi.2023.1266859
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Swain et al. 10.3389/fnagi.2023.1266859

Frontiers in Aging Neuroscience 06 frontiersin.org

Given changes in the cell membrane lipid content and integrity in 
AD, the changes observed by NOE MRI are more likely driven by 
changes in lipid content. Since cross-relaxation effects are driven by 
the mobility of spins, altered conformations and reduced mobility of 
phospholipid side chains due to Aβ buildup and cholesterol changes 
would reduce NOE. In addition, oxidation of lipids can reduce the 
number of -CH2 protons that participate in cross-relaxation, further 
reducing the NOE effect. Interestingly, the amplitude of the amide 
pool derived from the multi-pool fitting, corresponding to tissue 
protein content, shows a lower amplitude than rNOE. This suggests 
that lipids may contribute more signal to rNOE than proteins.

Although lipid dysfunction may be  the primary cause of the 
observed changes in rNOE signal, changes in protein content may also 

provide confounding effects. Protein content is known to be affected 
in Alzheimer’s disease due to the buildup of Aβ fibrils. These fibrils 
form due to the cleavage of amyloid precursor protein (APP) by β - 
and γ -secretases to form Aβ-peptides. These peptide monomers self-
associate into various assemblies, with dense, insoluble amyloid fibrils 
and soluble oligomers being the primary types (Chen et al., 2017). 
Although the various types of Aβ assemblies are difficult to 
characterize, the common structural elements include an extended or 
beta sheet structure with main chain hydrogen bonding that is 
resistant to exchange (Kheterpal et al., 2003). These exchange-resistant 
protons are likely the cause of the reduction in the APT signal 
observed in the AD mouse model, since APT relies on the exchange 
of amide proton groups, which comprise the peptide bonds of 

FIGURE 4

Representative global maps from a WT and AD mouse. The first row shows the NOEMTR contrast generated using Equation (1), while the subsequent 
rows are generated from pixelwise multi-pool fitting of Z-spectra as described by Equation (2). The colormaps are in units of %.
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proteins, with bulk water. In addition, the reduction in amine signal, 
likely from guanidyl and amine functional groups on proteins, may 
be  caused by reduced exchange due to the packed and relatively 
immobile conformation of Aβ peptides, reducing exposure of labile 
amine protons to bulk water.

The changes observed in NOEMTR in different brain regions of 
AD mice agree well with prior findings using structural MRI as 
well as CEST. CEST studies have shown decreased APT contrast in 
AD mouse models, attributed to inaccessible exchangeable protons 
in the beta sheet conformation of Aβ fibrils (Wells et al., 2015; 
Huang et  al., 2022). In addition, structural MRI has shown 
significant gray matter atrophy of the hippocampus in AD mice 
(Ni, 2021). Prasad et  al. (1998) have reported a decrease in 
membrane phospholipids in the hippocampus of AD patients, 
which corroborates the reduced rNOE in the hippocampus of AD 
mice. In the another study Zheng et al. (2018), report a decrease in 
choline and choline-related metabolites in the hypothalamus of 
5 month-old APP/PS1 mice, which may indicate impairments in 

cell membrane phospholipid synthesis and cell apoptosis (Michel 
et al., 2006). The reduction in choline is associated with amyloid 
pathology which, as described earlier, disrupts lipid metabolism 
and cell membrane mobility, thus reducing NOE effects. The 
limitations of previous preclinical studies using CEST and NOE 
MRI included the lack of atlas-based analyzes of mouse brain. As 
a result, the observed NOEMTR change in the entorhinal cortex of 
an AD mouse observed in this study presents a novel finding, as 
per our knowledge. In fact, recent studies show that alterations in 
the entorhinal cortex, whose function is to relay information 
between the hippocampal formation and neocortex, are present in 
early stages of AD (Igarashi, 2023).

