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Background: Education years, as a measure of cognitive reserve, have been 
shown to affect the progression of Alzheimer’s disease (AD), both pathologically 
and clinically. However, inconsistent results have been reported regarding the 
association between years of education and intermediate structural changes in 
AD-vulnerable brain regions, particularly when AD risk factors were not considered 
during the preclinical phase.

Objective: This study aimed to examine how Aβ deposition and APOE ε4 carrier 
status moderate the relationship between years of education and cortical volume 
in AD-vulnerable regions among cognitively normal older adults.

Methods: A total of 121 participants underwent structural MRI, [18F] flutemetamol 
PET-CT imaging, and neuropsychological battery assessment. Multiple regression 
analysis was conducted to examine the interaction between years of education 
and the effects of potential modifiers on cortical volume. The associations 
between cortical volume and neuropsychological performance were further 
explored in subgroups categorized based on AD risk factors.

Results: The cortical volume of the left lateral occipital cortex and bilateral 
fusiform gyrus demonstrated a significant differential association with years of 
education, depending on the presence of Aβ deposition and APOE ε4 carrier 
status. Furthermore, a significant relationship between the cortical volume of the 
bilateral fusiform gyrus and AD-nonspecific cognitive function was predominantly 
observed in individuals without AD risk factors.

Conclusion: AD risk factors exerted varying influences on the association 
between years of education and cortical volume during the preclinical phase. 
Further investigations into the long-term implications of these findings would 
enhance our understanding of cognitive reserves in the preclinical stages of AD.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease 
characterized by the deposition of amyloid-beta (Aβ) and tau, which 
leads to deteriorating changes in the brain and impairment of 
cognitive function and the ability to perform daily activities (Bloom, 
2014). In addition, the APOE ε4 allele modulates the penetrance and 
weight of the Aβ pathophysiological cascade (Frisoni et al., 2022) and 
is responsible for the largest proportion of genetic risk factors for 
sporadic AD (Sims et  al., 2020). Additionally, the APOE ε4 allele 
increases the risk of sporadic AD in a dose-dependent manner 
(Corder et al., 1993). It has also been reported to affect the deposition 
(DeMattos et al., 2004), clearance of Aβ (Castellano et al., 2011), and 
modulation of tau binding (Small et al., 2009).

The clinical symptoms of AD often do not match the degree of 
neuropathological changes observed (Katzman et al., 1988), which are 
attributed to an individual’s cognitive reserve, brain reserve and 
maintenance (Stern et  al., 2020). Among these factors, cognitive 
reserve is the ability to tolerate brain damage or neuropathological 
changes in order to maintain cognitive and functional status through 
the use of compensatory neural mechanisms (Stern et  al., 2020). 
Crucially, cognitive reserve influences when dementia begins, how 
rapidly cognitive decline progresses, and the extent of the pathology 
that results in dementia (Stern, 2012). Individuals with high cognitive 
reserve might experience a delay in the onset of dementia (Valenzuela 
and Sachdev, 2006b), but once symptoms begin, they may progress 
faster due to a larger load of latent pathology (van Loenhoud 
et al., 2019).

Convenience proxies related to various socio-behavioral factors 
that contribute to the formation of cognitive reserve are used, among 
which years of education is frequently used (Stern et al., 2020). This is 
because educational attainment is standardized and easy to measure. 
Various studies have shown interesting correlations between education 
level and AD. Among older adults and dementia patients with 
comparable degrees of cognitive decline, individuals with higher 
education levels tend to show more advanced Aβ pathology (Roe et al., 
2008). Furthermore, longer education periods appear to offer a 
protective effect against cognitive decline in elderly individuals 
(Valenzuela and Sachdev, 2006a).

Brain structural parameters, which are both reliable and stable, 
provide another way of tracking AD progression (Fox and 
Freeborough, 1997; Bobinski et al., 1999; Whitwell et al., 2012). A 
previous post-mortem study showed that individuals with higher 
education levels had greater brain weights than those with fewer years 
of education (Brayne et  al., 2010). However, another study 
contradicted this finding, indicating a negative relationship between 
years of education and cortical thickness (Querbes et al., 2009).

Despite several attempts to establish a correlation between years 
of education and cortical atrophy, results have been inconclusive. 
Some studies have found increased cortical atrophy (as indicated by 
increased sulcal CSF volume) with more years of education (Coffey 

et  al., 1999), while others have reported no such relationship 
(Christensen et al., 2009; Seo et al., 2011). Even within the cognitively 
normal group, the data are mixed, with some studies suggesting 
increased cortical thickness in certain brain regions with more years 
of education (Foubert-Samier et al., 2012; Liu et al., 2012).

These inconsistencies in the relationship between years of 
education and cortical atrophy could be  due to the lack of 
consideration of other contributing risk factors such as Aβ deposition, 
APOE ε4 carrier status, and tauopathy, which can all influence cortical 
atrophy (Harrison et al., 2019; Ossenkoppele et al., 2019). In addition, 
there is a dearth of research examining the association between years 
of education and cortical atrophy during preclinical stages of 
AD. Therefore, future research into this association during the early 
stages of AD would significantly enrich our understanding of the role 
that cognitive reserves play in the progression of AD.

In this regard, we aimed to evaluate how Aβ deposition and APOE 
ε4 carrier status moderate the relationship between years of education 
and cortical volume in AD-vulnerable regions among cognitively 
normal older adults. In addition, we assessed whether the progression 
of Aβ deposition, particularly in the presence of positive Aβ deposition 
and the APOE ε4 allele, elucidates the mechanism by which years of 
education affect cortical volume.

