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Background: White matter hyperintensities (WMHs) are key neuroimaging 
markers of cerebral small vessel diseases. This study aimed to investigate whether 
intracranial and extracranial atherosclerotic stenosis is associated with WMHs.

Methods: Following a previously registered protocol (PROSPERO protocol: 
CRD42023407465), PubMed, Web of Science, and Embase were systematically 
searched for relevant literature published until March 2023. Cross-sectional 
studies examining the association between intracranial and extracranial 
atherosclerotic stenosis and WMHs were included. Random effects models were 
used to calculate the pooled estimates.

Results: Twenty-one eligible studies, including 10,841 participants, were 
identified. Intracranial and extracranial atherosclerotic stenosis was associated 
with an increased risk of WMHs (OR 1.80, 95% CI 1.25–2.57, I2  =  75%) and increased 
WMH volumes (SMD 0.40, 95% CI 0.18–0.63, I2  =  63%). Heterogeneity resulted 
from the WMHs rating method and the location. Extracranial atherosclerotic 
stenosis (ECAS) was significantly associated with WMHs (OR 2.10, 95% CI 1.22–
3.62, I2  =  71%), but intracranial atherosclerotic stenosis (ICAS) was insignificantly 
associated with WMHs (OR 1.75, 95% CI 0.97–3.15, I2  =  84%). The association was 
stable in the subgroup analysis based on WMHs location, which included deep 
WMHs and periventricular WMHs.

Conclusion: Intracranial and extracranial atherosclerotic stenosis is associated 
with WMHs. This association is significant in ECAS, but attenuated in ICAS.
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Introduction

White matter hyperintensities (WMHs) of presumed vascular origin are ischemic 
manifestations of cerebral small vessel disease that can be  detected through neuroimaging 
(Wardlaw et al., 2013). The prevalence of WMHs increases significantly with age, ranging from 
approximately 5% in individuals aged 40 years to nearly 100% in those aged 80 years 
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(Zhuang et  al., 2018). Severe WMHs have been linked to various 
negative outcomes, including cognitive impairment (Debette et  al., 
2019), neuropsychiatric symptoms (Clancy et al., 2021), gait dysfunction 
(Kim et al., 2016), increased stroke risk (Debette et al., 2019), and poorer 
stroke recovery (Cheng et  al., 2022). However, the underlying 
mechanisms responsible for the development of WMHs remain 
incompletely understood, with current research highlighting 
dysfunctions in cerebral blood flow and the blood–brain barrier as 
crucial factors (Wardlaw et al., 2019). Previous studies have established 
an association between intracranial and extracranial atherosclerotic 
stenosis and white matter hyperintensities (WMHs), although the 
results of these studies are not consistent (Pu et al., 2009; Lee et al., 2011; 
Schulz et al., 2013; Park et al., 2015; Duan et al., 2018; Huang et al., 2022).

Atherosclerosis is the primary cause of luminal stenosis in both 
intracranial and extracranial arteries. Approximately 50% of Asian 
patients with acute ischemic stroke suffer from intracranial and 
extracranial atherosclerotic stenosis (Wang et  al., 2014). Although 
WMHs are the primary imaging marker representing damage to the 
brain’s small vessels, some studies have reported that WMHs were more 
common in patients with intracranial and extracranial atherosclerotic 
stenosis (Lee et al., 2011; Park et al., 2015; Duan et al., 2018). A previous 
meta-analysis demonstrated that carotid artery stenosis was associated 
with total WMHs, deep WMHs (DWMHs), and periventricular 
WMHs (PVWMHs) (Ye et al., 2018). However, it is important to note 
that this meta-analysis only included a limited number of studies 
(n = 8). Furthermore, the study conducted by Ye et  al. specifically 
focused on extracranial internal carotid artery stenosis, and there has 
been no comprehensive summary of research findings regarding 
intracranial atherosclerotic stenosis (ICAS) and WMHs. The 
pathogenic mechanisms and hemodynamic changes of ICAS and 
extracranial atherosclerotic stenosis (ECAS) are not entirely consistent 
(Kim et al., 2018). Therefore, it is necessary to determine whether ICAS, 
similar to ECAS, is related to WMHs. To date, a considerable number 
of recent studies have been published investigating the correlation 
between intracranial and extracranial atherosclerotic stenosis and white 
matter hyperintensities (WMHs) (Duan et al., 2018; Ye et al., 2019; Del 
Brutto et al., 2020; Fang et al., 2020; Benli et al., 2021; Yin et al., 2021; 
Choi et al., 2022; Ghaznawi et al., 2022; Huang et al., 2022; Wang et al., 
2022). In light of this, we conducted an updated systematic review and 
meta-analysis to examine the potential association between ICAS or 
ECAS and WMHs. Additionally, the associations between intracranial 
and extracranial atherosclerotic stenosis and WMHs in different study 
designs, severity of atherosclerotic stenosis, WMHs rating method, and 
WMHs location were further analyzed.