In addition to changes in gray matter regions, NOEMTR shows a 
significant change in the fimbria. The fimbria is a white matter bundle 
that connects the hippocampus to the fornix and thus to the rest of the 
brain. Alterations of the fimbria in AD are not well-characterized, 
while changes in the hippocampus and fornix are well-studied with 
hippocampal atrophy and neuronal loss in the fornix being known 

FIGURE 5

(i) Representative NOEMTR maps from the segmented hippocampus (A) and entorhinal cortex (B) of a WT and AD mouse. There is a statistically 
significant decrease in NOEMTR observed in the hippocampus and entorhinal cortex of the AD mouse. The point plots show the average NOEMTR from 
each region for WT and AD mice. (ii) Representative relayed NOE maps from the hippocampus of a WT and AD mouse. Similar to NOEMTR, there is an 
observable decrease in relayed NOE contrast in the hippocampus of the AD mouse which shows statistical significance as seen in the point plot to the 
right. **  =  p  <  0.01, *  =  p  <  0.05. The colormaps are in units of %.
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effects of AD pathology (Mielke et al., 2012). Recently, quantitative 
susceptibility mapping (QSM) has shown changes in the fimbria of 
subjects with AD. The increased susceptibility is attributed to a 
decrease in the diamagnetic protons of lipids and proteins comprising 
the myelin sheaths or an increase in paramagnetic species due to iron 
deposition (Au et al., 2021). Given these competing effects determined 
by QSM, and NOE MRI’s sensitivity to lipids, the reduction in NOEMTR 
signal may be attributed primarily to the breakdown of myelin lipids. 

Studies using myelin water imaging, a well-established method for 
quantitatively assessing myelin integrity, show changes in myelin in 
the cerebral white matter following aging (Faizy et  al., 2020) and 
decreases in myelin content in late myelinating brain regions such as 
the frontal white matter and corpus callosum in AD (Dean et al., 2017; 
Lim et al., 2022). As reported in juvenile rats (Downes and Mullins, 
2014), the fornix is one of the last brain regions to achieve complete 
myelination, and given hypotheses regarding late-myelinating regions 

FIGURE 6

Representative NOEMTR maps from the fimbria (A) and hypothalamus (B). A statistically significant drop is observed in AD mice compared to WT mice, 
as shown by the point plots to the right. The point plots represent the average NOEMTR in each region for WT and AD mice, with an n  =  5 in both 
groups. In addition, the representative maps show observable changes in contrast, with the fimbria showing a strikingly lower contrast in the AD 
mouse. **  =  p  <  0.01, *  =  p  <  0.05. The colormaps are in units of %.

FIGURE 7

The leftmost image of the top and bottom rows shows representative T2w images from a WT and AD mouse brain, respectively. The images are overlaid 
with their respective segmentations, with the colors of the regions corresponding to the labels listed on the bottom. (A) The B0 uncorrected NOEMTR map 
from the corresponding WT mouse brain following a Gaussian blurring with σ = 0.75. (B) The B0 corrected NOEMTR map with no filtering applied. (C) and 
(D) correspond to (A) and (B) respectively, but for the corresponding AD mouse brain. The regions affected by B0 correction are the thalamus and 
entorhinal cortex, while the hippocampus and hypothalamus remained unaffected. The thalamus showed statistically significant differences between 
WT v. AD but lost its statistical significance post-B0 correction, while the entorhinal cortex showed the opposite effect. The colormaps are in units of %.
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as the first areas to be implicated in AD, the decrease in NOEMTR in the 
fimbria may be reflective of pathological changes in preclinical AD. In 
addition, myelin water fraction (MWF), as derived from myelin water 
imaging, decreases in individuals with mild-cognitive impairment 
(MCI), suggesting that demyelination plays a role in preclinical stages 
of AD (Bouhrara et al., 2018). Demyelination also leads to more rapid 
cognitive decline in cognitively unimpaired individuals (Gong 
et al., 2023).

