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The advent of eXplainable Artificial Intelligence (XAI) has revolutionized the way

human experts, especially from non-computational domains, approach artificial

intelligence; this is particularly true for clinical applications where the transparency

of the results is often compromised by the algorithmic complexity. Here, we

investigate how Alzheimer’s disease (AD) a�ects brain connectivity within a

cohort of 432 subjects whose T1 brain Magnetic Resonance Imaging data (MRI)

were acquired within the Alzheimer’s Disease Neuroimaging Initiative (ADNI). In

particular, the cohort included 92 patients with AD, 126 normal controls (NC)

and 214 subjects with mild cognitive impairment (MCI). We show how graph

theory-based models can accurately distinguish these clinical conditions and

how Shapley values, borrowed from game theory, can be adopted to make

these models intelligible and easy to interpret. Explainability analyses outline the

role played by regions like putamen, middle and superior temporal gyrus; from

a class-related perspective, it is possible to outline specific regions, such as

hippocampus and amygdala for AD and posterior cingulate and precuneus forMCI.

The approach is general and could be adopted to outline how brain connectivity

a�ects specific brain regions.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, which represents

the seventh leading cause of mortality in the United States after when COVID-19 appeared

at the top of this ranking (Alzheimer’s Association, 2022). According to the World

Health Organization (https://www.who.int/news-room/fact-sheets/detail/dementia), AD is

the most common form of dementia (60–70%) which affects 55 million people all over the

world and some studies estimated that over 150million people will develop dementia by 2050

(Nichols et al., 2022). Alzheimer’s disease involves the loss of neuronal connections, thus

resulting in a connectivity damage that impairs neuronal functionality and eventually leads

to their death. Neuronal death has macroscopic effects on the brain; specific brain regions

start shrinking, this is what is usually known as brain atrophy (Devanand et al., 2007; Liu

et al., 2019; Talwar et al., 2021).

From a clinical point of view, this feature could be highly beneficial because it can be

revealed by imaging, especially by brain Magnetic Resonance Imaging (MRI) (Lerch et al.,

2008; Vemuri et al., 2008; Julkunen et al., 2010). The relationships between the structure of
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the brain and its functional abilities can be investigated (Emre

et al., 2007; Solé-Padullés et al., 2009; Frisoni et al., 2010) and,

therefore, on the one hand it is possible to assess to which extent

the disease severity reflects the structural damage, on the other

hand it is possible to develop accurate diagnostic approaches based

on the clinical symptoms. To this aim, it becomes extremely

important to develop accurate diagnosis support systems which

can detect early signs of atrophy, before symptoms appear, and

to initiate timely treatments (Breijyeh and Karaman, 2020). In

the last decades, several studies have investigated the structural

changes in the brain and tried to correlate them to different stages

of the disease severity, including preclinical AD, mild cognitive

impairment (MCI), and clinically diagnosed AD (Sperling et al.,

2011; Alzheimer’s Association, 2020).

MCI condition is particularly interesting because its symptoms

are not fully evident and brain damage is not extensive. MCI

is characterized by memory loss episodes, difficulty thinking,

and the first signs of physical problems (Gauthier et al., 2006;

Petersen et al., 2014). In addition, not all MCI subjects convert

to AD: according to estimates, 8 out of 10 people with MCI

develop AD within 7 years, whereas there are patients which

continue to have MCI or convert back to the normal condition

years later (Larrieu et al., 2002; National Institute on Aging,

2002; Gauthier et al., 2006; Tábuas-Pereira et al., 2016). It would

therefore open up a wide range of possibilities for cures and

disease-modifying therapies in the event we could effectively

diagnose MCI and distinguish physiological impairment from

early symptoms of AD (Huckans et al., 2013; Huang et al.,

2020).

Neuroimaging studies have demonstrated their effectiveness

to investigate brain changes and identify the first signs of disease

(Lebedeva et al., 2017; Zeng et al., 2021). In particular, some studies

have investigated the use of graph theory (Bullmore and Sporns,

2009; de Haan et al., 2012; Tijms et al., 2013), the conversion

from MCI to AD and algorithms for studying AD (Daianu

et al., 2015; Teipel et al., 2016; Liu et al., 2017). During the last

several decades, machine learning techniques have demonstrated

their ability to perform binary and multi-label classification tasks

(Gupta et al., 2019; Kim et al., 2021; Sheng et al., 2021; Song

et al., 2021); this is especially important when dealing with MCI,

which intrinsically represents a heterogeneous clinical condition,

often presenting both normal and pathological behavior. However,

clinical practitioners have difficulty adopting these techniques due

to the fact that they are often considered as black boxes, difficult to

interpret.