For regions of interest in the cortical volume that show significant 
education years-by-AD risk factor interaction, we  also set out to 
confirm whether the association with cognitive function varied 
depending on the AD risk factors. Additionally, we evaluated cortical 
atrophy not only in brain regions where Aβ deposition is mainly found 
but also in tauopathy-vulnerable regions, considering that tauopathy 
was not directly evaluated in this study.

Materials and methods

Participants

One hundred twenty-one subjects aged 55–85 years were recruited 
from volunteers registered in the Catholic Aging Brain Imaging 
database, which contains brain scans of patients who visited the 
outpatient clinic at the Catholic Brain Health Center, Yeouido St. 
Mary’s Hospital, The Catholic University of Korea, from 2018 to 2020.

Cognitive function of all subjects was assessed using the Korean 
version of the Consortium to Establish a Registry for AD (CERAD-K) 
(Lee et  al., 2002). The measurements included assessments of the 
Korean version of the verbal fluency (VF) test, 15-item Boston 
Naming Test, Mini-Mental State Examination (MMSE-K) (Park, 
1989), word list memory (WLM), word list recall (WLR), word list 
recognition (WLRc), constructional praxis (CP), and constructional 
recall (CR). In addition, the total memory (TM) scores were obtained 
by summing the scores from the WLM, WLR, and WLRc tests. The 
total CERAD-K score was calculated by summing all subcategory 
scores, excluding the MMSE-K scores. Higher Trail Making Test B 
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scores indicated lower executive function. Details regarding the use of 
specific tests and the review process are described in the 
Supplementary material.

The inclusion criteria were as follows: (1) unimpaired delayed 
memory function, quantified by scoring above age-, sex-, and 
education-adjusted cutoffs on the WLR domains; (2) MMSE-K score 
between 24 and 30; (3) Clinical Dementia Rating score of 0; (4) 
Memory Box score of 0; (5) normal cognitive function based on the 
absence of significant impairment in cognitive function or activities 
of daily living; and (6) no family history of AD. We  excluded 
participants with a history of alcoholism, drug abuse, head trauma, or 
psychiatric disorders, those taking any psychotropic medications (e.g., 
cholinesterase inhibitors, antidepressants, benzodiazepines, and 
antipsychotics) (N = 37), those with uncontrolled multiple 
cardiovascular risk factors (e.g., uncontrolled arterial hypertension, 
diabetes mellitus, dyslipidemia, cardiac disease including coronary 
heart disease, arrhythmia (N = 52), etc.), and those with evidence of 
subcortical ischemic changes corresponding to a score ≥ 2 on the 
Fazeka scale (N = 24) (Fazekas et  al., 1987). Specific criteria for 
multiple uncontrolled cardiovascular risk factors are detailed in the 
Supplementary material.

T2-weighted fluid-attenuated inversion recovery (FLAIR) data 
were acquired to exclude vascular lesions or other diseases objectively. 
Participants underwent [18F] flutemetamol (FMM) PET-CT within 
3 months of magnetic resonance imaging (MRI).

The procedures for APOE genotyping are described in 
Supplementary material. Considering the protective effects of the 
APOE ε2 allele (Li et al., 2020), we excluded participants with the 
APOE ε2 allele (N = 38). If a participant had at least one APOE ε4 
allele, they were categorized as APOE ε4 carriers; if they had no APOE 
ε4 allele, they were categorized as APOE ε4 non-carriers. This study 
was conducted under the ethical and safety guidelines set forth by the 
Institutional Review Board of the Catholic University of Korea, which 
approved all research activities (SC18TESI0143). Written informed 
consent was obtained from all the participants.

Structural MRI data acquisition

Imaging data were collected by the Department of Radiology of 
Yeouido Saint Mary’s Hospital at the Catholic University of Korea using 
a 3-T Siemens Skyra MRI machine and 32-channel Siemens head coil 
(Siemens Medical Solutions, Erlangen, Germany). The scanning 
parameters of the T1-weighted three-dimensional magnetization-
prepared rapid gradient echo sequences were as follows; echo time 
(TE) = 2.6 ms, repetition time (TR) = 1,940 ms, inversion time 
(TI) = 979 ms, flip angle (FA) = 9o, field of view = 250 × 250 mm, 
matrix = 256 × 256, and voxel size = 1.0 × 1.0 × 1.0 mm3. The FLAIR MRI 
sequences were as follows: TE = 135 ms; TR = 9,000 ms; TI = 2,200 ms; 
FA = 90o; FOV = 220×220 mm; matrix = 356 × 231; and voxel size = 1.0 
× 1.0 × 1.0 mm3.

Structural MRI processing

All T1-weighted MRI scans were processed using a previously 
proposed method based on deep-learning-based segmentation for 
structural volume measurements (Lee et  al., 2020). AQUA from 

Neurophet Inc. was used for T1 MRI processing, where the U-NET++ 
deep learning architecture was utilized. The method used in this study 
showed high dice similarity coefficients overlap with experts and high 
reliability across multicenter studies (Lee et al., 2020). Furthermore, 
the method used in this study, first proposed by Lee et al. (2020), was 
validated using a multirace dataset (Kim et  al., 2020). This deep 
learning-based segmentation method was explicitly compared with 
classical tools such as FreeSurfer, demonstrating superior reliability 
for a multicenter study dataset. The advantage of using this method 
lies in its enhanced performance across diverse populations, as it was 
intensively tested using the East Asian dataset, highlighting significant 
improvements over classical tools where differences between the 
Caucasian and East Asian populations have been known in previous 
studies (Tang et al., 2018; Kang et al., 2020). Once the ROIs were 
automatically delineated, the subregions were merged into the cortical 
brain volume for analysis.

