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Objectives: More than half of patients with acute ischemic stroke develop post-
stroke cognitive impairment (PSCI), a significant barrier to future neurological 
recovery. Thus, predicting cognitive trajectories post-AIS is crucial. Our 
primary objective is to determine whether brain network properties from 
electroencephalography (EEG) can predict post-stroke cognitive function using 
machine learning approach.

Methods: We enrolled consecutive stroke patients who underwent both EEG 
during the acute stroke phase and cognitive assessments 3  months post-stroke. 
We  preprocessed acute stroke EEG data to eliminate low-quality epochs, 
then performed independent component analysis and quantified network 
characteristics using iSyncBrain®. Cognitive function was evaluated using the 
Montreal cognitive assessment (MoCA). We  initially categorized participants 
based on the lateralization of their lesions and then developed machine learning 
models to predict cognitive status in the left and right hemisphere lesion groups.

Results: Eighty-seven patients were included, and the accuracy of lesion laterality 
prediction using EEG attributes was 97.0%. In the left hemispheric lesion group, 
the network attributes of the theta band were significantly correlated with MoCA 
scores, and higher global efficiency, clustering coefficient, and lower characteristic 
path length were associated with higher MoCA scores. Most features related to 
cognitive scores were selected from the frontal lobe. The predictive powers (R-
squared) were 0.76 and 0.65 for the left and right stroke groups, respectively.

Conclusion: Estimating EEG-based network properties in the acute phase of 
ischemic stroke through a machine learning model has a potential to predict 
cognitive outcomes after ischemic stroke.
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Introduction

Stroke is the major cause of mortality and disability worldwide 
(Wolfe, 2000; Langhorne et al., 2011). Among disabilities, cognitive 
impairment after stroke exerts an important effect on patients, 
functional recovery, and long-term prognosis. Currently, clinicians 
evaluate the risk of post-stroke cognitive impairment using 
structural information, such as the location and size of the stroke 
lesion, from magnetic resonance imaging (MRI) or computed 
tomography (CT). An international large-scale consortium for 
lesion-symptom mapping research recently presented important 
findings on the location in the brain of lesions that cause cognitive 
impairment following stroke (Weaver et al., 2021b). However, these 
methods using structural brain imaging are based on the premise 
that brain function is selectively impaired in the localized area 
where the stroke lesion occurred. However, in practice, lesions at 
several sites might result in the same symptoms and signs, which is 
accounted for by the disruption of a shared neural network (Fox, 
2018). As a result, it would be  difficult to predict cognitive 
impairment after stroke based only on lesion location as identified 
in MRI, and it is necessary to evaluate the widespread effect of a 
lesion on the entire brain (Stinear, 2010; Carter et al., 2012). Tools 
for measuring functional connectivity, which evaluates not only a 
specific brain region’s activity but also the interaction between 
different regions, may be essential in resolving this issue (Bressler 
and Menon, 2010; Stinear, 2010; Aerts et al., 2016).

Among the available modalities to explore the functional 
activity of the human brain, disconnectome studies using functional 
MRI (fMRI) and diffusion tensor imaging(DTI) are being actively 
investigated in post-stroke cognitive impairment studies (Biesbroek 
et al., 2021; Lim et al., 2021). However, fMRI and DTI are difficult 
to apply in stroke patients in clinical practice due to their high cost 
and vulnerability to motion artifacts. As an alternative, 
electroencephalography (EEG) is advantageous, as EEG can detect 
functional changes in the entire brain caused by lesions, and it is 
less expensive than MRI (Chen et al., 2013). Though the low spatial 
resolution of EEG is caused by the limited number of electrodes and 
by the effect of the electromagnetic field on volume conduction, 
several methods have been proposed to overcome these 
shortcomings. Standardized low-resolution brain electromagnetic 
tomography (sLORETA) is a mathematical tool for source 
localization to map real brain regions from recorded EEG signals 
(Jatoi et al., 2014). Imaginary coherence (iCOH) calculated from 
the imaginary part of coherence (Sanchez Bornot et al., 2018) also 
helps to overcome the low spatial resolution of EEG even though 
iCOH is not a direct source localization method. It can be used to 
determine the functional connectivity between two regions of 
interest (ROIs) and efficiently reduce volume conduction (Nolte 
et al., 2004).