Methods

This systematic review was carried out based on a predefined 
protocol (PROSPERO registration number: CRD42023407465), 
adhering to the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines (Page et al., 2021).

Search strategy

The PubMed, Web of Science, and Embase databases were 
systematically searched from their inception to February 2023. The 

detailed search formula was as follows: (“white matter hyperintensit*” 
OR “white matter lesion*” OR “white matter change*” OR “white 
matter disease*” OR “white matter damage*” OR “leukoaraiosis” OR 
“leukoencephalopath*” OR “Binswanger’s disease”) AND 
(“intracranial atherosclero*” OR “cerebral atherosclero*” OR 
“extracranial atherosclero*” OR “arter* stenosis” OR “intracranial 
stenosis” OR “extracranial stenosis” OR “carotid stenosis”). The 
references of the included articles and relevant reviews were manually 
searched to identify potential studies missed during the initial 
literature search. Two independent investigators (ZZ and FF) 
performed a literature, and differences were resolved by a third 
investigator (WZ) joining the discussion.

Study selection

This meta-analysis included studies that reported an association 
between ICAS or ECAS and WMHs in human. The inclusion criteria 
were as follows: (i) the set criteria for ICAS or ECAS severity was 
≥50%; (ii) WMHs were assessed by a quantitative or semiquantitative 
method based on magnetic resonance imaging (MRI); (iii) the 
available data for meta-analysis (effect estimates or mean and standard 
deviation) were reported; and (iv) the article was published in full text 
in English. The following studies were excluded: (1) studies with 
unclear criteria for ICAS or ECAS severity; (2) studies with WMHs 
assessment based on computer tomography (CT); (3) meeting 
abstracts; and (4) systematic reviews. In the case of duplicated 
published data, we  included the study with the greatest number 
of participants.

ICAS was defined as stenosis in intracranial internal carotid 
artery, middle cerebral artery, anterior cerebral artery, posterior 
cerebral artery, intracranial vertebral artery, and basilar artery. ECAS 
was defined as stenosis in extracranial internal carotid artery, 
extracranial vertebral artery, external carotid artery, common carotid 
artery, the proximal portion of subclavian artery, and aortic arch. 
Imaging examinations to determine the degree of vascular stenosis 
included Doppler ultrasonography (DUS), CT angiography (CTA), 
magnetic resonance angiography (MRA), and digital subtraction 
angiography (DSA). WMHs were defined as hyperintense in the 
subcortical white matter displayed on T2-weighted sequences 
(Figure  1) and could be  divided into DWMHs and PVWMHs 
according to their anatomical locations. WMHs within 13 mm from 
ventricular surface were classified as DWMHs, and WMHs 13 mm or 
further from the ventricular surface were classified as PVWMHs (Kim 
et  al., 2008). The measurement of WMHs involved quantification 
methods and semi-quantitative visual rating scales, such as Fazekas 
Scale (Fazekas et al., 1987), Scheltens Scale (Scheltens et al., 1993), and 
Age-Related White Matter Changes (ARWMC) Scale (Wahlund 
et al., 2001).