In this work, we employ a brain connectivity model based

on “patches”, whose effectiveness has already been verified for

AD classification (La Rocca et al., 2017, 2018; Amoroso et al.,

2018b,c, 2019). This overcomes the typical issues of voxelwise

and region-based approaches: (i) it removes the computational

burden and overfitting concerns associated with voxelwise methods

(Goenka and Tiwari, 2022), but also the parametric statistical

methods turned out to be over-conservative for voxelwise inference

(Eklund et al., 2016; Górriz et al., 2021); (ii) using unsupervised

segmentation of the brain, this approach does not require region

of interest (ROI) localization based on prior biological knowledge

to extract regional features, and it provides a better way to detect

microscopic structural changes in the brain that ROI extracted

features cannot capture (Amoroso et al., 2015).

Here, we take a step beyond by investigating to which extent

such model can “explain” the effects of AD on brain connectivity:

to this aim, we consider a consolidated eXplainable Artificial

Intelligence (XAI) approach based on Shapley values (Messalas

et al., 2019; Loh et al., 2022). The use of XAI methods to

characterize neurodegenerative diseases and, more in general, to

equip neuroimaging studies is rapidly increasing (El-Sappagh et al.,

2021; Anjomshoae and Pudas, 2022; Lombardi et al., 2022). A

lot of neuroimaging fields have seen a highly increased interest

in the application of XAI techniques, obtaining benefits from

transparency provided by these approaches (Farahani et al., 2022).

MRI research is exploiting these techniques to study brain aging

both through ante-hoc interpretability models, such as stability

assessment or latent variable models, and post hoc models, such as

feature importance and saliency maps (Galazzo et al., 2022; Qian

et al., 2023). XAI techniques were used to study the conversion

from MCI to AD by high-density electroencephalography (HD-

EEG) to detect which EEG-channels and range of frequencies were

most predominant in disease progression (Morabito et al., 2023).

In addition, clinical cognitive tests are getting advantage from

the application of XAI, which provides insights into the cognitive

processes by visualizing and identifying the specific cognitive

features that are most influential in determining the test outcomes;

using a single test such as the Clock Drawing Test or selecting a

subset of cognitive tests to exploit XAI scores for individualized

prediction explanations (Beebe-Wang et al., 2021; Jimenez-Mesa

et al., 2023).

We initially demonstrate to which extent the patch-based

approach is reliable for characterizing patients, controls and MCI

subjects. Then, the classification performance and its reliability are

investigated in order to ensure the model is sound. Finally, an

overall explanation of the model and an explanation of its decision

is provided by means of Shapley values.

2. Materials and methods

2.1. Imaging the brain and building a
network model

In this research, we used a dataset composed of 432 brain T1

MRI images, relative to 126 normal control (NC), 214 MCI and 92

AD subjects from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). ADNI is a longitudinal multicenter study designed to

obtain early diagnosis and monitoring of AD through the study

and development of clinical, imaging, biochemical, and genetic

biomarkers (https://adni.loni.usc.edu/about/). ADNI images were

normalized using the MNI152 brain template with 197×233×189

mm3 size and 1×1×1mm3 resolution; from now onward voxel and

1 mm3 will be interchangeably used. In the following Table 1 the

number of instances, gender information, age, years of education,

and Mini Mental State Examination (MMSE) score are enlisted.

This cohort of MRI scans passed quality control (QC) using the

Laboratory of Neuro Imaging (LONI) QC System (Kim et al., 2019)
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TABLE 1 Demographic information for each class.

AD MCI NC Total

Number of instances 92 214 126 432

Female/male 43/49 86/128 65/61 194/238

Age (years) 75.82± 7.60 75.30± 7.13 75.61± 5.58 75.50± 6.81

Education (years) 15.10± 3.26 15.52± 3.30 16.05± 2.61 15.58± 3.11

MMSE 23.45± 1.95 26.98± 1.75 29.16± 0.98 26.86± 2.59

The table provides the number of instances, gender information, and also age, years of education MMSE, with mean and standard deviation.