Several studies have reported that quantitative analysis of EEG 
may be employed to predict prognosis after acute ischemic stroke. 
Specific frequency bands, power ratios between different frequency 
bands, and symmetric index were strongly correlated with patients’ 
stroke severity index using the National Institutes of Health Stroke 
Scale (NIHSS) and with the functional status assessed by the 
modified Rankin Scale (Sheorajpanday et al., 2011; Finnigan and 
van Putten, 2013). Further, several QEEG indices, such as relative 

theta frequency (Schleiger et al., 2017) or irregularity of spectral 
power of frontal lobes (Hadiyoso et al., 2022), predicted post-stroke 
cognitive impairment in the previous studies with limited 
explanatory power. As incorporating brain network attributes may 
provide more details about cognitive prognosis after stroke, QEEG 
using a machine learning approach to incorporate functional 
connectivity along with lesion characteristics would be a powerful 
tool that could reveal the network vulnerability for post-stroke 
cognitive impairment in stroke patients.

Therefore, we aimed to investigate which EEG-dervied brain 
networks are associated with short-term cognitive status after stroke 
and to assess whether the brain network can accurately predict 
cognitive status after acute ischemic stroke using a machine 
learning approach.

Methods

Study population

Of the 1,959 consecutive ischemic stroke patients admitted 
between September 2016 and February 2020, 1,240 patients had an 
anterior circulation stroke and were admitted to the hospital within 
7 days of symptom onset. Out of these, 223 underwent a 3-month 
MoCA. After excluding 18 patients with a premorbid cognitive 
impairment, as indicated by an Informant Questionnaire on 
Cognitive Decline in the Elderly (IQCODE) score (Lee et al., 2005) 
of ≥3.6, a total of 87 patients who had an EEG during the acute 
stroke phase were selected for our study.

This study was approved by the Institutional Review Board of 
the Hallym University Sacred Heart Hospital and was not required 
to seek additional consent because of its retrospective nature and 
due to the minimal risk to participants.

Neuropsychological and clinical variables

The participants underwent neuropsychological tests, including 
the Korean version of the Mini-Mental State Examination (MMSE) 
and the Korean version of the Montreal Cognitive Assessment 
(MoCA) during admission (baseline) and after 3 months. A trained 
neuropsychologist performed the tests. Standardized scores for each 
test were calculated based on age, sex, and education-adjusted norm 
(Kang et al., 2009). Change values were calculated as “3-month test 
score–baseline test score.

From a stroke registry database (Bae et al., 2022),demographic 
factors, including age, sex, and years of education, were collected. 
Vascular risk factors, including history of hypertension, diabetes, 
hyperlipidemia, atrial fibrillation, smoking status, coronary heart 
disease, and previous stroke or transient ischemic attack, were also 
collected. The evaluation of stroke characteristics involved the 
assessment of initial stroke severity based on the NIHSS score and 
stroke subtypes according to the Trial of ORG 10172  in Acute 
Stroke Treatment (TOAST) classification. Premorbid functional 
status was evaluated using the modified Rankin scale. Time 
intervals between index stroke, EEG, and neuropsychological 
evaluations (baseline and follow-up) were also determined.
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Brain imaging

Neuroimaging analysis was performed using an MRI acquired at 
the time of the stroke for medical purposes. The participants 
underwent 3.0-Tesla MRI scanning (Achieva, Philips Healthcare, 
Eindhoven, The Netherlands). The protocols consisted of fluid-
attenuated inversion recovery imaging (FLAIR), axial T1- and 
T2-weighted spin echo, gradient-echo imaging, coronal T1-weighted 
spin echo imaging, and diffusion-weighted imaging (DWI). As for 
acute lesions, multiplicity, left hemisphere involvement, and cortical 
involvement of stroke lesions were investigated. As for chronic lesions, 
white matter hyperintensities (Fazekas scale), lacunes and cerebral 
microbleeds (presence and count), and medial temporal lobe atrophy 
(Scheltens visual scale) (Scheltens et al., 1992) were evaluated using 
the STRIVE criteria (Wardlaw et al., 2013).