Cortical volume procedure

The mean cortical volumes of the areas of interest were extracted 
from each participant based on deep learning-based segmentation. 
We focused on the cortical Braak regions, which are typically affected 
in AD (Braak and Braak, 1997), with the aim of the entorhinal cortex, 
hippocampus, fusiform gyrus, superior, middle, and inferior temporal 
gyrus, insula, temporal pole, posterior cingulate cortex, precuneus, 
and lateral occipital cortex. The segmentation procedure, also 
performed as implemented in AQUA, enabled us to obtain a measure 
of the estimated intracranial volume (Lee et al., 2020), which is based 
on the scale factor used for atlas registration.

[18F]-flutemetamol PET image acquisition 
and processing

FMM-PET data were collected and analyzed as described 
previously (Thurfjell et  al., 2014). Static PET scans were acquired 
90–110 min after 185 MBq of FMM injection. MRI for each participant 
was used to co-register and define the ROIs and correct partial volume 
effects that arose from the expansion of the cerebrospinal spaces 
accompanying cerebral atrophy using a geometric transfer matrix.

SUVR calculation

Semi-quantification of FMM uptake on PET/CT was performed by 
obtaining the standardized uptake value ratios (SUVRs). SUVRs were 
measured using SCALE PET from Neurophet Inc. (Seoul, Republic of 
Korea) (Lee et al., 2022). T1 MRI was used along with PET imaging for 
structural information. The volumes of interest (VOIs) were restricted 
to gray matter, covering the frontal, superior parietal, lateral temporal, 
anterior, and posterior cingulate cortex/precuneus regions. These VOIs 
were also considered in a previous study (Thurfjell et al., 2014). The 
reference region for the SUVR calculations is the pons. The mean 
uptake counts of each VOIs and reference region were measured on the 
preprocessed image. The regional SUVR was calculated as the ratio of 
each cortical regional mean count to the pons mean count (SUVRPONS). 
The global cortical average (composite SUVR) was calculated by 
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averaging the regional cortical SUVRs weighted by size. A detailed 
description was provided in our previous study (Lee et  al., 2022). 
We used a cut-off of 0.62 for “positive (Aβ+)” versus ‘negative (Aβ−)’ 
neocortical SUVR, consistent with the cut-off values used in a previous 
FMM PET study (Thurfjell et al., 2014). PET scans classified as negative 
for Aβ accumulation also exhibited normal visual readings.

Statistical analysis

Statistical analyses were performed using the R software (version 
4.0.5), Jamovi (version 1.6.23),1 and SPM 12. Assumptions of 
normality were tested for continuous variables using the Kolmogorov–
Smirnov test in the R software; all data demonstrated a normal 
distribution. The two-sample t-test and chi-square (χ2) tests were used 
to probe for differences in demographic variables, clinical data, global 
FMM SUVRPONS, and neuropsychological performance scores between 
the Aβ + and Aβ- groups. All statistical analyses were conducted 
considering a two-tailed p-value <0.05 to define statistical significance.

For the cortical volume in AD vulnerable regions, we performed 
partial correlation analysis to evaluate the association with years of 
education, adjusting for age, sex, total intracranial volume, Aβ 
deposition, and APOE ε4 carrier status. In addition, multiple 
regression analysis was performed to evaluate the education years-by-
effect modifiers (Aβ deposition and APOE ε4 carrier status) 
interaction, adjusting for age, sex, total intracranial volume, and effect 
modifiers not included in each interaction evaluation. Additionally, 
we evaluated the interaction between Aβ deposition and APOE ε4 
carrier status for cortical volume in AD-vulnerable regions displaying 
the education years-by-effect modifier interaction to clarify the 
modulating effect of each AD risk factor.

To examine whether global FMM SUVRPONS mediated the 
association between years of education and cortical volume in regions 
of interest in each Aβ + group and APOE ε4 carriers, mediation analysis 
was performed. The data were analyzed using Hayes’ PROCESS macro 
model 4 for SPSS (version 26.0) to investigate the potential mediation 
effect. This model was chosen because it enables testing of the indirect 
effect of the independent variable (X) on the dependent variable (Y) 
through the mediator (M). In our model, years of education was the 
independent variable (X), cortical volume in the region of interest was 
the dependent variable (Y), and global FMM SUVRPONS was the 
mediating variable (M). The total effect of X on Y, the direct effect of 
X on Y controlling for M, and the indirect effect of X on Y through M 
were analyzed. A 1000-sample bootstrapping was used to generate 
upper and lower limits for confidence intervals for indirect effects to 
minimize distributional assumptions in smaller sample sizes (Preacher 
and Hayes, 2004). When the 95% confidence interval did not include 
0, the indirect effect was considered significant (α = 0.05).

For cortical volume in AD susceptible regions showing the 
interaction of years of education by effect modifier, we  evaluated 
whether the differential association with neuropsychological 
performance exists by AD risk factors, controlling for age, sex, years 
of education, total intracranial volume, and effect modifier not 
included in each analysis. Moreover, we examined the association with 

1 https://www.jamovi.org

the neuropsychological performance scores in each group categorized 
by the effect modifier (Aβ + vs. Aβ- group; APOE ε4 carrier vs. APOE 
ε4 non-carrier) using multiple regression analysis, adjusting for age, 
sex, years of education, total intracranial volume, and effect modifier 
not included in each analysis. All statistical analyses used a two-tailed 
p-value <0.05 to define statistical significance.