Data extraction

Two independent reviewers (ZZ and FF) used a prespecified 
template to extract information on study characteristics (first author, 
publication year, country, study design), participant details (sample 
size, mean age, sex ratio), atherosclerotic stenosis assessment (location, 
severity, vascular image), WMHs assessment (rating method, 
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location), and statistical analyses (effect estimate and corresponding 
95% confidence interval [CI], mean and standard deviation). Relevant 
missing data were requested by emailing the corresponding authors 
when possible. Otherwise, the study was not included in the subgroup 
analysis grouped by missing variables. Effect estimates (usually odds 
ratios [ORs]) were extracted from the most fully adjusted models. 
When adjusted effect estimates were not directly provided, we chose 
unadjusted effect estimates or calculated the ORs using 2 × 2 tables.

Quality assessment

Two independent reviewers (ZZ and FF) assessed the risk of bias 
in the study design using the Newcastle-Ottawa scale (Stang, 2010). 
The checklist consists of three domains (selection, comparability, and 
exposure) with a total quality score ranging from 0 to 9 points. A score 
equal to or exceeding 7 indicated a high-quality study. Any 
disagreements were resolved by a third reviewer (WZ).

Statistical analysis

Summary measures, including OR and standardized mean 
difference (SMD), were applied to studies reporting WMHs in the 
form of categorical and continuous variables, respectively. A random-
effects meta-analysis model (DerSimonian Laird method) was used to 
calculate the pooled OR and SMD (Dersimonian and Laird, 1986). 
When DWMHs and PVWMHs were reported instead of total WMHs 
in the included studies, DWMH data was selected for the 
meta-analysis.

Heterogeneity was assessed using the Cochran Q statistic and was 
quantified using the I2 metric. I2 > 50% was considered statistically 
significant heterogeneity (Higgins et  al., 2003). The source of 
heterogeneity was investigated via meta-regression (if n ≥ 10) and 
subgroup analyses stratified by multiple different variables. Sensitivity 
analyses were conducted by excluding one study at a time to examine 
the robustness of the synthesized results. Publication bias (if n ≥ 10) 
was assessed using funnel plot and Egger’s test (Egger et al., 1997). All 

statistical tests were two-tailed, and statistical significance was set at 
p < 0.05. Statistical analyses were performed using the R version 4.2.1 
software (R Foundation for Statistical Computing, Vienna, Austria).

Results

Literature search

Figure 2 shows the screening and selection processes of the study. 
The systematic database search yielded 477, 452, and 578 records from 
the PubMed, Web of Science, and Embase databases, respectively. 
After excluding duplicates and reviewing titles and abstracts, 73 
articles were considered as potential studies on the association 
between WMHs and ICAS or ECAS. Following a review of the full 
texts and a manual search, 21 studies were included in the meta-
analyses. Of these, 14 studies were pooled to calculate the OR (Pu 
et al., 2009; Romero et al., 2009; Muñoz-Cortés et al., 2013; Schulz 
et al., 2013; Park et al., 2015; Duan et al., 2018; Ye et al., 2019; Del 
Brutto et al., 2020; Fang et al., 2020; Benli et al., 2021; Yin et al., 2021; 
Choi et al., 2022; Huang et al., 2022; Wang et al., 2022), and seven 
studies were pooled to calculate the SMD (Patankar et  al., 2006; 
Chuang et al., 2011; Lee et al., 2011; Cheng et al., 2012; Scherr et al., 
2012; Sahin et al., 2015; Ghaznawi et al., 2022).

Study characteristics

The characteristics of the included studies are summarized in 
Table 1. Nine studies were conducted in Europe and America, and 12 
studies were conducted in East Asia. Five studies compared WMHs in 
the ipsilateral and contralateral hemispheres of stenotic vessels in 
patients with ICAS or ECAS, and 16 studies compared WMHs in 
patients with ICAS or ECAS and controls without ICAS and 
ECAS. Overall, 21 studies included 10,841 participants (median 
sample size, n = 212: minimum, n = 29; maximum, n = 2,420). The 
average age of the participants in the included studies ranged between 
51.6 and 72.7 years, and the proportion of females ranged from 8.7 to 