EEG data acquisition

We retrospectively collected EEG data taken within 2 weeks of 
onset in patients with acute ischemic stroke. The EEG was recorded 
at rest using 19 channels of the international 10–20 system according 
to the laboratory’s internal standardized guidelines. To enhance the 
data quality and mitigate artifact effects, the EEG data underwent 
preprocessing. In the initial stage, the signals were sampled at a rate 
of 250 Hz and subjected to bandpass filtering in the frequency range 
of 1 ~ 45.5 Hz. Further, notch filtering was applied to eliminate 
unwanted noise. Subsequent steps involved re-referencing using 
common average referencing (CAR), the rejection of bad epochs 
through artifact subspace reconstruction (ASR), and the removal of 
stationary noise using adaptive mixture independent component 
analysis (AMICA) (Mullen et  al., 2015; Blum et  al., 2019) in 
iSyncBrain®. Additionally, artifacts attributed to electromyogram 
(EMG) and electrooculogram (EOG) were eliminated to generate 
reliable QEEG data. All preprocessing steps, including sensor-level 
data handling and source-level data computation and extraction, 
were performed using the cloud-based EEG analysis platform, 
iSyncBrain® provided by iMediSync, Inc. Korea1 (Subasi and Ismail, 
2010). Each component was analyzed, and noise components, such 
as heartbeat and muscle behavior, were excluded in this process. The 
automatically cleaned data were inspected manually once again to 
filter out the unfiltered noise and check whether the cleaned data 
were analyzable or not.

After the signal processing, spectrum powers were measured 
from 19 channels and 8 frequency bands. The 8 frequency bands were 
delta (1–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz), alpha2 (10–12 Hz), 
beta1 (12–15 Hz), beta2 (15–20 Hz), beta3 (20–30 Hz), and gamma 
(30–45 Hz). All the power values were also transformed into their 
relative values, which is the ratio of a specific band power to the entire 
band power. Also, the power ratios between two spectral bands, 
namely, TAR (Theta/Alpha), TBR (Theta/Beta), TBR2 (Theta/Beta2), 
and DAR (Delta/Alpha), were calculated at each channel. The next 
step was source power estimation. Source cortical activity was 
mathematically estimated by using sLORETA (Pascual-Marqui, 

1 https://isyncbrain.com

2002). Subsequently, the spectrum powers were expanded from 19 
channels to 68 cortical ROIs based on the Desikan–Killiany atlas 
(Desikan et al., 2006), providing us with more detail on brain activity 
and the source of spatial information. Following the Desikan–Killiany 
atlas, the 68 ROIs are arranged in frontal, temporal, parietal and 
occipital lobe. Even and odd numbers were used for the ROIs in the 
left and right hemispheres, respectively (Supplementary Table S1). 
Based on each source power, the functional connectivity between two 
ROIs was estimated using the iCOH method, which is calculated as
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where S fxy ( )  is the cross-power spectral density of ROI x , y 
and S fxx ( ), S fyy ( ) are the power spectral density of ROI x , y. The 
iCOH method is robust in volume conduction so that we  can 
separate the brain’s functional connectivity from the electromagnetic 
field effect. Finally, the network was constructed using each ROI as 
a node and the iCOH between ROIs as an edge. Four network 
features (global efficiency, characteristic path length, clustering 
coefficient, and modularity) (Liu et al., 2017) were calculated based 
on the iCOH values. Considering that each node had the iCOH 
values for all other nodes, we retained only the top 25% of the iCOH 
values and used them to construct a network having only a quarter 
of the edges being connected. The detailed information and the 
number of network features used in this study are shown in 
Supplementary Table S2.