Results

Baseline demographic and clinical data

Table 1A shows the baseline demographic data for the Aβ + and 
Aβ − groups of cognitively normal older adults. The mean age of the 
Aβ − group was 68.7 years, while that of the Aβ + group was 70.1 years. 
In both groups, females were overrepresented compared to males 
(68.7 and 62.3%, respectively). The mean number of years of education 
was 13.7 years in the Aβ − and 13.9 years in the Aβ + group. There were 
no significant differences in age, age distribution, sex, and number of 
years of education between the Aβ + and Aβ − groups. In addition, the 
proportion of APOE ε4 carriers was 41.9% in the Aβ + group, which 
was significantly higher than the 20% in the Aβ − group. The Global 
FMM SUVRPONS value, which was used to categorize the Aβ + and 
Aβ − groups, was also significantly higher in the Aβ + group. No 
significant differences were found in neuropsychological performance 
scores between the Aβ + and Aβ − groups.

Baseline demographic information for older adults with normal 
cognitive function, who are APOE ε4 carriers and non-carriers, is 
presented in Table 1B. The APOE ε4 non-carriers had an average age 
of 69.1 years, compared to 68.8 years for the APOE ε4 carriers. Female 
were more prevalent in both groups, comprising 65.6 and 67.7%, 
respectively. The mean education years was 13.7 years for APOE ε4 
non-carriers and 13.8 years for APOE ε4 carriers. There were no notable 
differences between the two groups in terms of age, age distribution, 
sex, or education years. Additionally, the rate of Aβ positivity was 
significantly higher in the APOE ε4 carriers at 41.9%, compared to 20% 
in the non-carriers. However, there were no significant disparities in 
the global FMM SUVRPONS value or neuropsychological performance 
scores between the APOE ε4 carriers and non-carriers.

Association between education years and 
cortical volume according to Aβ deposition 
and APOE ε4 carrier status

There was no significant association between years of education 
and any cortical volumes in the regions of interest in cognitively 
normal older adults (Supplementary material). Among the regions of 
interest, the cortical volumes of the left lateral occipital cortex and 
right fusiform gyrus showed a significant differential association with 
years of education according to Aβ deposit positivity (Figure 1A and 
Table 2A, left lateral occipital cortex, p < 0.001; Table 2B, right fusiform 
gyrus, p = 0.049). These results can be attributed to the Aβ + group 
showing higher education years with lower cortical volume in 
cognitively normal older adults. However, there was no significant 
interaction between Aβ deposition and APOE ε4 carrier status for the 
volume of the left lateral occipital cortex (standardized β = 0.036, 
p = 0.935) and right fusiform gyrus (standardized β = 0.118, p = 0.791).
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TABLE 1 Demographic and clinical characteristics of cognitively normal older adults.

(A) Cognitively normal older adults stratified by Aβ deposition

CN (Aβ−) 
 (n  =  90)

CN (Aβ +)  
(n  =  31)

p-value

Age (years) 68.7 ± 7.3 70.1 ± 6.8 0.371

55–59 (%) 9 (10%) 3 (9.7%) 0.502

60–69 (%) 44 (48.9%) 11 (35.5%)

70–79 (%) 31 (34.4%) 13 (41.9%)

80–85 (%) 6 (6.7%) 4 (12.9%)

Sex (Female, %) 61 (67.8%) 19 (61.3%) 0.661

Education years 13.7 ± 3.1 13.9 ± 2.6 0.799

APOE ε4 carrier status (carrier, %) 18 (20.0%) 13 (41.9%) 0.03

Global SUVRPONS 0.55 ± 0.03 0.74 ± 0.24 < 0.001

MMSE-K 28.2 ± 1.4 28.2 ± 1.6 0.950

CERAD-K VF 16.0 ± 4.3 16.4 ± 4.1 0.653

CERAD-K BNT 12.8 ± 1.7 12.6 ± 1.8 0.716

CERAD-K WLM 20.0 ± 3.3 19.4 ± 3.6 0.419

CERAD-K CP 10.8 ± 0.6 10.9 ± 0.3 0.756

CERAD-K WLR 6.8 ± 1.6 6.5 ± 1.8 0.533

CERAD-K WLRc 9.5 ± 0.8 9.3 ± 1.0 0.161

CERAD-K CR 7.9 ± 2.8 7.8 ± 2.7 0.796

CERAD-K TM 36.3 ± 4.9 35.2 ± 5.7 0.331

CERAD-K Total 83.8 ± 10.2 82.9 ± 12.0 0.688

(B) Cognitively normal older adults stratified by APOE ε4 carrier status

APOE ε4 non-carrier 
(n  =  90)

APOE ε4 carrier  
(n  =  31)

p value

Age (years) 69.1 ± 7.2 68.8 ± 7.2 0.839

55–59 (%) 8 (8.9%) 4 (12.9%) 0.726

60–69 (%) 43 (47.8%) 12 (38.7%)

70–79 (%) 31 (34.4%) 13 (41.9%)

80–85 (%) 8 (8.9%) 2 (6.5%)