FIGURE 1

The form of white matter hyperintensities (WMHs), taking Fazekas Scale as an example: (A) mild, (B) moderate, and (C) severe.
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81.0%. ICAS were investigated in 11 studies, and ECAS was 
investigated in 16 studies. The internal carotid artery was the artery of 
greatest concern (n = 20). The criterion for atherosclerotic stenosis was 
set as greater than 50% in 13 studies, greater than 60% in one study, 
and greater than 70% in seven studies. Quantitative assessment was 
conducted in two studies, semi-quantitative assessment in 18 studies, 
and qualitative assessment in one study. The commonly used scales 
were Fazekas Scale (n = seven), Scheltens Scale (n = four), and 
ARWMC Scale (n = three). Total WMHs were investigated in 14 
studies, and DWMHs and PVWMHs were investigated in nine 
studies. According to the quality assessment, approximately half of the 
studies were of high quality (Supplementary Table S1).

Association of ICAS and ECAS with WMHs 
based on OR

We found intracranial and extracranial atherosclerotic stenosis to 
be associated with an increased risk of WMHs (OR 1.80, 95% CI 
1.25–2.57, I2 = 75%, 14 studies; Figure 3). Sensitivity analyses further 
revealed a stable association between intracranial and extracranial 
atherosclerotic stenosis and WMHs (Supplementary Figure S1). Meta-
regression analysis revealed that the source of heterogeneity originated 
from the WMHs rating method and location (both p < 0.05). Subgroup 
analyses showed that race, age, and sex did not influence this 
association (Figure  4). Not only patients with intracranial and 
extracranial atherosclerotic stenosis had increased odds of WMHs 
compared to controls without intracranial and extracranial 
atherosclerotic stenosis (OR 1.64, 95% CI 1.07–2.49, I2 = 77%, 11 

studies), but also patients with intracranial and extracranial 
atherosclerotic stenosis had increased odds of WMHs in the ipsilateral 
hemisphere of the stenotic vessel compared to the contralateral side 
(OR 2.66, 95% CI 1.65–4.31, I2 = 0%, three studies). Intracranial and 
extracranial atherosclerotic stenosis with a threshold of 50% stenosis 
was associated with WMHs (OR 1.94, 95% CI 1.31–2.88, I2 = 76%, 11 
studies). According to the location of atherosclerotic stenosis, ECAS 
(OR 2.10, 95% CI 1.22–3.62, I2 = 71%, six studies) but not ICAS (OR 
1.75, 95% CI 0.97–3.15, I2 = 84%, seven studies) was associated with 
WMHs. Both DWMHs (OR 2.97, 95% CI 2.20–4.02, I2 = 0%, five 
studies), and PVWMHs (OR 1.81, 95% CI 1.01–3.26, I2 = 65%, five 
studies) were associated with intracranial and extracranial 
atherosclerotic stenosis. WMHs assessed by ARWMC Scale were not 
associated with intracranial and extracranial atherosclerotic stenosis. 
The funnel plot (Supplementary Figure S2) for the studies investigating 
the association between intracranial and extracranial atherosclerotic 
stenosis and WMHs showed mild asymmetry. However, Egger’s tests 
(p = 0.17) indicated no significant publication bias in this 
meta-analysis.

Association of ICAS and ECAS with WMHs 
based on SMD

Our analyses found that intracranial and extracranial 
atherosclerotic stenosis to be associated with increased volume of 
WMHs (SMD 0.40, 95% CI 0.18–0.63, I2 = 63%, seven studies; 
Figure  5). The result remained stable in sensitivity analyses, 
excluding one study each time (Supplementary Figure S3). 

FIGURE 2

Flowchart presenting the selection of eligible articles.
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TABLE 1 Study characteristics.