FIGURE 1

A schematic overview of the proposed workflow divided into its main two phases: (A) brain connectivity model and (B) explainable machine learning.

so that only high quality images were considered without signal

alterations.

The proposed approach involves two main stages: the

construction of the network model and the learning and

explainability phase (see Figure 1). First, a graph theory-based

model is employed to study structural brain connectivity and

identify early signs of Alzheimer’s disease. Accordingly, each

patient’s brain is modeled as a complex network. Brain MRIs are

parceled into rectangular boxes called “patches” of fixed dimensions

that represent the network’s nodes; the links are obtained in

terms of nodes’ pairwise similarity measured by absolute Pearson’s

correlation. As a difference with previous works where multiplex

networks were adopted, here we consider single-subject networks

to achieve a simpler description and, therefore, a more interpretable

model. In fact, using single-subject networks, network features

can be directly related to single nodes and then to specific

brain regions.

Image processing was the first algorithmic step. Using Oxford

FMRIB software library (FSL) (Jenkinson et al., 2012), images

were skull-stripped and spatially normalized as well in intensity to

mitigate data heterogeneity, an aspect of fundamental importance

for studying a multi-center database such as the one provided by

ADNI. First bias field correction and skull stripping was performed

using FSL Brain Extraction Tool (BET) (Smith, 2002). Thereafter,

spatial normalization was performed to ensure co-registration to

the MNI152 template using FSL Linear Registration Tool (FLIRT)

Frontiers in AgingNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1238065
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Amoroso et al. 10.3389/fnagi.2023.1238065

FIGURE 2

A detailed flowchart from imaging data to network modeling.

(Jenkinson et al., 2002); in particular, an affine registration was

adopted with default parameters.

After registration, by using the medial longitudinal fissure,

normalized brains were divided into the two hemispheres; each

hemisphere was then covered by an equal number of patches of

fixed dimensions l1 × l2 × l3 (patches overlapping the template

with <10% of voxels were neglected). For the patch dimension, we

considered the 10 × 15 × 20 mm3 configuration, corresponding

to a total volume of 3, 000 mm3, for a total of 549 patches

(see Figure 2).

Accordingly, we built an undirected weighted network for each

MRI scan with 549 nodes. Pearson’s correlation coefficient was

chosen for links for three main reasons: (i) it has an affordable

computational cost; (ii) it is easy to implement, and (iii) it

easy interpret in terms of brain atrophy. Absolute values were

considered to take into account left/right symmetry of the brain;

finally, a threshold was used to remove weak correlations (<0.3)

that could raise noisy connections.

Once structural connectivity had been modeled in terms

of a complex network, we exploited such characterization to

evaluate some network metrics and outline the effects of cerebral

atrophy on brain connectivity. Furthermore, since network metrics

can be easily divided in local and global ones, to acquire

a detailed description of how AD differently affects distinct

anatomical districts, nodal centrality measures were preferred. In

particular, three graph metrics were used: strength, betweenness,

and eigenvector centrality. The strength of a node is a local

centrality measure defined by the sum of edge weights of each

node; as a difference, a global centralitymeasure such as eigenvector

centrality takes into account also the influence of a node in a

network based on the amount of nodes with high number of

connections which it is connected to. Finally, a dynamic centrality

measure is considered: the betweenness; betweenness is the ratio

between the shortest paths connecting two nodes passing through

a specific node and all available shortest paths. Accordingly, it

is a measure capturing the information flow within a network

(Amoroso et al., 2021; Bellantuono et al., 2021; Sheng et al., 2021).

After calculating these three metrics for each node of the

adjacency matrices, a matrix representation M × n of the data was

obtained, where M is the number of enrolled patients and n is the

total number of features (number of metrics used times number of

nodes). Here, the resulting matrix had dimensions of 432× 1, 647.

2.2. Learning AD patterns

We have used the previously defined matrix representation to

train a machine learning model. The main objectives we set during

this learning phase were to achieve a sound representation of AD

and verify the robustness and reliability of the connectivity network

model. To this aim, a three-label classification was performed

for AD, MCI, and NC subjects. All these analyses were carried

out within a 10-fold cross-validation framework; the procedure

was iterated 50 times to estimate performances and uncertainties;

besides, to ensure balanced cross-validation splits between training

and test, stratified sampling was used.