Sex (Female, %) 59 (65.6%) 21 (67.7%) 0.999

Education years 13.7 ± 3.2 13.8 ± 2.5 0.908

Positivity of Aβ deposition (%) 18 (20.0%) 13 (41.9%) 0.03

Global SUVRPONS 0.60 ± 0.17 0.60 ± 0.08 0.961

MMSE-K 28.3 ± 1.5 28.2 ± 1.3 0.919

CERAD-K VF 16.3 ± 4.4 15.8 ± 3.7 0.589

CERAD-K BNT 12.9 ± 1.7 12.2 ± 1.8 0.062

CERAD-K WLM 19.8 ± 3.5 20.1 ± 3.1 0.623

CERAD-K CP 10.8 ± 0.6 10.9 ± 0.2 0.093

CERAD-K WLR 6.7 ± 1.7 6.7 ± 1.5 0.966

CERAD-K WLRc 9.5 ± 0.8 9.4 ± 1.1 0.484

CERAD-K CR 7.9 ± 2.8 7.9 ± 2.7 0.988

CERAD-K TM 35.9 ± 5.3 36.2 ± 4.8 0.841

CERAD-K Total 75.9 ± 9.1 75.1 ± 8.3 0.662

Data are presented as the mean ± SD unless indicated otherwise. MMSE-K, The Korean version of Mini Mental Status Examination; CERAD-K, Korean version of Consortium to Establish a 
Registry for Alzheimer’s Disease; VF, Verbal Fluency; BNT, 15-item Boston Naming Test; MMSE, Mini Mental Status Examination; WLM, Word List Memory; CP, Constructional Praxis; 
WLR, Word List Recall; WLRc, Word List Recognition; CR, Constructional Recall; TM, sum of the respective scores from the WLM, WLR, and WLRc; Total, sum of all subcategory scores, 
excluding the MMSE-K scores; Aβ–, negative amyloid beta deposition; Aβ+, positive amyloid beta deposition. SUVRPONS, standardized uptake value ratios of [18F] flutemetamol, using pons as 
reference region.
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Additionally, the cortical volume of the left fusiform gyrus 
and left lateral occipital cortex showed a significantly distinctive 
association with years of education according to the APOE ε4 
carrier status (Figure  1B and Table  2C, left fusiform gyrus, 
p = 0.028; Table  2A, left lateral occipital cortex, p = 0.025). 
However, there was no significant interaction between Aβ 
deposition and APOE ε4 carrier status for the volume of the left 
fusiform gyrus (standardized β = −0.333, p = 0.446) and left 
lateral occipital cortex (standardized β = 0.036, p = 0.935).

Table 3 shows the results of mediation analysis with years of 
education as an independent factor and cortical volume, 
displaying the education years-by-effect modifier interaction, as 
dependent factors in each Aβ + group (Tables 3A,B) and APOE ε4 
carriers (Tables 3C,D). The proposed mediator was the global 
FMM SUVRPONS. In the Aβ + group, although there were 
significant direct and total effects of years of education on the 

cortical volume of the left lateral occipital cortex (direct effect, 
β = −0.5465, p = 0.003; total effect, β = −0.5157, p < 0.001, 
Table 3A), the global FMM SUVRPONS did not mediate this effect 
(β = 0.0308, p = 0.535, Table 3A). Additionally, there was a total 
effect of years of education on the cortical volume of the right 
fusiform gyrus in the Aβ + group (β = −0.3427, p = 0.046, 
Table 2B). However, the global FMM SUVRPONS did not have an 
indirect effect (β = 0.0108, p = 0.691, Table 3B). In the APOE ε4 
carriers, there were no significant indirect, direct, or total effects 
of years of education on the cortical volume of the left fusiform 
gyrus (Table 3C). Additionally, although there were significant 
direct and total effects of years of education on cortical volume 
of the left lateral occipital cortex in APOE ε4 carriers (direct 
effect, β = −0.3890, p = 0.043; total effect, β = −0.4049, p = 0.015, 
Table 3D), the global FMM SUVRPONS did not mediate this effect 
(β = −0.0159, p = 0.748, Table 3D).

FIGURE 1

Impact of an interaction (A) between an education year and amyloid-beta retention on a cortical volume, (B) between an education year and APOE ε4 
allele on a cortical volume. Brain areas are regions of interest. *p  <  0.001, †p  <  0.05, by multiple regression analysis, (A) adjusted for the effects of age, 
sex, APOE ε4 carrier status, and total intracranial volume, (B) adjusted for the effects of age, sex, Aβ retention, and total intracranial volume. The shaded 
region surrounding the regression line indicates the standard error of the estimates.
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Relationship between neuropsychological 
performance scores and cortical volume in 
regions of interest

Among the AD vulnerable regions showing the interaction of 
years of education by effect modifier, left fusiform gyrus cortical 
volume showed a significant interaction with Aβ deposition on 
CERAD-K WLRc score after adjusting for age, sex, years of 
education, total intracranial volume, and APOE ε4 carrier status 
(standardized β = 0.583, p = 0.021). This interaction contributed 
to a lower CERAD-K WLRc score in the Aβ + group, which had 
a lower cortical volume of the left fusiform gyrus. However, 
cortical volumes of other regions of interest did not show a 
significant interaction with AD risk factor for any of the 
neuropsychological test scores.

For the cortical volume of the left lateral occipital cortex, 
there was a significant association with the CERAD-K CP score 
in the Aβ + group after adjusting for age, sex, years of education, 
total intracranial volume, and APOE ε4 carrier status (Figure 2, 
standardized β = 0.4891, p = 0.012). For the cortical volume of the 
right fusiform gyrus, we found a significant relationship with the 
MMSE-K (standardized β = 0.2601, p = 0.017), CERAD-K CR 
(standardized β = 0.2546, p = 0.011), and total scores (standardized 
β = 0.1881, p = 0.042) in the Aβ − group, adjusted for age, sex, 
years of education, total intracranial volume, and APOE ε4 
carrier status (Figure 2).

In the APOE ε4 non-carrier group, there was a significant 
association between CERAD-K CR/total scores and cortical volume 
of the left fusiform gyrus, after adjusting for age, sex, years of 
education, total intracranial volume, and Aβ deposition (Figure 2, 
CERAD-K CR, standardized β = 0.2955, p = 0.001; CERAD-K Total, 
standardized β = 0.1885, p = 0.042).