First author, 
year

Country
Study 
design

Sample 
size

Age 
(mean, y)

Female
Location of 
atherosclerotic 
stenosis

Severity of 
atherosclerotic 

stenosis

Vascular 
image

WMHs 
rating 
method

WMHs 
location

NOS

Patankar et al. (2006) UK Interindividual 90 NA NA Extracranial ≥70% DUS Scheltens Scale Deep and 

periventricular
5

Pu et al. (2009) China Interindividual 185 56.2 ± 10.4 14.1% Intracranial and extracranial ≥50% MRA ARWMC Scale Total 5

Romero et al. (2009) USA Interindividual 1971 58.0 ± 10.0 53.0% Extracranial ≥50% DUS Volumetric Total 8

Chuang et al. (2011) China Intraindividual 106 64.4 ± 8.1 39.6% Extracranial ≥60% DUS or MRA Fazekas Scale Deep and 

periventricular
8

 Lee et al. (2011) South Korea Interindividual 268 67.0 ± 12.4 43.3% Intracranial and extracranial ≥50% MRA Scheltens Scale Total, deep and 

periventricular
7

Cheng et al. (2012) China Interindividual 43 71.2 ± 6.6 44.2% Extracranial ≥70% DUS or MRA Scheltens Scale Total 8

Scherr et al. (2012) Austria Interindividual 212 70.2 ± 9.1 43.9% Extracranial ≥50% DUS Pantoni Scale Total 7

Muñoz-Cortés et al. 

(2013)

Spain Interindividual 67 53.5 ± 7.0 28.0% Extracranial ≥50% DUS Fazekas Scale Total
5

Schulz et al. (2013) UK Interindividual 671 71.1 ± 11.5 44.3% Intracranial and extracranial ≥50% DUS, CTA or MRA ARWMC Scale Total 6

Park et al. (2015) South Korea Interindividual 697 67.8 ± 12.6 41.8% Intracranial and extracranial ≥50% MRA Fazekas Scale Deep and 

periventricular
6

Sahin et al. (2015) Turkey Intraindividual 29 68.2 ± 9.2 37.9% Extracranial ≥70% CTA, MRA or DSA Scheltens Scale Deep and 

periventricular
8

Duan et al. (2018) China Interindividual 2,420 61.9 ± 11.2 32.5% Intracranial and extracranial ≥50% MRA Manolio Scale Total 5

Ye et al. (2019) China Intraindividual 115 67.2 ± 10.2 18.3% Extracranial ≥70% DUS King Scale Deep and 

periventricular
9

Del Brutto et al. (2020) USA Interindividual 581 71.0 ± 8.4 57.1% Intracranial ≥50% MRA Pantoni Scale Total 6

Fang et al. (2020) China Interindividual 180 63.7 ± 11.6 35.6% Intracranial ≥70% MRA ARWMC Scale Total 5

Benli et al. (2021) Turkey Intraindividual 69 72.7 ± 9.3 50.7% Extracranial ≥50% DUS Fazekas Scale Deep and 

periventricular
8

Yin et al. (2021) China Interindividual 469 60.2 ± 11.3 27.7% Intracranial ≥50% CTA, MRA or DSA Lesions ≥5 mm 

in any diameter

Total
6

Choi et al. (2022) South Korea Interindividual 1,337 51.6 ± 9.2 13.5% Intracranial ≥50% MRA Fazekas Scale Deep and 

periventricular
8

Ghaznawi et al. (2022) Netherlands Interindividual 654 57.0 ± 10.0 81.0% Extracranial ≥70% DUS Volumetric Total 6

Huang et al. (2022) China Intraindividual 161 65.7 ± 8.4 8.7% Intracranial and extracranial ≥50% DSA Fazekas Scale Deep and 

periventricular
8

Wang et al. (2022) China Interindividual 516 59.0 ± 20.0 25.6% Intracranial ≥70% MRA Fazekas Scale Total 7