To ensure that the observed performance was due to

the informative content provided by the network features

independently from the classification model used, we compared the

performance of several classifiers: Random Forest (RF) (Breiman,

2001), Support Vector machine (SVM) (Cortes and Vapnik, 1995),

eXtreme Gradient Boosting (XGBoost) (Chen et al., 2015), Naive

Bayes (NB) (Rish et al., 2001), and Logistic Regression (LR) (Ng

and Jordan, 2001) were used.

2.3. From classification to explanations

After classification performance accuracy and reliability had

been assessed, explainability analyses were carried out by means of

SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017).

Accordingly, it is possible to evaluate to which extent each feature

affects the model’s predictions. By averaging the impact of a feature
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on the whole dataset, a feature importance map can be achieved; at

the same time, this explanation allows for the identification of the

factors which determine the classifier’s decisions for each subject.

Also, this analysis provides additional information compared

with standard feature importance approaches in that it does not

determine the importance of one feature but also it explains how

its value, combined with the other features’ values, leads to the

decision taken by the algorithm.Moreover, it is possible to compare

whether the impact of features on a single decision is coherent with

the overall feature importance (the one related to the three-class

classification model) or not. Finally, an important aspect to remark

is that SHAP can be adopted with different machine learning

algorithms (Strumbelj and Kononenko, 2010), thus making the

proposed approach algorithm-independent.

A fundamental aspect of SHAP concerns their computational

burden, as the computational load increases exponentially with the

number of features. To overcome this issue, a specific experimental

design is proposed. Explainability analyses were nested in the

repeated 10-fold cross-validation. Using a RF classifier, for each

cross-validation round a subset of important features was selected

by means of the combined use of Mean Decrease Accuracy (MDA)

and statistical significance.

This procedure can be described in the following two steps:

(i) firstly, the features exceeding the 95th percentile of the MDA

distribution were selected within each cross-validation round;

(ii) then, these newly selected features were further reduced

considering statistical significance: only the features with the

5% significance using the one-sided binomial test were kept.

On average, the number of features selected during each cross-

validation round was ∼50. During each cross-validation round,

this final set of important features was used to train a second

classification model on the same training set with reduced number

of features, in order to evaluate its informative content and to

carry out the explainability analyses. Shapley values were calculated

for each of the test subjects of each cross-validation round.

The same analysis was carried out for each available class by

considering three one-vs.-all classifiers to outline the presence of

class-specific behaviors (Whitwell et al., 2007; Byun et al., 2015;

Cabral et al., 2015). The mentioned analyses were carried out with

R, with the DALEX and shapviz packages (Biecek, 2018; Biecek and

Burzykowski, 2020; Michael Mayer, 2022). Finally, to validate the

results from a clinical perspective, we determined which specific

brain regions were associated with the selected important features

(as each feature was directly related to a patch). To this aim, the

Talairach atlas (Lancaster et al., 1997, 2000) was used.

3. Results

3.1. Robustness and reliability

Firstly, we investigated the validity and reliability of the brain

connectivity model. To this aim, a 10-fold cross-validation analysis

was repeated 50 times, results are shown in Figure 3.

These findings demonstrate that, except for LR, the adopted

models are consistent and the informative power of the network

features can reach satisfactory values: in terms of accuracy, RF

FIGURE 3

The violin plot shows the comparison among five di�erent models,

except NB and LR classification remains accurate over 60%.

resulted the best model with a mean three-class accuracy of 0.66 ±

0.07.

To obtain class-specific evaluations, ROC curves and their area

under the curve (AUC) were taken into account (see Figure 4).

The results show an accurate classification for all classes: 0.81±

0.02 for AD, 0.77 ± 0.01 for MCI and 0.83 ± 0.01 for NC.

The contingency table allows to appreciate how MCI and AD

include most of misclassifications, 50 and 46, respectively. We also

evaluated the agreement of the predictions of the best performing

classifiers: RF and SVM by means of Pearson’s correlation. We

found a 0.79 correlation for AD, 0.70 for MCI and 0.78 for NC.

Hence, for subsequent analyses, only the RF model was considered.

3.2. Characterizing AD, MCI, and NC
patterns

Once demonstrated the reliability of the base of knowledge, we

investigated whether the features driving classification remained

the same despite class-specific differences. In Figure 5, it is possible

to observe the overall (related to all three classes) ranking of

features; only the top 20 features are shown for display purposes.

The smooth trend demonstrates that it is difficult to find

few features dominating over the others. Interestingly, the

top three positions were occupied by betweenness; however,

the significant presence of both strength and eigenvector

centrality features suggested that no metrics prevailed over

the others.