Prediction of a stroke lesion’s laterality

First, we categorized patients into two groups based on lesion 
laterality for further analysis to uncover novel predictors independent 
of lesion laterality, as previous research has indicated that left-
sidedness of the infarct site is a robust predictor of cognitive 
impairment (Weaver et al., 2021a). Based on prior studies showing 
that slow waves predominate close to the stroke (Sheorajpanday et al., 
2011), we trained the machine learning model to classify the laterality 
of the infarct regions and used the classified results for the next step. 
According to the predictions of the machine learning method built 
using data from patients with clearly left- or right-sided lesions, 
individuals with both hemispheric lesions were divided into left or 
right laterality.

Prediction of post-stroke cognitive status

For each of the two groups dichotomized by the laterality of the 
lesion, we constructed a regression model with cognitive level as 
the outcome variable. Among various EEG features, including 
spectral power, power ratio, source power, connectivity, and 
network measures, we  only utilized network variables as 
explanatory variables because our hypothesis was to predict 
cognitive prognosis from functional network characteristics and to 
reduce the possibility of overfitting by limiting the number of 
explanatory variables. We first calculated the correlation coefficient 
between the MoCA standardized score and each network feature 
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extracted from the EEG. For further analysis, we extracted only 
those network features with a correlation coefficient higher than 
0.3. The extracted features were arranged in their order of 
importance as calculated using a machine learning model. The 
importance means how much each feature is used to predict the 
output variable in each node. It is calculated by the ratio between 
the importance of each feature to the summation of all the 
importance. In this model, the top 20 features were selected. In the 
final process, machine learning-based regression models for post-
stroke MoCA standardized scores were generated using Ridge, 
Lasso, ElasticNet, support vector regression, and AdaBoost 
regression. The flow chart of the model including the prediction of 
the lesion’s laterality is shown in Figure  1 and each model’s 
explanatory power was calculated by R-squared as follows:
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where SSres is the residual sum of squares, SStot is the total sum 
of squares, yi is the actual value, yi  is the predicted value, and y  is the 
mean value of the total actual values.

All statistical analyses were performed using R version 4.0.5, and 
statistical significance was set at p < 0.05.

Leave-one-out (LOO) validation technique

For the validation of our machine learning models, 
we employed the Leave-one-out (LOO) method. This approach 
is especially suited for limited datasets. Our dataset comprises 
data from 87 patients, and given the study’s objective, separate 
models were developed for the left and right brain regions, 
further restricting the available training data. The LOO 
technique, a variant of k-fold cross-validation, involves using 
each data point in the dataset for both training and testing 
(Cawley and Talbot, 2004). Given the limited size of our training 
data, this method allows for an in-depth sensitivity analysis on 
individual data points, offering insights into the model’s 
responsiveness to specific observations.

Sensitivity analysis

To bolster the robustness of our findings, we  undertook 
additional machine learning analyses with a focus on minimizing 
potential overfitting by adjusting the number of incorporated 
features. Our approach involved: (1) Prioritizing features based 
on their effect size importance and (2) integrating alpha values 
from the top 5 features with beta values sourced from the bottom 
15 features. Models were then selected based on their R-squared 
values. By employing a comprehensive strategy, which included 

FIGURE 1

Flow chart showing the statistical verifications, feature selection, and machine learning employed to predict cognitive status 3-month after stroke.
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the selection of 3 to 5 features from the top quintile and varying 
numbers from the bottom 15 (with a cumulative count not 
exceeding 10 features), we  were able to discern models that 
exhibited the optimal R-squared values.

Results

Baseline characteristics and stroke features 
of the study population

A total of 87 patients with acute stroke who underwent MRI, EEG, 
and the MoCA were enrolled in this study. The mean age of the 
patients was 65.4 years (SD 11.6), and 54 (61.4%) of them were men. 
The median scores for NIHSS and educational attainment were 3 (IQR 
1–6) and 9.5 years (IQR 6–12), respectively (Table  1). The time 
intervals from stroke onset to the EEG and cognitive tests had a 
median of 4 days (IQR 2–6) and 97 days (IQR 90.0–103.0), respectively. 
The 3-month MoCA score had a median of 23 points (IQR 19–26).