ARWMC, age-related white matter changes; CTA, computer tomography; DUS, doppler ultrasonography; DSA, digital subtraction angiography; MRA, magnetic resonance angiography; NA, not applicable; NOS, Newcastle-Ottawa scale; WMHs, white matter 
hyperintensities.
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Subgroup analyses showed that race and sex did not influence this 
association (Figure 6). The results were similar between comparison 
the volume of WMHs in patients with intracranial and extracranial 
atherosclerotic stenosis and controls without intracranial and 
extracranial atherosclerotic stenosis (SMD 0.42, 95% CI 0.09–0.75, 
I2 = 75%, five studies) and comparison the volume of WMHs in the 
ipsilateral hemisphere of the stenotic vessel and contralateral side 
in patients with intracranial and extracranial atherosclerotic 
stenosis (SMD 0.40, 95% CI 0.16–0.64, I2 = 0%, two studies). 
According to the location of atherosclerotic stenosis, both ICAS 
(SMD 0.52, 95% CI 0.25–0.79, one study) and ECAS (SMD 0.34, 
95% CI 0.07–0.62, I2 = 70%, seven studies) were associated with 
WMHs. Intracranial and extracranial atherosclerotic stenosis was 
associated with increased volume of DWMHs (SMD 0.54, 95% CI 
0.22–0.86, I2 = 65%, four studies) and PVWMHs (SMD 0.41, 95% 
CI 0.25–0.57, I2 = 0%, four studies). No significant differences in this 
association were observed between the different semi-quantitative 
assessment scales.

Discussion

This systematic review and meta-analysis showed that intracranial 
and extracranial atherosclerotic stenosis ≥50% was associated with 
WMHs in deep and periventricular regions. The association was 
validated in studies designed for both inter-and intra-individual 
comparisons. Our study showed that ECAS was significantly 
associated with WMHs, whereas ICAS was only marginally associated 
with WMHs.

The correlation between ECAS and WMHs confirmed the 
findings of a previous meta-analysis by Ye et al. (2018). Consistent 
with previous meta-analysis, the extracranial artery of interest in the 
included studies was the carotid artery, particularly the extracranial 
internal carotid artery, which is the main blood vessel supplying the 
supratentorial white matter. Compared to the study by Ye et al., which 
only provided SMD values, our study also provided OR values. Our 
study was conducted to verify the correlation between ICAS and 
WMHs; however, the results were borderline. Several studies on ICAS 
and WMHs were excluded because of the lack of data available for 
meta-analysis, which reported contradictory results, including 
positive and null associations (Chutinet et al., 2012; Li et al., 2014; 
Nam et al., 2017; Zhai et al., 2018; Zhao et al., 2019; Ren et al., 2021; 
Feng et al., 2023). The inconsistencies in the results might be due to 
the differences in study subjects, sample size, ICAS assessment 
method, WMHs rating method and statistical analysis between the 
studies. Overall, several studies with a large sample size (n > 1,000) 
reported similar results, indicating that ICAS was associated with 
WMHs (Nam et al., 2017; Duan et al., 2018; Zhai et al., 2018; Choi 
et al., 2022). Another strength of our study is to explore the source of 
heterogeneity using meta-regression and subgroup analyses. The 
WMHs rating method was an important source of heterogeneity. 
Fazekas Scale was suitable for the analysis of WMHs in the form of 
categorical variable, and Scheltens Scale was suitable for the analysis 
of WMHs in the form of continuous variable.

The pathophysiology linking intracranial and extracranial 
atherosclerotic stenosis to WMHs remains unclear. The shared 
risk factors (e.g., advanced age, hypertension, and diabetes) of 
intracranial and extracranial atherosclerotic stenosis and cerebral 

FIGURE 3

Forest plot depicting intracranial and extracranial atherosclerotic stenosis and the risk of WMHs.
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FIGURE 4

The association of intracranial and extracranial atherosclerotic stenosis with the risk of WMHs in subgroup analyses.
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small vessel disease may play a mediating role. However, the 
intra-individual comparison design which eliminates the 
influence of vascular risk factors still showed more severe WMHs 
in the ipsilateral hemisphere of intracranial and extracranial 
atherosclerotic stenosis than that in the contralateral hemisphere. 
This indicates that other important mechanisms link intracranial 
and extracranial atherosclerotic stenosis with WMHs. Cerebral 
blood flow and cerebrovascular reactivity are impaired in patients 
with ICAS (Liu and Li, 2016; Yang et  al., 2017) or ECAS 
(Hartkamp et al., 2018), especially in the ipsilateral hemisphere 
of the stenotic vessel. Endothelial dysfunction (including cerebral 
blood flow, cerebrovascular reactivity, intracranial pulsatility) is 
a pivotal pathogenesis of cerebral small vessel disease (Wardlaw 
et al., 2019). Three studies reported that WMHs were not directly 
related to arterial stenosis but were independently associated 
with the stenosis-induced cerebral hemodynamic changes in 
patients with ICAS (Fang et al., 2020; Ren et al., 2021; Feng et al., 
2023). Intracranial and extracranial atherosclerotic stenosis does 
not necessarily cause decreased cerebral blood flow (Shakur 
et al., 2014) as it also depends on collateral blood flow, which may 
result in a null association between intracranial and extracranial 
atherosclerotic stenosis and WMHs in some previous studies. 
Recently, high intracranial vascular pulsatility has been linked to 
the formation of WMHs in individuals with asymptomatic ICAS 
(Zhao et al., 2022).