Discussion

The current study aimed to investigate whether the association 
between years of education and cortical volume in AD-vulnerable 
brain regions is moderated by AD risk factors, including Aβ deposition 
and APOE ε4 carrier status, in the preclinical phase. In this study, the 
volume of the left lateral occipital cortex and bilateral fusiform gyrus 
showed a significant differential association with years of education, 
depending on the presence of AD risk factors. In addition, a significant 
association between bilateral fusiform gyrus cortical volume and 
AD-nonspecific cognitive function was observed, predominantly in 
individuals without AD risk factors.

With respect to the main objective of this study, we  found a 
significant education year-by-Aβ deposition interaction for cortical 
volume in the left lateral occipital cortex and right fusiform gyrus. 
This result contributed to Aβ + cognitively normal older adults 
showing higher education years with lower cortical volume in specific 
AD-vulnerable brain regions. Higher years of education may have 
contributed to higher cognitive reserve, allowing cognitive function 
to remain within the normal range, even when the main pathology of 
AD has been deposited. However, given the deteriorating effect of Aβ 
deposition on cortical volume (Becker et al., 2011), this intermediate 
phenotype may have decreased because the threshold for tolerating 
Aβ deposition increased with higher cognitive reserve (Rentz et al., 
2010). Regarding the brain regions that showed significant interactions 
in this study, the cortical thickness of the lateral occipital cortex 
displayed a significant interaction with cognitive reserve status for 
fluid reasoning in CN older adults (Stern et al., 2018). Furthermore, 
the lateral occipital cortex has been identified as a region that is 
activated as a form of neural compensation for increased cognitive 
loading in older adults with Aβ deposition (Elman et  al., 2014). 
However, we could only identify a significant association between left 

TABLE 2 Interaction between years of education and Alzheimer’s disease risk factors for cortical volume in regions of interest.

(A) Regions of interest: left lateral occipital cortex

Fitted model Estimate SE t p Stand. estimate
95% Confidence interval

Lower Upper

Education years × APOE ε4 

carrier status
−230.218 102.133 −2.254 0.025 −0.515 −0.967 −0.062

Education years × Aβ deposition −474.114 108.9 −4.353 < 0.001 −1.060 −1.5419 −0.577

(B) Regions of interest: right fusiform gyrus

Fitted model Estimate SE t p Stand. estimate
95% Confidence interval

Lower Upper

Education years × Aβ deposition −171.190 82.7 −2.07 0.049 −0.499 −0.9763 −0.0215

(C) Regions of interest: left fusiform gyrus

Fitted model Estimate SE t p Stand. estimate
95% Confidence interval

Lower Upper

Education years × APOE ε4 

carrier status
−168.770 78.9 −2.168 0.028 −0.456 −0.874 −0.039

Regression models were adjusted for age, sex, total intracranial volume, and effect modifiers that were not included in each interaction evaluation. Estimate, unstandardized beta coefficients; 
Stand. Estimate, standardized beta coefficients; SE, standard error.
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lateral occipital cortex volume and CP scores among individuals who 
were Aβ + CN. Although visuospatial function is not a type of 
cognitive function sensitive to AD (Karrasch et al., 2005), several key 
previous studies have reported a relationship between the lateral 
occipital complex and visuospatial function (Grill-Spector et al., 2001; 
James et al., 2003; Dilks et al., 2011; Pascoal et al., 2020). Therefore, 

the results of this study should be cautiously interpreted. It is also 
worth noting that the lateral occipital cortex corresponds to Braak 
stage V and that tau deposition in this region is present in a smaller 
proportion among individuals who were Aβ + CN (Pascoal et  al., 
2020). Additionally, prior research has shown that Aβ deposits in the 
preclinical phase are the strongest predictors of tau accumulation 

TABLE 3 Mediation analysis between education years, Amyloid-β deposition, and cortical volume in cognitively normal older adults with (A,B) positive 
amyloid-β accumulation and (C,D) APOE ε4 allele: indirect and total effects.

(A) Regions of interest: left lateral occipital cortex

Type Effect Estimate SE
95% Confidence interval

β z p
Lower Upper

Indirect
Education years ⇒ Aβ deposition⇒ 

Cortical volume
18.043 29.063 −13.891 101.207 0.031 0.621 0.535

Component Education years ⇒ Aβ deposition −0.012 0.016 −0.054 0.012 −0.130 −0.750 0.453

Aβ deposition ⇒ Cortical volume −1495.861 2024.994 −3501.624 4508.942 −0.238 −0.739 0.460

Direct Education years ⇒ Cortical volume −320.148 108.807 −555.653 −122.081 −0.547 −2.942 0.003

Total Education years ⇒ Cortical volume −302.105 91.647 −481.730 −122.480 −0.516 −3.296 < 0.001

(B) Regions of interest: right fusiform gyrus

Type Effect Estimate SE
95% Confidence interval

β z p
Lower Upper

Indirect
Education years ⇒ Aβ deposition⇒ 

Cortical volume
4.503 11.3237 −12.610 32.391 0.011 0.398 0.691

Component Education years ⇒ Aβ deposition −0.012 0.0160 −0.054 0.011 −0.130 −0.753 0.451

Aβ deposition ⇒ Cortical volume −373.331 1238.372 −3135.8999 2754.321 −0.084 −0.301 0.763

Direct Education years ⇒ Cortical volume −147.077 82.967 −312.646 29.933 −0.354 −1.773 0.076

Total Education years ⇒ Cortical volume −142.574 71.360 −282.437 −2.711 −0.343 −1.998 0.046

(C) Regions of interest: left fusiform gyrus

Type Effect Estimate SE
95% Confidence interval

β z p
Lower Upper

Indirect
Education years ⇒ Aβ deposition ⇒ 

Cortical volume
−1.172 18.093 −33.937 50.045 −0.002 −0.065 0.948

Component Education years ⇒ Aβ deposition 0.002 0.005 −0.009 0.011 0.0590 0.368 0.713