Lesion laterality prediction

During the prediction of the lesion laterality process, 21 patients 
were excluded because they had infarct regions in both hemispheres. 
Thus, they were not labeled or used to train the laterality prediction 
model. The model predicting lesion laterality showed high accuracy, 
sensitivity, and specificity at 96.97, 97.01, and 96.88%, respectively. 
The 21 patients excluded during the training due to bilateral lesions 
were included according to the predicted lesion sides. More 
specifically, ten patients were classified into the left lesion group, 
and the remaining 11 patients were in the right lesion group. 
Finally, 44 patients were categorized into the left and 43 patients 
into the right lesion group. The model performance according to 
the number of features from 5 to 10 are demonstrated in the 
Supplementary Table S3.

Distribution of the selected features over 
the frequency band and ROIs, and 
summation of feature importance

The distribution of the selected features over the frequency band 
and the summation of their feature importance as calculated from the 
feature selection model are shown in Table 2. Theta, alpha2, and 
beta1-related features were chosen as significant explanatory factors 
in the model for the left stroke group, but only theta-related features 
were chosen for the right stroke group. Regarding feature importance, 
theta and beta1 exhibited the most significant values in the models 
for the left and right stroke groups, respectively. For the cortical 
region distribution, the left and right stroke models were similar in 
selecting most features from the frontal lobe. The number of 
important features from the frontal lobe was 65% in both models. 
Specifically, 13 and 11 features were located in the ROI 1–20 for the 
left and right models, respectively. The summation of feature 
importance of the features located in the frontal lobe was 0.50 and 
0.46 for the left and right models, respectively, which is 73.47 and 
68.06% of the total importance.

TABLE 1 Baseline characteristics of the study population.

N  =  87

Demographics

Age 65.4 ± 11.7

Male 53 (60.9)

Education, years 10 [6–12]

Vascular risk factors

 Hypertension 51 (58.6)

 Diabetes mellitus 25 (28.7)

 Hyperlipidemia 23 (26.4)

 Smoking 30 (34.5)

 Atrial fibrillation 14 (16.1)

 Coronary heart disease 7 (8.1)

 Previous stroke/transient ischemic attack 15 (17.2)

Index-stroke characteristics

Premorbid modified Rankin scale >0 3 (3.4%)

 TOAST

  LAA 32 (36.8)

  SVO 24 (27.6)

  CE 13 (14.9)

  Other-determined 2 (2.3)

  Undetermined 16 (18.4)

Initial NIHSS 3.0 [1.0–6.0]

Acute lesions characteristics

 Multiple lesions 41 (48.8)

 Left hemispheric lesions 51 (60.7)

 Cortical lesions 37 (44.1)

 Chronic lesions

Medial temporal lobe atrophy

  0 / 1 / 2 / 3 / 4 10 (12.1) / 39 (47.0) / 29 (35.0) / 4 

(4.8) / 1 (1.2)

PVWMH

  1 / 2 / 3 58 (69.1) / 17 (20.2) / 9 (10.7)

SCWMH

  1 / 2 / 3 56 (66.7) / 19 (22.6) / 9 (10.7)

Lacunes 29 (34.5)

Number of lacunes 0 [0–1]

CMB 31 (36.5)

Number of CMBs 0 [0–1]

Time intervals

 Index-stroke to EEG 3 [2–5]

 Index-stroke to baseline neuropsychological 

evaluations

4 [2–6]

 Index-stroke to follow-up 

neuropsychological evaluations

97 [90–103]