Using the three class-specific models, three importance

rankings were also constructed; besides, to outline class-

related patterns, explainability analyses were carried out

using only correctly classified subjects. These class-rankings

were compared with the overall ranking by means of the
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FIGURE 4

(Left) The receiver-operating-characteristic (ROC) curve on all test data for the best performing algorithm: RF. (Right) The confusion matrix for the RF.

FIGURE 5

Global feature importance expressed in terms of mean absolute SHAP values: the metric and the related patch are indicated.

TABLE 2 Agreement between the overall feature importance and the

ones retrieved considering the three classes separately.

Overall feature
importance vs

Spearman’s ρ p-value

AD feature importance 0.06 0.6

MCI feature importance 0.73 <2.2×10−16

NC feature importance 0.59 4× 10−8

Spearman’s correlation coefficient ρ. The results are presented

in Table 2.

While MCI and NC rankings were significantly correlated

to the overall ranking, the AD ranking showed a very

weak correlation. These findings allow us to highlight how

much brain connectivity is influenced by brain atrophy;

TABLE 3 Agreement between the feature rankings restricted to correctly

classified subjects.

Feature importance
between classes

Spearman’s ρ p-value

AD vs. MCI −0.23 0.04

AD vs. NC −0.22 0.04

MCI vs. NC 0.08 0.46

particularly in AD patients, in which the high heterogeneity

is more impactful than in subjects of the other two

clinical classes.

Lastly, we analyzed the correlation among the three feature

importance rankings restricted to only correctly classified subjects

(see Table 3).
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FIGURE 6

Beeswarm plots representing global feature explainability. From left to right, the graphs correspond to AD, MCI, NC.

The degree of correlation between these rankings allows us to

understand to what extent the correct classification of subjects of

different classes may depend on the order of importance of the

features. Using Spearman’s correlation, it is possible to determine

the strength and direction of the monotonic relationship between

two ranks. Although the observed correlations are definitely lower

than the previous ones, at 5% significance anti-correlation between

AD vs. MCI and AD vs. NC is detected. These negative Spearman

correlation coefficients highlight a decreasing monotonic trend

among the ranks of the features that better correctly classify the

AD class compared to those of the other two clinical classes. These

correlations, along with the previous ones, suggest the presence of

coherent and distinguishable patterns for NC and MCI, whereas

a more heterogeneous and elusive condition characterizes the

AD class.

3.3. Explaining the observed patterns

SHAP were also used to examine the effects of features on

predictions: how and howmuch each feature affected the prediction

score.

This analysis provided additional information compared to the

simple rankings showed in the previous section: the features are

ranked from top to bottom, from the most important to the least

important, and they are distributed based on both their impact on

the prediction as well as their value, for high values, colors tend

toward yellow, and for low values, colors tend toward purple. A

positive Shapley value represents a positive impact on the correct

predicted outcome, and a negative value implies a negative impact

(see Figure 6).

Observing the beeswarm plots, the features in common

between the three cases are of particular interest. In particular, for

AD and MCI the betweenness of patches 364, 368, and 380 were

found along with the strength of patches 374 and 380. Analogously,

for AD and NC, strength of patches 27 and 61, eigenvector

centrality of patches 27, 301, and 304 and betweenness of patch

293 were highlighted. Finally, MCI and NC showed in common:

betweenness of patches 188, 255, 298, 313, 384, and 420; eigenvector

centrality of patches 247, 255, 305, 417, and 523; strength of patches

42, 247, 255, 308, and 417. Notably, in some cases, the same patch

was detected from different metrics.

Let us consider some specific cases. For AD and MCI classes,

it is possible to observe the opposite behaviors of betweenness

of patches 364 and 380. Thus, these features are important

for the correct classification of AD subjects if their values are

high; conversely, low values of these features are significant for

the correct classification of MCI subjects. Similar findings can

be obtained for other classes, for example, NC subjects are

characterized by low values of eigenvector centrality of patch 27

while AD subjects tend to show are higher values. Interestingly, the

importance of a feature for classification can differ from one class to

another, for example the betweenness of patch 293 ranks third for

NC subjects, but it is ranked last for AD patients. Understanding

this findings without the help of anatomical interpretation can be

extremely complicated, this is why in the following section the XAI

visualization is presented. Another aspect which deserves to be

outlined is the possibility to carry out personalized XAI analyses,

which explain for each patient how classification was determined

(see Figure 7).