NOE MRI shows strong sensitivity to alterations in gray matter 
and white matter integrity in 6 to 8-month-old early-stage AD mice. 
In addition, the APPNL-F knock-in mouse model is a non-aggressive 
model of AD, reflective of the pre-clinical stages of AD in human 
subjects (Sasaguri et al., 2017). However, NOEMTR is limited in its 
specificity as the metric is comprised of DS, MT, and relayed NOE 
effects. Although contributions of direct saturation are low 
at-3.5 ppm, it is difficult to determine changes in MT separate from 
changes in NOE. Multi-pool Lorentzian fitting increases the dynamic 
range of NOE MRI by allowing the extraction of multiple pools, thus 
allowing for the separation of MT and NOE. In this study, only the 
hippocampus showed significant changes in rNOE following the 
multi-pool fit, likely associated with changes in lipid content and 
potential contributions from Aβ deposition. Although multi-pool 
fitting increases the dynamic range, it requires extensive scan times 
to acquire a full Z-spectrum and can thus be difficult to implement 
clinically. Given that MT is sensitive to macromolecular content and 
has shown specificity to white matter regions in the brain, the 
combination of rNOE and MT in NOEMTR can provide a joint metric 
that reflects changes in the gray and white matter regions of the brain. 
B0 correction serves to denoise the image as the correction process 
follows a polynomial or spline interpretation over a range of offsets, 
inadvertently denoising the image. In this study, the thalamus and 
entorhinal cortex were two regions that were affected by B0 correction, 
in which the statistical significance changed for both regions 
following B0 correction. The loss of statistical significance in the 
thalamus is explained by the relatively inhomogeneous pixel 
intensities, which become more homogeneous and of lower intensity 
following correction. For the entorhinal cortex, the gain in statistical 
significance appears following B0 correction since the cerebral cortex 
suffers the most from B0 field inhomogeneities due to brain-skull 
interfaces, and thus susceptibility effects. Since discrepancies exist 
following B0 correction, this post-processing step may be necessary 
to acquire more reproducible and reliable data. However, acquisition 
of an entire Z-spectrum is unnecessary if there are sufficient offsets 
acquired around the offset of interest to perform a well-posed 
interpolation. Acquiring fewer offsets and correcting for field 
inhomogeneities allows for robust NOEMTR analysis in a clinically 
feasible scan time.

A limitation of this study is the long scan time needed to 
acquire a full Z-spectrum, which poses a challenge in translating 
to clinical use. However, rapid-acquisition techniques using 
compressed sensing, parallel imaging, and magnetic resonance 
fingerprinting (MRF) may allow for acquiring fully sampled 
Z-spectra in clinically feasible scan times (Heo et al., 2017; Cohen 
et  al., 2018). Another limitation of this study is the use of a 
sub-optimal B1 saturation power for APT- and amine-weighted 
contrasts. Prior studies have found that a B1 of 2.0 μT provides 
the best and most interpretable contrast for comparing healthy to 
pathological tissue, primarily for tumor and stroke (Dou et al., 

2019; Zhou et al., 2019). However, a thorough analysis has not 
been performed for the optimal B1 power in relation to AD 
pathology. Given that NOE is the main focus of this work, 
optimizing B1 power for APT and amine contrast is reserved for 
future studies. Furthermore, another limitation of this study is 
the separation of NOEMTR contributions from MT versus 
rNOE. rNOE is shown to be more sensitive to membrane lipids 
but lacks sensitivity to white matter myelin lipids as their fatty 
acid backbones have very limited mobility, decreasing the NOE 
effect. Consequently, NOEMTR changes in the gray matter likely 
arise from rNOE changes, while changes in that of white matter 
may arise primarily from MT changes with smaller, additional 
changes in rNOE. Further studies are needed to validate the 
sources of rNOE from different regions of the brain, perhaps by 
using suitable model systems that exhibit Aβ buildup and lipid 
dyshomeostasis separately. This would greatly improve the 
specificity of NOE MRI and allow for increase clinical translation 
in assessing microstructural changes in AD and other 
neurodegenerative disorders.

Conclusion

This study used NOE MRI to assess early-stage changes in the 
APPNL-F knock-in mouse model of Alzheimer’s disease. Using 
NOEMTR, significant changes in gray matter regions central to early-
stage AD pathology were observed, specifically the entorhinal 
cortex. Consequently, the NOEMTR metric in the entorhinal cortex 
can serve as a potential biomarker for detection of AD. In addition, 
NOEMTR and rNOE metrics showed significant changes in the 
hippocampus, which is a region well-known to be  affected by 
AD. As NOE is sensitive to macromolecular content in the brain, 
these metrics can serve to assess disrupted cell membrane lipid 
integrity in early stages of AD, serving as another potential 
biomarker for detection of AD. Given changes observed in the 
fimbria by NOEMTR, this metric may show sensitivity for white 
matter bundles and can potentially be  used for assessing white 
matter changes in AD as well. Overall, NOE MRI showed good 
sensitivity to pathological regions in AD and can plausibly be used 
to map early-stage changes in AD pathology.
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