Aβ deposition ⇒ Cortical volume −656.120 3922.324 −8436.272 7414.119 −0.034 −0.167 0.867

Direct Education years ⇒ Cortical volume −185.513 120.995 −403.564 70.483 −0.320 −1.533 0.125

Total Education years ⇒ Cortical volume −186.686 100.366 −383.400 10.028 −0.322 −1.860 0.063

(D) Regions of interest: left lateral occipital cortex

Type Effect Estimate SE
95% Confidence interval

β z p
Lower Upper

Indirect
Education years ⇒ Aβ deposition 

⇒ Cortical volume
−7.177 22.330 −42.888 54.075 −0.0160 −0.321 0.748

Component Education years ⇒ Aβ deposition 0.002 0.005 −0.010 0.011 0.059 0.348 0.728

Aβ deposition ⇒ Cortical volume −4017.319 2582.954 −9326.432 932.822 −0.270 −1.555 0.120

Direct Education years ⇒ Cortical volume −175.459 86.860 −324.296 20.054 −0.389 −2.020 0.043

Total Education years ⇒ Cortical volume −182.636 75.300 −330.221 −35.050 −0.405 −2.425 0.015

Mediation analysis with education years (predictor, X), mediated by [18F] flutemetamol SUVRPONS (mediator, M), predicting cortical volume in brain regions vulnerable to Alzheimer’s disease. 
Confidence intervals computed with method: Bootstrap percentiles. Betas are completely standardized effect sizes.
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(Ossenkoppele et al., 2021), which has been demonstrated to affect 
cortical atrophy in the course of AD (Harrison et  al., 2019). 
Considering the lack of a mediating effect of Aβ accumulation 
between years of education and cortical volume in the present study, 
it may be that older adults with higher years of education who exhibit 
Aβ + CN are more likely to be susceptible to advanced tau deposition, 
which may cause atrophy in related brain regions. In addition, 
we found no significant association between the years of education 
and cortical volume in AD-vulnerable brain regions among cognitively 
normal older adults. However, in participants with AD risk factors, 
we  observed a significant negative association between years of 
education and cortical volume with the education years-by-AD risk 
factor interaction. It might be  that this interaction was primarily 
observed in regions with relatively advanced Braak stages, where the 
effect of years of education on increasing thresholds for AD 
pathologies such as tauopathy may be more prominent. Furthermore, 
cognitive reserve factors such as years of education also influence 
brain maintenance, which is the ability to prevent brain changes 
associated with AD pathology (Stern et  al., 2023). Therefore, 
differences in brain maintenance in each brain region may have 
affected the brain regions that displayed significant interactions. In 
this regard, by longitudinally measuring the intensity of atrophy in AD 
susceptible brain regions against Aβ and tau deposition and assessing 
how this affects the way cognitive function changes, we can clarify the 
current findings with a more comprehensive understanding of 
cognitive reserve and brain maintenance.

The right fusiform gyrus was another brain region that displayed 
a significant education year-by-Aβ deposition interaction and this 
region also showed a similar interaction pattern with the left lateral 
occipital cortex. Furthermore, the accumulation of Aβ did not play a 
mediating role in the relationship between years of education and the 

cortical volume of the fusiform gyrus. In the previous papers, the 
fusiform gyrus has performed the compensatory role, interacting with 
the level of education in the CN and prodromal AD group (Morbelli 
et al., 2013). Additionally, memory training has been demonstrated to 
increase the cortical thickness of the right fusiform gyrus in the CN 
participants (Belleville and Bherer, 2012). Moreover, the fusiform 
gyrus is a Braak stage III brain region, and in CN individuals with Aβ 
deposition, tau protein deposition in this region has been reported to 
occur in close to 10% of cases (Pascoal et al., 2020). Building on the 
discussion of the lateral occipital cortex, it might be reasonable to 
speculate that preclinical subjects with Aβ protein may exhibit atrophy 
of the fusiform gyrus by advanced tau accumulation as they accrue 
higher years of education. In the present study, the association 
between cortical volume in the right fusiform gyrus and AD-prone 
cognitive function was not confirmed, and a significant association 
was only displayed in the group without concomitant Aβ deposition. 
In addition, despite the interaction between Aβ deposition and left 
fusiform gyrus cortical volume for verbal memory recognition, there 
was no significant association between cortical volume and this 
cognitive domain in each Aβ + and Aβ- group. Since the participants 
in the present study were recruited prior to the onset of the clinical 
phenotype of AD, it is improbable that clear cognitive changes related 
to AD were noticeable. Further longitudinal observations are also 
necessary to elucidate the clinical implications of alterations in the 
volume of the regions of interest, conjoining with the years 
of education.