The Figure 7 shows three correctly classified subjects belonging

to AD, MCI, and NC, respectively, which correspond to three

example cases to show possible differences with global XAI analysis.

These graphs are waterfall plots and provide an analysis tool to

visualize how each feature impacts on the average of the model

output over the training data (baseline value E[f(x)]) for a specific

subject. The bars represent the Shapley values of the features that

most influentially drive the individual prediction. As can be seen

from the three plots, positive values indicate a greater impact on

the prediction, increasing the baseline predicted score. Longer bars

indicate a greater influence of the feature and adding them together

we obtain the final prediction f(x); the Figure 7 shows how this

value has increased the initial baseline value. It is apparent from

these graphs that some features extremely important from a global

perspective (e.g., eigenvector centrality of patch 27 or betweenness
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FIGURE 7

Local explanations: for each subject the impact of features on the decision is shown. From left to right, the graphs correspond to AD, MCI, NC.

of patch 61) and that are essential to the global analysis of classes, do

not appear in the class-specific analyses. While global XAI explains

on average which features are important for classification, subject-

level XAI is of fundamental importance to clinically validate

what happens for a specific patient; in anticipation of future

developments toward personalized diagnostics.

3.4. From network metrics to brain regions

Finally, to clinically validate the methodology we associated an

anatomical district to each important feature (see Figure 8).

The goal was to show the model consistency by demonstrating

that the outlined regions are clinically related to AD. For what

concerns the overall ranking, the brain regions found were

putamen, middle and superior temporal gyrus, anterior cingulate,

precentral and postcentral gyrus, insula, sub-gyral, thalamus,

culmen, lingual gyrus, cuneus, middle occipital gyrus, and brain

stem. Analogously, we found the most relevant brain regions for

the class-specific rankings.

There are a number of brain regions that were included in

the best 30 for AD, including the amygdala, parahippocampal

gyrus, fusiform gyrus, precuneus, posterior cingulate, as well as

other regions previously ranked in global rankings (insula and

lingual gyrus) that represent additional features nodes. For the

MCI class, the following brain regions have been included in the

top 30: posterior cingulate, precuneus and others already found

in the global ranking, such as middle temporal gyrus, sub-gyral,

and insula. The following regions are ranked in the top 30 for the

NC class: uncus, parahippocampal gyrus, lateral ventricle, caudate,

precuneus, posterior cingulate, and other regions already found in

the global ranking (culmen, thalamus).

4. Discussion

The proposed approach aimed at evaluating brain connectivity

as a tool for Alzheimer’s disease staging and its explainability.

We set up a three-label classification problem (NC, MCI, AD)

in order to estimate whether the brain connectivity model, based

on T1 brain MRI, was able to accurately distinguish these clinical

conditions and whether the SHAP could offer support to explain

the decision-making of a classifier. Our findings perfectly match

performances presented in international challenges (Bron et al.,

2015; Amoroso et al., 2018a; Dimitriadis et al., 2018; Sørensen

et al., 2018; Lin et al., 2021); the proposed connectivity model

can suitably characterize the disease onset and the anticipating

cognitive impairment.

We compared several classification models to ensure that

the method accuracy depended on the brain connectivity model

proposedmore than learning algorithms. In fact, we found accuracy

levels algorithm independent. Among the different models, the

most reliable classifier was RF which was able to achieve a three-

class median accuracy of 66% followed by SVM with practically

indistinguishable performance. Further, we verified that these

models were also in agreement from the prediction point of view, in

fact the classification scores achieved a Pearson’s correlation> 0.70

for all three classes.

A large number of studies have achieved impressive results

related to AD/NC binary classification in recent years. Using

machine learning techniques, the accuracy value could vary

between 80 and 90% (Amoroso et al., 2018b; Gupta et al., 2019;

Sheng et al., 2021; Zhao et al., 2021). Although excellent, these

binary results do not take into consideration the most interesting

clinical class, MCI subjects. As a result of the heterogeneity of

this intermediate stage, studying MCI patients is quite challenging,

but also complex. Three-label classification makes the study much

more complex, which explains why accuracy performance is not

excessively high compared to binary classifications (Cabral and

Silveira, 2013; Sørensen et al., 2014; Cárdenas-Peña et al., 2016;

Lama et al., 2017; Lee et al., 2019; Jimenez-Mesa et al., 2020).