Continuous variables were presented as mean ± standard deviation for normally distributed 
data or as median with IQR for skewed data; categorical variables were presented as 
frequencies (proportions).  
TOAST (Trial of ORG 10172 in Acute Stroke Treatment), LAA (large-artery atherosclerosis), 
SVO (small vessel occlusion), CE (cardioembolism), NIHSS (National Institutes of Health 
Stroke Scale), PVWMH (periventricular white matter hyperintensities), SCWMH 
(subcortical white matter hyperintensities), CMB (cerebral microbleeds), EEG 
(electroencephalography).
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EEG-based network features and machine 
learning models for predicting MoCA 
scores after stroke

The correlation between the 20 selected features and the standardized 
scores of the MoCA after 3 months for the left and right stroke groups are 
demonstrated in Supplementary Tables S4, S5, respectively. In the case of 
the left stroke group, all features related to the theta band showed a 
positive correlation coefficient with the MoCA standardized scores. By 
contrast, the correlation in the right stroke group does not show a clear 
relationship between the selected features and the target value. Using the 
20 selected features, we trained the aforementioned machine learning 
regression models, and the results are shown in Figure 2 and Table 3. As 
shown in Table 3, Ridge regression demonstrated the best performance 
in both groups (R-squared 0.76 for the left stroke group, 0.65 for the right 
stroke group). Our model did not incorporate patients’ clinical variables 
that were not derived from the EEG data. Nonetheless, certain variables, 
like age and baseline MoCA scores, could potentially influence the MoCA 
score at 3 months. As part of a sensitivity analysis, we also evaluated the 
model’s performance when it included age, baseline MoCA scores, and 
baseline NIHSS scores. However, this addition did not enhance the 
model’s predictive capability, with R-squared values of 0.6174 and 0.6207 
for the left and right stroke groups, respectively.

Sensitivity analysis with reduced variable 
count

In our sensitivity analyses with a reduced number of variables, 
the left lesion model, incorporating the top 8 features, achieved an 

R-squared value of 0.57. Conversely, the right lesion model, 
leveraging the top 10 features, reached an R-squared value of 0.51 
(refer to Supplementary Figure S1). We recognized that simplifying 
features based purely on their significance could potentially diminish 
the model’s explanatory capability. To circumvent this, we crafted a 
composite model, opting for 3 to 5 of the top  5 features, and 
complementing with a selection from the bottom 15, ensuring the 
total did not surpass 10 features. This intricate procedure entailed 
evaluating close to 9,000 models to pinpoint those with the most 
robust R-squared values.

As evidenced in the Supplementary Table S6, three models from 
the left lesion exceeded the performance of the top  20 feature-
oriented models in terms of their explanatory capacity. In contrast, 
for the right lesion, a singular model outperformed the foundational 
model. The superior model for the left lesion amalgamated the top 5 
features with an added 5 from the lower end, registering an 
R-squared value of 0.77. As for the right lesion, the eminent model 
incorporated the top 3 features and a supplementary 7 from the 
bottom tier. The definitive variables chosen by these exemplary 
models, along with the regression plots, are detailed in 
Supplementary Figures S2, S3.

Discussion

In our study, the brain network attributes, which were analyzed 
using the EEG data obtained at the acute stage after stroke through 
machine learning, were useful in predicting the MoCA score at 
3 months after acute stroke. Furthermore, this prediction was made 
based only on EEG analysis results without considering other 

TABLE 2 Distribution of the selected features over the frequency band and ROIs, and summation of feature importance.

Number of features Summation of feature importance

Left stroke group Right stroke group Left stroke group Right stroke group

Frequency bands

Delta 1 (5%) 2 (10%) 0.04 (14.09%) 0.05 (8.53%)

Theta 10 (50%) 1 (5%) 0.05 (17.54%) 0.03 (4.74%)

Alpha1 1 (5%) 2 (10%) 0.02 (6.15%) 0.04 (7.00%)

Alpha2 5 (25%) 4 (20%) 0.11 (42.43%) 0.17 (27.94%)

Beta1 2 (10%) 4 (20%) 0.03 (12.76%) 0.13 (21.71%)

Beta2 1 (5%) 6 (30%) 0.02 (7.03%) 0.16 (25.36%)