Our results showed that the association between intracranial 
and extracranial atherosclerotic stenosis and WMHs was stronger 
in the deep white matter than in the periventricular white matter. 
Neuropathological examination reveals that the main pathological 
changes are demyelination in DWMHs and the main changes are 
interstitial edema in PVWMHs (Haller et  al., 2013). A cross-
sectional study of arterial spin-labeling images showed that 
ischemia-hypoperfusion is the pathogenesis of DWMHs rather 
than PVWMHs (Cai et al., 2022). This difference in underlying 
mechanisms explains the differences in the strength of the 

association between intracranial and extracranial atherosclerotic 
stenosis and WMHs at different sites.

Our meta-analysis was based on cross-sectional studies; therefore, 
causality between intracranial and extracranial atherosclerotic stenosis 
and WMHs could not be  established. A 1 year follow-up study 
reported no association between 50–69% carotid artery stenosis and 
ipsilateral WMHs progression (Kwee et al., 2011). Another 7 years 
follow-up study also found that carotid artery stenosis ≥50% was not 
associated with WMHs progression, as assessed using the Fazekas 
Scale (Ihle-Hansen et  al., 2021). The only positive findings were 
observed in a retrospective longitudinal study that reported that ICAS 
≥20% was associated with WMHs progression assessed using the 
modified Rotterdam Progression scale after a 3 years interval (Zhong 
et al., 2022). A drawback of these studies is that cerebral perfusion was 
not considered. Reduced cerebral blood flow has been demonstrated 
to predict WMHs progression in longitudinal studies (Ten Dam et al., 
2007; Bernbaum et  al., 2015; Promjunyakul et  al., 2018). Because 
cerebral blood flow can be normal in patients with carotid artery 
stenosis, it is necessary to conduct follow-up studies on specific 
patients with carotid artery stenosis who have a decrease in cerebral 
blood flow.

Our study has some limitations. First, gray literature such as 
meeting abstracts were not included in our meta-analysis. Second, a 
significant number of studies were excluded due to insufficient data 
availability, thereby impacting the comprehensiveness of our analysis 
on the association between ICAS and WMHs. Consequently, further 
high-quality studies are necessary to conduct a more robust meta-
analysis. Third, substantial heterogeneity was observed in the meta-
analyses. To address this, we analyzed the data using a random-effect 
model and explored the heterogeneity using meta-regression. Fourth, 
some included studies provided univariate analysis results on ICAS or 
ECAS and WMHs. Thus, the association may be  biased due to 
confounding factors. Finally, a limitation of this study is that it only 
provides information that intracranial and extracranial atherosclerotic 
stenosis is associated with WMHs. Further studies are warranted to 

FIGURE 5

Forest plot depicting intracranial and extracranial atherosclerotic stenosis and the volume of WMHs.
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FIGURE 6

The association of intracranial and extracranial atherosclerotic stenosis with the volume of WMHs in subgroup analyses.
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determine whether improving intracranial and extracranial 
atherosclerotic stenosis (e.g., stenting) can prevent WMHs progression.

Conclusion

In summary, despite the considerable heterogeneity and the cross-
sectional nature of the included studies, this meta-analysis showed 
that intracranial and extracranial atherosclerotic stenosis was related 
to WMHs severity. Notably, this association was found to be significant 
in ECAS, but less pronounced in ICAS. Future studies should obtain 
longitudinal data on intracranial and extracranial atherosclerotic 
stenosis and WMHs progression.
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