Among the five classifiers considered here, the worst results

were obtained by NB and LR classifiers. This result could be due to

high-dimensional feature space; RF and SVM are more flexible to

handle dataset with a high number of features (Badillo et al., 2020;

Myszczynska et al., 2020; Spooner et al., 2020). A further factor that

could have affected these results is the small sample size, which

could certainly have represented a limitation to the performance

of the classifiers. The difficulty of finding many valid clinical data,

especially in the field of neuroimaging, makes it necessary to use
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FIGURE 8

Important features are mapped over the brain. The three colored images represent the overlapping of some patches, we obtained from the analysis,

on the regions of the atlas. From top to bottom, the graphs correspond to AD, MCI, NC.

high dimensional data with small number of samples and improve

the models on these same small datasets (Vabalas et al., 2019).

Combining this limit with the need to use many features can

make the training sample affected by dataset blind spots, producing

model performances that are highly variable compared to the real

ones (Berisha et al., 2021). This result suggests the importance of

considering algorithms like RF or SVM and, therefore, carrying out

explainability analyses to make these models more interpretable

for both patients and clinical practitioners. Thus, we investigated

the influence of different features on classification using the XAI

approach based on SHAP. By using this methodology, we can

gain a better understanding of how algorithms work and how

artificial intelligence methods can be used in clinical practice. As a

means of evaluating how features affect RF classifier predictions, we

conducted a global analysis that included all subjects in the dataset

and compared it with the three class-specific analyses that included

only patients correctly classified. We found a significant agreement

between global feature importance and the class-specific one of

MCI and NC classes, while the association tends to be weaker for

the AD ranking. This result confirms how AD brain atrophy affects

connectivity in highly heterogeneous ways (Zhang et al., 2016; John

et al., 2017; Poulakis et al., 2018; Sui et al., 2018; Badhwar et al.,

2020). Moreover, by comparing the three class-specific rankings

we found no significant correlation; these findings emphasize again

the disease heterogeneity and show how brain connectivity within

each class follows substantially different patterns (John et al., 2017;

Khazaee et al., 2017; Yu et al., 2017; Sheng et al., 2019).

Since the SHAP method provides information for analyzing

personalized predictions about individual patients, we also

presented some personalized analyses as an example. This is

particularly important to envisage future developments toward

personalized diagnostics and treatment (Fellous et al., 2019; Van der

Velden et al., 2022; Vrahatis et al., 2023). Moreover, this is also

important as our findings confirm that class-specific rankings can

significantly differ from global importance: it is not possible to

conceive a subject-specific model of AD without considering the

subject’s peculiarity. Finally, explainability analysis also provides a

way clinically validate the proposed brain connectivity model in

that it allows to directly relate the features driving classification to

specific brain regions. In particular, our findings demonstrate that

connectivity metrics reveal brain regions, such as parahippocampal

gyrus, amygdala, uncus, fusiform gyrus and lateral ventricle, whose

relation with AD is established (Pearson et al., 1985; Scahill et al.,

2002; Zhang and Wang, 2015; Amoroso et al., 2018b).
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5. Conclusion

In this work, a structural brain connectivity model was

proposed to study Alzheimer’s disease and mild cognitive

impairment; to this aim an accurate three-label classification model

was designed and, based on its decision scores, an explainable

SHAP approach was implemented. To the best of our knowledge,

this is the first attempt to equip a novel patch-based connectivity

model with an XAI framework. Moreover, to ease interpretability,

SHAP were mapped onto a brain atlas; the main advantage of this

method, in fact, is that it allows to directly relate mathematical

graph entities to anatomical districts. The accuracy and the

robustness of the network model were assessed by comparing

several classifiers. XAI analyses provided additional information

about both global and patient-level explanations; in particular our

findings confirmed that despite the presence of well determined

regions related to AD, each patient deserves specific attention in

that the disease heterogeneity makes its patterns extremely varying.

Future studies could investigate how this variability reflects the

specific brain resilience to the disease and, therefore, the possibility

to design stage-specific therapies. Moreover, while here the wide

MCI class was considered, further studies could also the investigate

differences within this class. The proposed approach is general and

it could be hopefully applied to shed light over several pathologies;

besides, its interpretability could ease its adoption in a domain

where learning algorithms are mistrustfully seen as black boxes.
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