We also identified a significant education year-by-APOE ε4 carrier 
status interaction for the cortical volume in left lateral occipital cortex 
and fusiform gyrus. Based on this significant finding, APOE ε4 carriers 
with higher years of education displayed lower cortical volume in 
regions of interest. Additionally, we discovered significant interactions 

FIGURE 2

Relationship between neuropsychological performance scores and cortical volume in sub-categorized groups. Multiple regression analysis was 
adjusted for age, sex, years of education, total intracranial volume, and APOE ε4 carrier status (Aβ positive and negative groups) or Aβ deposition (APOE 
ε4 non-carrier). CP, constructional praxis; MMSE, mini mental status examination; CR, Constructional Recall; Total, sum of all subcategory scores, 
excluding the MMSE-K scores. The shaded region surrounding the regression line illustrates the standard error of the estimate.
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in similar regions as when we  utilized Aβ deposition as an effect 
modifier. These results need to be interpreted with caution considering 
that Aβ deposition occurs at an earlier age and at a faster rate in APOE 
ε4 carriers (Jack et al., 2015; Jansen et al., 2015). In the current study, 
the proportion of APOE ε4 carriers in the Aβ + group was more than 
twice as high as in the Aβ − group. In this regard, it is conceivable that 
the effect of higher years of education on raising the threshold for AD 
pathology is more pronounced in the APOE ε4 carriers. In addition, it 
can be assumed that intermediate phenotypes, such as cortical volume, 
would have been exposed to the debilitating effect of more accumulated 
pathology. Despite this testable prediction, in a prior study on 
individuals from normal cognition to MCI, the APOE ε4 carrier status 
did not influence hippocampal volume in those with high or low levels 
of education, respectively (Vemuri et al., 2016). However, this previous 
study did not evaluate effects on brain regions other than the 
hippocampus, and the current study also did not find significant effects 
on the hippocampus. Additionally, in the current findings on the 
APOE ε4 carriers, the Aβ deposition also did not play a mediating role 
in the relationship between years of education and the cortical volume 
in regions of interest. Considering the limited research available on the 
association between years of education, cortical volume, cognitive 
function, and effect modifiers such as APOE ε4 carrier status during 
the preclinical phase, further longitudinal studies are needed that 
comprehensively analyze the impact of cognitive reserve proxy for the 
relationship between atrophy of AD-prone brain regions and cognitive 
change, together with Aβ and tau deposition. The present study could 
serve as a starting point for these investigations.

While there is some evidence suggesting that the lateral occipital 
cortex and fusiform gyrus may have a compensatory role (Grill-Spector 
et al., 2001; Morbelli et al., 2013), interacting with the education years, 
the current study found that cortical volume was positively associated 
with cognitive function only in individuals who do not carry the APOE 
ε4 allele. Additionally, the present study found associations with the 
total cognitive function and visuospatial memory domain scores. These 
findings are supported by the fact that regions of interest are related to 
visuospatial recognition (Grill-Spector et al., 2001). However, further 
research is needed to determine the longitudinal effects of the cortical 
volume of brain regions that have education years-by-APOE ε4 carrier 
status interaction on AD-vulnerable cognitive functions.

This study has several limitations. The relatively small sample size 
in this study may have compromised its statistical robustness. 
Moreover, an imbalanced sample size might affect the external validity 
of the findings, making them less generalizable to the broader 
population. Therefore, further research should be conducted with a 
larger sample size, including a larger number of subjects in the 
Aβ + group. Additionally, we utilized years of education as a surrogate 
for cognitive reserve, primarily because of its general applicability and 
convenience as a measure. Nonetheless, a recent study has highlighted 
that years of education may not necessarily moderate the influence of 
AD biomarkers on cognitive decline in MCI and AD patients (Bauer 
et al., 2020). In addition, there are other proposed proxies to more 
accurately gauge the accumulation of cognitive reserve throughout 
individual life (Leon et  al., 2014; Galvin et  al., 2021). Engaging in 
further research with these alternate proxies can pave the way for a 
comprehensive understanding of cognitive reserves. A notable 
limitation of our study is its cross-sectional design. A more precise 
interpretation might be achieved if components pivotal to cognitive 
reserve, brain reserve, and maintenance—such as brain atrophy, 

function, pathology, and cognitive changes—were assessed 
longitudinally (Stern et al., 2020, 2023). Therefore, the accumulation of 
longitudinal data will be instrumental in deepening our understanding 
of these factors that modulate the progression of AD and the 
interrelationships among them. Finally, we conducted this study with 
cognitively normal older adults who had no family history of AD. It has 
been reported that family history of AD is related to regional medial 
temporal lobe atrophy, regardless of cognitive impairment (Ganske 
et al., 2016). Therefore, we cannot rule out the possibility that it might 
have affected the outcomes of this study.

Similar to predictions of cognitive trajectories based on the 
cognitive reserve hypothesis (Hall et  al., 2007), the present study 
aimed to explore the effects of years of education on intermediate 
phenotypes, focusing on Aβ accumulation and APOE ε4 carrier status 
as effect modifiers in the preclinical phase. We  found significant 
education years-by-AD risk factor interactions for the cortical volume 
of the brain regions involved in neural compensation. Additionally, 
there was a significant association between cortical volume and 
cognitive functions nonspecific to AD, primarily in individuals 
without AD risk factors. This study suggests that, in the earliest stages 
of AD, the differential role of AD risk factors should be considered in 
the effect of years of education on cortical volume, a representative 
intermediate phenotype of AD. In addition, given the long-term 
impact of cognitive reserve and the importance of a comprehensive 
reflection of AD pathology (Jack et al., 2015, 2019), further studies 
exploring the long-term implications of our findings would help 
deepen our understanding of cognitive reserve in the preclinical 
phase. Finally, we delineated the associations between education years 
and cortical gray matter volumes, examining the potential interactions 
with AD risk factors within a distinct Korean cohort. Our findings 
provide an initial foray into understanding these complex 
interrelationships. However, the specificity of our cohort necessitates 
broader validation. The Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) or UK biobank database (Mueller et al., 2005; Sudlow et al., 
2015), recognized for its comprehensive and diverse dataset, emerges 
as an ideal candidate for such validation. Incorporating analyses from 
these cohorts can enhance the robustness of our findings and assess 
their applicability beyond the Korean context. It’s imperative for future 
research to embrace such cross-cohort investigations, emphasizing the 
multifaceted nature of AD and the significant impact of genetic and 
environmental variations.
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