Beta3 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Gamma 0 (0%) 1 (5%) 0 (0%) 0.03 (4.71%)

Total 20 (100%) 20 (100%) 0.26 (100%) 0.61 (100%)

Region of interests

Frontal lobe 13 (65%) 13 (65%) 0.50 (73.47%) 0.46 (68.06%)

Temporal lobe 4 (20%) 2 (10%) 0.10 (15.48%) 0.04 (5.32%)

Parietal lobe 1 (5%) 1 (5%) 0.03 (4.12%) 0.02 (3.54%)

Occipital lobe 1 (5%) 3 (15%) 0.02 (3.60%) 0.07 (9.79%)

Isthmus (excluded from 4 

lobes)

1 (5%) 0 (0%) 0.02 (3.33%) 0 (0%)

Others 0 (0%) 1 (5%) 0 (0%) 0.03 (3.87%)

Total 20 (100%) 20 (100%) 0.6751 (100%) 0.61 (100%)
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clinical information, and this approach may be  useful in 
clinical practice.

As expected, the features selected in the machine learning 
models showed different trends between the left and right stroke 
groups. In the patients with the left hemispheric lesion group, 
we identified many significant features related to the theta band, 
whereas the right lesion group had only a few features distributed in 
the theta band. In the left hemispheric lesion group, the network 
attributes in the theta band were consistently and significantly 
correlated with the post-stroke MoCA scores at 3 months after 
stroke. The higher the global efficiency or clustering coefficient, or 
the lower the characteristic path length, the higher the MoCA score. 
However, the directionality of this association was not observed in 
the right hemispheric lesion group.

Network properties can be categorized in terms of integration 
(global efficiency and characteristic path lengths) and segregation 
(clustering coefficients and modularity) to explore their association 
with post-stroke cognitive impairment (Lim et  al., 2021). In a 
previous study, a gradual recovery of reduced modularity after an 
acute stroke to the level of the control group was associated with 
improvements in memory and attention scores (Siegel et al., 2018). 
Another study showed the association between reduced global 
efficiency and post-stroke depression (Xu et al., 2019). In our results, 
the global efficiency of the theta band was the most important 

explanatory factor in the left stroke group, and the clustering 
coefficient of the alpha band was found to be important in the right 
stroke group (Siegel et  al., 2018). Contrary to the findings of a 
previous study, our results did not underscore the significance of 
modularity. This discrepancy may be  attributable to the smaller 
quantity of modularity features included in our analysis compared 
to other features. As previously discussed, modularity shares 
conceptual similarities with the clustering coefficient, and our 
analysis revealed that the clustering coefficient constituted the 
majority of the top  20 selected features, irrespective of 
lesion laterality.

The top 20 important EEG network features reflecting cognitive 
prognosis were also more often extracted from the opposite side of 
the lesion. In the case of the left stroke group, 12 features were 
selected from the right hemisphere, and 8 were selected from the left 
hemisphere. In the case of the right stroke group, 12 features were 
selected from the left hemisphere, and 7 features were selected from 
the right hemisphere. Previous studies have shown that 
contralesional hemispheric networks were activated for 
compensatory processes during functional recovery after stroke 
(Rehme et al., 2011). During subacute periods after stroke, a positive 
correlation of contralesional, homologous regions with ipsilesional 
regions exerts a beneficial effect on muscle strength recovery (Rehme 
et al., 2011). However, these correlations were dependent on time 

FIGURE 2

Regression results predicting the MoCA percentile score relative to the actual value for the (A) left and (B) right stroke estimated group.

TABLE 3 R-squared results of the machine learning regression models.

Network type Network features only (left/right) All EEG features (left/right)

Ridge 0.76/0.65 0.64/0.48

Lasso 0.71/0.57 0.61/0.35

ElasticNet 0.63/0.55 0.44/0.37

Support Vector Regression 0.17/0.26 0.07/0.01

AdaBoost Regression 0.54/0.54 0.62/0.63
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since the stroke, and our results show that some features of the 
contralateral hemisphere are negatively correlated with cognition, so 
further research is needed. Prior to the prediction, we divided the 
dataset into two subsets based on the laterality of stroke infarct, as it 
affects the overall EEG signal. Then, we  selected the 20 most 
important features from the network variables estimated from 
functional connectivity using the iCOH between 68 ROIs. The 
selected features almost belonged to specific frequency bands, 
namely, theta, fast alpha, and slow beta, even though the left and 
right stroke estimated groups showed different tendencies. Several 
studies also proposed the relationship between post-stroke cognitive 
impairment and these frequency bands (De Vico et  al., 2009; 
Al-Qazzaz et al., 2018; Doerrfuss et al., 2019). In the case of the ROIs 
of the network features, both the left and right stroke groups showed 
consistent results, wherein most of the features were concentrated in 
the frontal lobe, especially in the ROI 1–20 (Schleiger et al., 2014). 
It is known that frontal executive function, attention, and processing 
speed are mainly impaired in stroke patients (Lo et al., 2019), and 
MoCA is reported to be  more sensitive in detecting frontal 
dysfunction than other tests, such as MMSE (Duncan and Owen, 
2000; Fuster, 2002; Pendlebury et al., 2012; Braakman et al., 2013; 
Braun et al., 2015). In this sense, the regression results support the 
relationship between predictive cognitive status and brain network 
features, predominantly of frontal origin.

Our primary analysis consisted of only network characteristics 
as explanatory variables, as hypothesized. We also examined whether 
explanatory power improved in sensitivity analyses using all 
functional connectivity features, including iCOH. However, the 
prediction results were worse than those obtained using network 
features only. It is not uncommon when certain variables irrelevant 
to the outcome of interest are included in the machine learning 
model that eventually adds noises and reduces the accuracy of 
predictability. Further, in cases with many independent variables, 
several statistical problems arise due to multiple comparison issues. 
In this case, reducing dimension is a useful approach to finding 
biologically relevant results (Lim et al., 2021). The iCOH values offer 
considerably more information, so they are highly correlated with 
other iCOH values obtained in the same or adjacent ROIs. By 
contrast, the network variables of each ROI provide relatively 
independent information from other ROIs, and it is assumed that 
the independence between input features provided better results.

Our study has several limitations. Firstly, the sample size of stroke 
patients was insufficient to establish an independent validation cohort 
for testing the derived machine learning model. Consequently, 
we  were compelled to implement the leave-one-out technique to 
enhance the reliability of both the training set and validation 
outcomes. Secondly, our limited patient population did not allow for 
examining differences attributable to varying stroke mechanisms. 
Furthermore, we gauged cognitive function solely through MOCA, 
excluding comprehensive neuropsychological testing. This restricts 
our ability to ascertain potential variations in correlations between 
EEG characteristics and individual cognitive domains. Additional 
inherent limitation is our choice of threshold for brain network 
indicators, set at the 1/4 level. While this decision balanced detail and 
feasibility, the optimal thresholding remains an area for future 
refinement and validation. Finally, patients who were unable to 
perform neuropsychological tests were excluded. Consequently, our 
findings may not be  universally applicable to all ischemic stroke 

patients. Administering cognitive tests to every ischemic stroke 
patient in a real-world context presents practical challenges. This 
inherent bias, stemming from attrition, has been extensively discussed 
in our earlier sections. Readers should exercise caution and keep this 
context in mind while interpreting our results (Pendlebury 
et al., 2015).

Conclusion

The predictive accuracy of post-stroke cognitive function may 
be  enhanced by evaluating network characteristics via a machine 
learning-based EEG analysis. Therefore, implementing EEG during 
the acute phase of a stroke could serve as a reliable method for 
anticipating short-term cognitive prognosis following an ischemic 
stroke. Further, prediction of post-stroke cognitive status after stroke 
may present a promising avenue for enhancing the precision medicine 
for post-stroke care.
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